1 /* SPDX-License-Identifier: MIT */ 2 #ifndef _INTEL_RINGBUFFER_H_ 3 #define _INTEL_RINGBUFFER_H_ 4 5 #include <drm/drm_util.h> 6 7 #include <linux/hashtable.h> 8 #include <linux/irq_work.h> 9 #include <linux/random.h> 10 #include <linux/seqlock.h> 11 12 #include "i915_pmu.h" 13 #include "i915_reg.h" 14 #include "i915_request.h" 15 #include "i915_selftest.h" 16 #include "gt/intel_timeline.h" 17 #include "intel_engine_types.h" 18 #include "intel_gpu_commands.h" 19 #include "intel_workarounds.h" 20 21 struct drm_printer; 22 struct intel_gt; 23 24 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, 25 * but keeps the logic simple. Indeed, the whole purpose of this macro is just 26 * to give some inclination as to some of the magic values used in the various 27 * workarounds! 28 */ 29 #define CACHELINE_BYTES 64 30 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32)) 31 32 #define ENGINE_TRACE(e, fmt, ...) do { \ 33 const struct intel_engine_cs *e__ __maybe_unused = (e); \ 34 GEM_TRACE("%s %s: " fmt, \ 35 dev_name(e__->i915->drm.dev), e__->name, \ 36 ##__VA_ARGS__); \ 37 } while (0) 38 39 /* 40 * The register defines to be used with the following macros need to accept a 41 * base param, e.g: 42 * 43 * REG_FOO(base) _MMIO((base) + <relative offset>) 44 * ENGINE_READ(engine, REG_FOO); 45 * 46 * register arrays are to be defined and accessed as follows: 47 * 48 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>) 49 * ENGINE_READ_IDX(engine, REG_BAR, i) 50 */ 51 52 #define __ENGINE_REG_OP(op__, engine__, ...) \ 53 intel_uncore_##op__((engine__)->uncore, __VA_ARGS__) 54 55 #define __ENGINE_READ_OP(op__, engine__, reg__) \ 56 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base)) 57 58 #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__) 59 #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__) 60 #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__) 61 #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__) 62 #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__) 63 64 #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \ 65 __ENGINE_REG_OP(read64_2x32, (engine__), \ 66 lower_reg__((engine__)->mmio_base), \ 67 upper_reg__((engine__)->mmio_base)) 68 69 #define ENGINE_READ_IDX(engine__, reg__, idx__) \ 70 __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__))) 71 72 #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \ 73 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__)) 74 75 #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__) 76 #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__) 77 #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__) 78 79 #define GEN6_RING_FAULT_REG_READ(engine__) \ 80 intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__)) 81 82 #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \ 83 intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__)) 84 85 #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \ 86 ({ \ 87 u32 __val; \ 88 \ 89 __val = intel_uncore_read((engine__)->uncore, \ 90 RING_FAULT_REG(engine__)); \ 91 __val &= ~(clear__); \ 92 __val |= (set__); \ 93 intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \ 94 __val); \ 95 }) 96 97 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to 98 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. 99 */ 100 101 static inline unsigned int 102 execlists_num_ports(const struct intel_engine_execlists * const execlists) 103 { 104 return execlists->port_mask + 1; 105 } 106 107 static inline struct i915_request * 108 execlists_active(const struct intel_engine_execlists *execlists) 109 { 110 struct i915_request * const *cur, * const *old, *active; 111 112 cur = READ_ONCE(execlists->active); 113 smp_rmb(); /* pairs with overwrite protection in process_csb() */ 114 do { 115 old = cur; 116 117 active = READ_ONCE(*cur); 118 cur = READ_ONCE(execlists->active); 119 120 smp_rmb(); /* and complete the seqlock retry */ 121 } while (unlikely(cur != old)); 122 123 return active; 124 } 125 126 static inline void 127 execlists_active_lock_bh(struct intel_engine_execlists *execlists) 128 { 129 local_bh_disable(); /* prevent local softirq and lock recursion */ 130 tasklet_lock(&execlists->tasklet); 131 } 132 133 static inline void 134 execlists_active_unlock_bh(struct intel_engine_execlists *execlists) 135 { 136 tasklet_unlock(&execlists->tasklet); 137 local_bh_enable(); /* restore softirq, and kick ksoftirqd! */ 138 } 139 140 struct i915_request * 141 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); 142 143 static inline u32 144 intel_read_status_page(const struct intel_engine_cs *engine, int reg) 145 { 146 /* Ensure that the compiler doesn't optimize away the load. */ 147 return READ_ONCE(engine->status_page.addr[reg]); 148 } 149 150 static inline void 151 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) 152 { 153 /* Writing into the status page should be done sparingly. Since 154 * we do when we are uncertain of the device state, we take a bit 155 * of extra paranoia to try and ensure that the HWS takes the value 156 * we give and that it doesn't end up trapped inside the CPU! 157 */ 158 if (static_cpu_has(X86_FEATURE_CLFLUSH)) { 159 mb(); 160 clflush(&engine->status_page.addr[reg]); 161 engine->status_page.addr[reg] = value; 162 clflush(&engine->status_page.addr[reg]); 163 mb(); 164 } else { 165 WRITE_ONCE(engine->status_page.addr[reg], value); 166 } 167 } 168 169 /* 170 * Reads a dword out of the status page, which is written to from the command 171 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or 172 * MI_STORE_DATA_IMM. 173 * 174 * The following dwords have a reserved meaning: 175 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. 176 * 0x04: ring 0 head pointer 177 * 0x05: ring 1 head pointer (915-class) 178 * 0x06: ring 2 head pointer (915-class) 179 * 0x10-0x1b: Context status DWords (GM45) 180 * 0x1f: Last written status offset. (GM45) 181 * 0x20-0x2f: Reserved (Gen6+) 182 * 183 * The area from dword 0x30 to 0x3ff is available for driver usage. 184 */ 185 #define I915_GEM_HWS_PREEMPT 0x32 186 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32)) 187 #define I915_GEM_HWS_SEQNO 0x40 188 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) 189 #define I915_GEM_HWS_SCRATCH 0x80 190 191 #define I915_HWS_CSB_BUF0_INDEX 0x10 192 #define I915_HWS_CSB_WRITE_INDEX 0x1f 193 #define CNL_HWS_CSB_WRITE_INDEX 0x2f 194 195 void intel_engine_stop(struct intel_engine_cs *engine); 196 void intel_engine_cleanup(struct intel_engine_cs *engine); 197 198 int intel_engines_init_mmio(struct intel_gt *gt); 199 int intel_engines_init(struct intel_gt *gt); 200 201 void intel_engine_free_request_pool(struct intel_engine_cs *engine); 202 203 void intel_engines_release(struct intel_gt *gt); 204 void intel_engines_free(struct intel_gt *gt); 205 206 int intel_engine_init_common(struct intel_engine_cs *engine); 207 void intel_engine_cleanup_common(struct intel_engine_cs *engine); 208 209 int intel_engine_resume(struct intel_engine_cs *engine); 210 211 int intel_ring_submission_setup(struct intel_engine_cs *engine); 212 213 int intel_engine_stop_cs(struct intel_engine_cs *engine); 214 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); 215 216 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask); 217 218 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); 219 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); 220 221 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 222 struct intel_instdone *instdone); 223 224 void intel_engine_init_execlists(struct intel_engine_cs *engine); 225 226 static inline u32 *__gen8_emit_pipe_control(u32 *batch, u32 flags0, u32 flags1, u32 offset) 227 { 228 memset(batch, 0, 6 * sizeof(u32)); 229 230 batch[0] = GFX_OP_PIPE_CONTROL(6) | flags0; 231 batch[1] = flags1; 232 batch[2] = offset; 233 234 return batch + 6; 235 } 236 237 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) 238 { 239 return __gen8_emit_pipe_control(batch, 0, flags, offset); 240 } 241 242 static inline u32 *gen12_emit_pipe_control(u32 *batch, u32 flags0, u32 flags1, u32 offset) 243 { 244 return __gen8_emit_pipe_control(batch, flags0, flags1, offset); 245 } 246 247 static inline u32 * 248 __gen8_emit_write_rcs(u32 *cs, u32 value, u32 offset, u32 flags0, u32 flags1) 249 { 250 *cs++ = GFX_OP_PIPE_CONTROL(6) | flags0; 251 *cs++ = flags1 | PIPE_CONTROL_QW_WRITE; 252 *cs++ = offset; 253 *cs++ = 0; 254 *cs++ = value; 255 *cs++ = 0; /* We're thrashing one extra dword. */ 256 257 return cs; 258 } 259 260 static inline u32* 261 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags) 262 { 263 /* We're using qword write, offset should be aligned to 8 bytes. */ 264 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); 265 266 return __gen8_emit_write_rcs(cs, 267 value, 268 gtt_offset, 269 0, 270 flags | PIPE_CONTROL_GLOBAL_GTT_IVB); 271 } 272 273 static inline u32* 274 gen12_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags0, u32 flags1) 275 { 276 /* We're using qword write, offset should be aligned to 8 bytes. */ 277 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); 278 279 return __gen8_emit_write_rcs(cs, 280 value, 281 gtt_offset, 282 flags0, 283 flags1 | PIPE_CONTROL_GLOBAL_GTT_IVB); 284 } 285 286 static inline u32 * 287 __gen8_emit_flush_dw(u32 *cs, u32 value, u32 gtt_offset, u32 flags) 288 { 289 *cs++ = (MI_FLUSH_DW + 1) | flags; 290 *cs++ = gtt_offset; 291 *cs++ = 0; 292 *cs++ = value; 293 294 return cs; 295 } 296 297 static inline u32 * 298 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags) 299 { 300 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ 301 GEM_BUG_ON(gtt_offset & (1 << 5)); 302 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ 303 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); 304 305 return __gen8_emit_flush_dw(cs, 306 value, 307 gtt_offset | MI_FLUSH_DW_USE_GTT, 308 flags | MI_FLUSH_DW_OP_STOREDW); 309 } 310 311 static inline void __intel_engine_reset(struct intel_engine_cs *engine, 312 bool stalled) 313 { 314 if (engine->reset.rewind) 315 engine->reset.rewind(engine, stalled); 316 engine->serial++; /* contexts lost */ 317 } 318 319 bool intel_engines_are_idle(struct intel_gt *gt); 320 bool intel_engine_is_idle(struct intel_engine_cs *engine); 321 void intel_engine_flush_submission(struct intel_engine_cs *engine); 322 323 void intel_engines_reset_default_submission(struct intel_gt *gt); 324 325 bool intel_engine_can_store_dword(struct intel_engine_cs *engine); 326 327 __printf(3, 4) 328 void intel_engine_dump(struct intel_engine_cs *engine, 329 struct drm_printer *m, 330 const char *header, ...); 331 332 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, 333 ktime_t *now); 334 335 struct i915_request * 336 intel_engine_find_active_request(struct intel_engine_cs *engine); 337 338 u32 intel_engine_context_size(struct intel_gt *gt, u8 class); 339 340 void intel_engine_init_active(struct intel_engine_cs *engine, 341 unsigned int subclass); 342 #define ENGINE_PHYSICAL 0 343 #define ENGINE_MOCK 1 344 #define ENGINE_VIRTUAL 2 345 346 static inline bool 347 intel_engine_has_preempt_reset(const struct intel_engine_cs *engine) 348 { 349 if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT)) 350 return false; 351 352 return intel_engine_has_preemption(engine); 353 } 354 355 static inline bool 356 intel_engine_has_heartbeat(const struct intel_engine_cs *engine) 357 { 358 if (!IS_ACTIVE(CONFIG_DRM_I915_HEARTBEAT_INTERVAL)) 359 return false; 360 361 return READ_ONCE(engine->props.heartbeat_interval_ms); 362 } 363 364 #endif /* _INTEL_RINGBUFFER_H_ */ 365