1 /* SPDX-License-Identifier: MIT */ 2 #ifndef _INTEL_RINGBUFFER_H_ 3 #define _INTEL_RINGBUFFER_H_ 4 5 #include <drm/drm_util.h> 6 7 #include <linux/hashtable.h> 8 #include <linux/irq_work.h> 9 #include <linux/random.h> 10 #include <linux/seqlock.h> 11 12 #include "i915_gem_batch_pool.h" 13 #include "i915_pmu.h" 14 #include "i915_reg.h" 15 #include "i915_request.h" 16 #include "i915_selftest.h" 17 #include "i915_timeline.h" 18 #include "intel_engine_types.h" 19 #include "intel_gpu_commands.h" 20 #include "intel_workarounds.h" 21 22 struct drm_printer; 23 24 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, 25 * but keeps the logic simple. Indeed, the whole purpose of this macro is just 26 * to give some inclination as to some of the magic values used in the various 27 * workarounds! 28 */ 29 #define CACHELINE_BYTES 64 30 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32)) 31 32 /* 33 * The register defines to be used with the following macros need to accept a 34 * base param, e.g: 35 * 36 * REG_FOO(base) _MMIO((base) + <relative offset>) 37 * ENGINE_READ(engine, REG_FOO); 38 * 39 * register arrays are to be defined and accessed as follows: 40 * 41 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>) 42 * ENGINE_READ_IDX(engine, REG_BAR, i) 43 */ 44 45 #define __ENGINE_REG_OP(op__, engine__, ...) \ 46 intel_uncore_##op__((engine__)->uncore, __VA_ARGS__) 47 48 #define __ENGINE_READ_OP(op__, engine__, reg__) \ 49 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base)) 50 51 #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__) 52 #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__) 53 #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__) 54 #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read, __VA_ARGS__) 55 #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__) 56 57 #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \ 58 __ENGINE_REG_OP(read64_2x32, (engine__), \ 59 lower_reg__((engine__)->mmio_base), \ 60 upper_reg__((engine__)->mmio_base)) 61 62 #define ENGINE_READ_IDX(engine__, reg__, idx__) \ 63 __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__))) 64 65 #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \ 66 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__)) 67 68 #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__) 69 #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__) 70 #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__) 71 72 #define GEN6_RING_FAULT_REG_READ(engine__) \ 73 intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__)) 74 75 #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \ 76 intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__)) 77 78 #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \ 79 ({ \ 80 u32 __val; \ 81 \ 82 __val = intel_uncore_read((engine__)->uncore, \ 83 RING_FAULT_REG(engine__)); \ 84 __val &= ~(clear__); \ 85 __val |= (set__); \ 86 intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \ 87 __val); \ 88 }) 89 90 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to 91 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. 92 */ 93 enum intel_engine_hangcheck_action { 94 ENGINE_IDLE = 0, 95 ENGINE_WAIT, 96 ENGINE_ACTIVE_SEQNO, 97 ENGINE_ACTIVE_HEAD, 98 ENGINE_ACTIVE_SUBUNITS, 99 ENGINE_WAIT_KICK, 100 ENGINE_DEAD, 101 }; 102 103 static inline const char * 104 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a) 105 { 106 switch (a) { 107 case ENGINE_IDLE: 108 return "idle"; 109 case ENGINE_WAIT: 110 return "wait"; 111 case ENGINE_ACTIVE_SEQNO: 112 return "active seqno"; 113 case ENGINE_ACTIVE_HEAD: 114 return "active head"; 115 case ENGINE_ACTIVE_SUBUNITS: 116 return "active subunits"; 117 case ENGINE_WAIT_KICK: 118 return "wait kick"; 119 case ENGINE_DEAD: 120 return "dead"; 121 } 122 123 return "unknown"; 124 } 125 126 void intel_engines_set_scheduler_caps(struct drm_i915_private *i915); 127 128 static inline void 129 execlists_set_active(struct intel_engine_execlists *execlists, 130 unsigned int bit) 131 { 132 __set_bit(bit, (unsigned long *)&execlists->active); 133 } 134 135 static inline bool 136 execlists_set_active_once(struct intel_engine_execlists *execlists, 137 unsigned int bit) 138 { 139 return !__test_and_set_bit(bit, (unsigned long *)&execlists->active); 140 } 141 142 static inline void 143 execlists_clear_active(struct intel_engine_execlists *execlists, 144 unsigned int bit) 145 { 146 __clear_bit(bit, (unsigned long *)&execlists->active); 147 } 148 149 static inline void 150 execlists_clear_all_active(struct intel_engine_execlists *execlists) 151 { 152 execlists->active = 0; 153 } 154 155 static inline bool 156 execlists_is_active(const struct intel_engine_execlists *execlists, 157 unsigned int bit) 158 { 159 return test_bit(bit, (unsigned long *)&execlists->active); 160 } 161 162 void execlists_user_begin(struct intel_engine_execlists *execlists, 163 const struct execlist_port *port); 164 void execlists_user_end(struct intel_engine_execlists *execlists); 165 166 void 167 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists); 168 169 struct i915_request * 170 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); 171 172 static inline unsigned int 173 execlists_num_ports(const struct intel_engine_execlists * const execlists) 174 { 175 return execlists->port_mask + 1; 176 } 177 178 static inline struct execlist_port * 179 execlists_port_complete(struct intel_engine_execlists * const execlists, 180 struct execlist_port * const port) 181 { 182 const unsigned int m = execlists->port_mask; 183 184 GEM_BUG_ON(port_index(port, execlists) != 0); 185 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER)); 186 187 memmove(port, port + 1, m * sizeof(struct execlist_port)); 188 memset(port + m, 0, sizeof(struct execlist_port)); 189 190 return port; 191 } 192 193 static inline u32 194 intel_read_status_page(const struct intel_engine_cs *engine, int reg) 195 { 196 /* Ensure that the compiler doesn't optimize away the load. */ 197 return READ_ONCE(engine->status_page.addr[reg]); 198 } 199 200 static inline void 201 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) 202 { 203 /* Writing into the status page should be done sparingly. Since 204 * we do when we are uncertain of the device state, we take a bit 205 * of extra paranoia to try and ensure that the HWS takes the value 206 * we give and that it doesn't end up trapped inside the CPU! 207 */ 208 if (static_cpu_has(X86_FEATURE_CLFLUSH)) { 209 mb(); 210 clflush(&engine->status_page.addr[reg]); 211 engine->status_page.addr[reg] = value; 212 clflush(&engine->status_page.addr[reg]); 213 mb(); 214 } else { 215 WRITE_ONCE(engine->status_page.addr[reg], value); 216 } 217 } 218 219 /* 220 * Reads a dword out of the status page, which is written to from the command 221 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or 222 * MI_STORE_DATA_IMM. 223 * 224 * The following dwords have a reserved meaning: 225 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. 226 * 0x04: ring 0 head pointer 227 * 0x05: ring 1 head pointer (915-class) 228 * 0x06: ring 2 head pointer (915-class) 229 * 0x10-0x1b: Context status DWords (GM45) 230 * 0x1f: Last written status offset. (GM45) 231 * 0x20-0x2f: Reserved (Gen6+) 232 * 233 * The area from dword 0x30 to 0x3ff is available for driver usage. 234 */ 235 #define I915_GEM_HWS_PREEMPT 0x32 236 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32)) 237 #define I915_GEM_HWS_SEQNO 0x40 238 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) 239 #define I915_GEM_HWS_SCRATCH 0x80 240 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32)) 241 242 #define I915_HWS_CSB_BUF0_INDEX 0x10 243 #define I915_HWS_CSB_WRITE_INDEX 0x1f 244 #define CNL_HWS_CSB_WRITE_INDEX 0x2f 245 246 struct intel_ring * 247 intel_engine_create_ring(struct intel_engine_cs *engine, 248 struct i915_timeline *timeline, 249 int size); 250 int intel_ring_pin(struct intel_ring *ring); 251 void intel_ring_reset(struct intel_ring *ring, u32 tail); 252 unsigned int intel_ring_update_space(struct intel_ring *ring); 253 void intel_ring_unpin(struct intel_ring *ring); 254 void intel_ring_free(struct kref *ref); 255 256 static inline struct intel_ring *intel_ring_get(struct intel_ring *ring) 257 { 258 kref_get(&ring->ref); 259 return ring; 260 } 261 262 static inline void intel_ring_put(struct intel_ring *ring) 263 { 264 kref_put(&ring->ref, intel_ring_free); 265 } 266 267 void intel_engine_stop(struct intel_engine_cs *engine); 268 void intel_engine_cleanup(struct intel_engine_cs *engine); 269 270 int __must_check intel_ring_cacheline_align(struct i915_request *rq); 271 272 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n); 273 274 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs) 275 { 276 /* Dummy function. 277 * 278 * This serves as a placeholder in the code so that the reader 279 * can compare against the preceding intel_ring_begin() and 280 * check that the number of dwords emitted matches the space 281 * reserved for the command packet (i.e. the value passed to 282 * intel_ring_begin()). 283 */ 284 GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs); 285 } 286 287 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos) 288 { 289 return pos & (ring->size - 1); 290 } 291 292 static inline bool 293 intel_ring_offset_valid(const struct intel_ring *ring, 294 unsigned int pos) 295 { 296 if (pos & -ring->size) /* must be strictly within the ring */ 297 return false; 298 299 if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */ 300 return false; 301 302 return true; 303 } 304 305 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr) 306 { 307 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */ 308 u32 offset = addr - rq->ring->vaddr; 309 GEM_BUG_ON(offset > rq->ring->size); 310 return intel_ring_wrap(rq->ring, offset); 311 } 312 313 static inline void 314 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail) 315 { 316 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail)); 317 318 /* 319 * "Ring Buffer Use" 320 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 321 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5 322 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5 323 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the 324 * same cacheline, the Head Pointer must not be greater than the Tail 325 * Pointer." 326 * 327 * We use ring->head as the last known location of the actual RING_HEAD, 328 * it may have advanced but in the worst case it is equally the same 329 * as ring->head and so we should never program RING_TAIL to advance 330 * into the same cacheline as ring->head. 331 */ 332 #define cacheline(a) round_down(a, CACHELINE_BYTES) 333 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) && 334 tail < ring->head); 335 #undef cacheline 336 } 337 338 static inline unsigned int 339 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail) 340 { 341 /* Whilst writes to the tail are strictly order, there is no 342 * serialisation between readers and the writers. The tail may be 343 * read by i915_request_retire() just as it is being updated 344 * by execlists, as although the breadcrumb is complete, the context 345 * switch hasn't been seen. 346 */ 347 assert_ring_tail_valid(ring, tail); 348 ring->tail = tail; 349 return tail; 350 } 351 352 static inline unsigned int 353 __intel_ring_space(unsigned int head, unsigned int tail, unsigned int size) 354 { 355 /* 356 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the 357 * same cacheline, the Head Pointer must not be greater than the Tail 358 * Pointer." 359 */ 360 GEM_BUG_ON(!is_power_of_2(size)); 361 return (head - tail - CACHELINE_BYTES) & (size - 1); 362 } 363 364 int intel_engines_init_mmio(struct drm_i915_private *i915); 365 int intel_engines_setup(struct drm_i915_private *i915); 366 int intel_engines_init(struct drm_i915_private *i915); 367 void intel_engines_cleanup(struct drm_i915_private *i915); 368 369 int intel_engine_init_common(struct intel_engine_cs *engine); 370 void intel_engine_cleanup_common(struct intel_engine_cs *engine); 371 372 int intel_ring_submission_setup(struct intel_engine_cs *engine); 373 int intel_ring_submission_init(struct intel_engine_cs *engine); 374 375 int intel_engine_stop_cs(struct intel_engine_cs *engine); 376 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); 377 378 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask); 379 380 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); 381 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); 382 383 void intel_engine_get_instdone(struct intel_engine_cs *engine, 384 struct intel_instdone *instdone); 385 386 void intel_engine_init_execlists(struct intel_engine_cs *engine); 387 388 void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine); 389 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); 390 391 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine); 392 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine); 393 394 void intel_engine_signal_breadcrumbs(struct intel_engine_cs *engine); 395 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); 396 397 static inline void 398 intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine) 399 { 400 irq_work_queue(&engine->breadcrumbs.irq_work); 401 } 402 403 void intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine); 404 405 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine); 406 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); 407 408 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine, 409 struct drm_printer *p); 410 411 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) 412 { 413 memset(batch, 0, 6 * sizeof(u32)); 414 415 batch[0] = GFX_OP_PIPE_CONTROL(6); 416 batch[1] = flags; 417 batch[2] = offset; 418 419 return batch + 6; 420 } 421 422 static inline u32 * 423 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags) 424 { 425 /* We're using qword write, offset should be aligned to 8 bytes. */ 426 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); 427 428 /* w/a for post sync ops following a GPGPU operation we 429 * need a prior CS_STALL, which is emitted by the flush 430 * following the batch. 431 */ 432 *cs++ = GFX_OP_PIPE_CONTROL(6); 433 *cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB; 434 *cs++ = gtt_offset; 435 *cs++ = 0; 436 *cs++ = value; 437 /* We're thrashing one dword of HWS. */ 438 *cs++ = 0; 439 440 return cs; 441 } 442 443 static inline u32 * 444 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags) 445 { 446 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ 447 GEM_BUG_ON(gtt_offset & (1 << 5)); 448 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ 449 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); 450 451 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags; 452 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT; 453 *cs++ = 0; 454 *cs++ = value; 455 456 return cs; 457 } 458 459 static inline void intel_engine_reset(struct intel_engine_cs *engine, 460 bool stalled) 461 { 462 if (engine->reset.reset) 463 engine->reset.reset(engine, stalled); 464 engine->serial++; /* contexts lost */ 465 } 466 467 bool intel_engine_is_idle(struct intel_engine_cs *engine); 468 bool intel_engines_are_idle(struct drm_i915_private *dev_priv); 469 470 void intel_engines_reset_default_submission(struct drm_i915_private *i915); 471 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915); 472 473 bool intel_engine_can_store_dword(struct intel_engine_cs *engine); 474 475 __printf(3, 4) 476 void intel_engine_dump(struct intel_engine_cs *engine, 477 struct drm_printer *m, 478 const char *header, ...); 479 480 struct intel_engine_cs * 481 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance); 482 483 static inline void intel_engine_context_in(struct intel_engine_cs *engine) 484 { 485 unsigned long flags; 486 487 if (READ_ONCE(engine->stats.enabled) == 0) 488 return; 489 490 write_seqlock_irqsave(&engine->stats.lock, flags); 491 492 if (engine->stats.enabled > 0) { 493 if (engine->stats.active++ == 0) 494 engine->stats.start = ktime_get(); 495 GEM_BUG_ON(engine->stats.active == 0); 496 } 497 498 write_sequnlock_irqrestore(&engine->stats.lock, flags); 499 } 500 501 static inline void intel_engine_context_out(struct intel_engine_cs *engine) 502 { 503 unsigned long flags; 504 505 if (READ_ONCE(engine->stats.enabled) == 0) 506 return; 507 508 write_seqlock_irqsave(&engine->stats.lock, flags); 509 510 if (engine->stats.enabled > 0) { 511 ktime_t last; 512 513 if (engine->stats.active && --engine->stats.active == 0) { 514 /* 515 * Decrement the active context count and in case GPU 516 * is now idle add up to the running total. 517 */ 518 last = ktime_sub(ktime_get(), engine->stats.start); 519 520 engine->stats.total = ktime_add(engine->stats.total, 521 last); 522 } else if (engine->stats.active == 0) { 523 /* 524 * After turning on engine stats, context out might be 525 * the first event in which case we account from the 526 * time stats gathering was turned on. 527 */ 528 last = ktime_sub(ktime_get(), engine->stats.enabled_at); 529 530 engine->stats.total = ktime_add(engine->stats.total, 531 last); 532 } 533 } 534 535 write_sequnlock_irqrestore(&engine->stats.lock, flags); 536 } 537 538 int intel_enable_engine_stats(struct intel_engine_cs *engine); 539 void intel_disable_engine_stats(struct intel_engine_cs *engine); 540 541 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine); 542 543 struct i915_request * 544 intel_engine_find_active_request(struct intel_engine_cs *engine); 545 546 u32 intel_engine_context_size(struct drm_i915_private *i915, u8 class); 547 548 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 549 550 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) 551 { 552 if (!execlists->preempt_hang.inject_hang) 553 return false; 554 555 complete(&execlists->preempt_hang.completion); 556 return true; 557 } 558 559 #else 560 561 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) 562 { 563 return false; 564 } 565 566 #endif 567 568 void intel_engine_init_active(struct intel_engine_cs *engine, 569 unsigned int subclass); 570 #define ENGINE_PHYSICAL 0 571 #define ENGINE_MOCK 1 572 #define ENGINE_VIRTUAL 2 573 574 #endif /* _INTEL_RINGBUFFER_H_ */ 575