xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_breadcrumbs.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2015-2021 Intel Corporation
4  */
5 
6 #include <linux/kthread.h>
7 #include <trace/events/dma_fence.h>
8 #include <uapi/linux/sched/types.h>
9 
10 #include "i915_drv.h"
11 #include "i915_trace.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine_pm.h"
15 #include "intel_gt_pm.h"
16 #include "intel_gt_requests.h"
17 
18 static bool irq_enable(struct intel_engine_cs *engine)
19 {
20 	if (!engine->irq_enable)
21 		return false;
22 
23 	/* Caller disables interrupts */
24 	spin_lock(&engine->gt->irq_lock);
25 	engine->irq_enable(engine);
26 	spin_unlock(&engine->gt->irq_lock);
27 
28 	return true;
29 }
30 
31 static void irq_disable(struct intel_engine_cs *engine)
32 {
33 	if (!engine->irq_disable)
34 		return;
35 
36 	/* Caller disables interrupts */
37 	spin_lock(&engine->gt->irq_lock);
38 	engine->irq_disable(engine);
39 	spin_unlock(&engine->gt->irq_lock);
40 }
41 
42 static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
43 {
44 	/*
45 	 * Since we are waiting on a request, the GPU should be busy
46 	 * and should have its own rpm reference.
47 	 */
48 	if (GEM_WARN_ON(!intel_gt_pm_get_if_awake(b->irq_engine->gt)))
49 		return;
50 
51 	/*
52 	 * The breadcrumb irq will be disarmed on the interrupt after the
53 	 * waiters are signaled. This gives us a single interrupt window in
54 	 * which we can add a new waiter and avoid the cost of re-enabling
55 	 * the irq.
56 	 */
57 	WRITE_ONCE(b->irq_armed, true);
58 
59 	/* Requests may have completed before we could enable the interrupt. */
60 	if (!b->irq_enabled++ && irq_enable(b->irq_engine))
61 		irq_work_queue(&b->irq_work);
62 }
63 
64 static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
65 {
66 	if (!b->irq_engine)
67 		return;
68 
69 	spin_lock(&b->irq_lock);
70 	if (!b->irq_armed)
71 		__intel_breadcrumbs_arm_irq(b);
72 	spin_unlock(&b->irq_lock);
73 }
74 
75 static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
76 {
77 	GEM_BUG_ON(!b->irq_enabled);
78 	if (!--b->irq_enabled)
79 		irq_disable(b->irq_engine);
80 
81 	WRITE_ONCE(b->irq_armed, false);
82 	intel_gt_pm_put_async(b->irq_engine->gt);
83 }
84 
85 static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
86 {
87 	spin_lock(&b->irq_lock);
88 	if (b->irq_armed)
89 		__intel_breadcrumbs_disarm_irq(b);
90 	spin_unlock(&b->irq_lock);
91 }
92 
93 static void add_signaling_context(struct intel_breadcrumbs *b,
94 				  struct intel_context *ce)
95 {
96 	lockdep_assert_held(&ce->signal_lock);
97 
98 	spin_lock(&b->signalers_lock);
99 	list_add_rcu(&ce->signal_link, &b->signalers);
100 	spin_unlock(&b->signalers_lock);
101 }
102 
103 static bool remove_signaling_context(struct intel_breadcrumbs *b,
104 				     struct intel_context *ce)
105 {
106 	lockdep_assert_held(&ce->signal_lock);
107 
108 	if (!list_empty(&ce->signals))
109 		return false;
110 
111 	spin_lock(&b->signalers_lock);
112 	list_del_rcu(&ce->signal_link);
113 	spin_unlock(&b->signalers_lock);
114 
115 	return true;
116 }
117 
118 __maybe_unused static bool
119 check_signal_order(struct intel_context *ce, struct i915_request *rq)
120 {
121 	if (rq->context != ce)
122 		return false;
123 
124 	if (!list_is_last(&rq->signal_link, &ce->signals) &&
125 	    i915_seqno_passed(rq->fence.seqno,
126 			      list_next_entry(rq, signal_link)->fence.seqno))
127 		return false;
128 
129 	if (!list_is_first(&rq->signal_link, &ce->signals) &&
130 	    i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno,
131 			      rq->fence.seqno))
132 		return false;
133 
134 	return true;
135 }
136 
137 static bool
138 __dma_fence_signal(struct dma_fence *fence)
139 {
140 	return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
141 }
142 
143 static void
144 __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp)
145 {
146 	fence->timestamp = timestamp;
147 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
148 	trace_dma_fence_signaled(fence);
149 }
150 
151 static void
152 __dma_fence_signal__notify(struct dma_fence *fence,
153 			   const struct list_head *list)
154 {
155 	struct dma_fence_cb *cur, *tmp;
156 
157 	lockdep_assert_held(fence->lock);
158 
159 	list_for_each_entry_safe(cur, tmp, list, node) {
160 		INIT_LIST_HEAD(&cur->node);
161 		cur->func(fence, cur);
162 	}
163 }
164 
165 static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl)
166 {
167 	if (b->irq_engine)
168 		intel_engine_add_retire(b->irq_engine, tl);
169 }
170 
171 static struct llist_node *
172 slist_add(struct llist_node *node, struct llist_node *head)
173 {
174 	node->next = head;
175 	return node;
176 }
177 
178 static void signal_irq_work(struct irq_work *work)
179 {
180 	struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work);
181 	const ktime_t timestamp = ktime_get();
182 	struct llist_node *signal, *sn;
183 	struct intel_context *ce;
184 
185 	signal = NULL;
186 	if (unlikely(!llist_empty(&b->signaled_requests)))
187 		signal = llist_del_all(&b->signaled_requests);
188 
189 	/*
190 	 * Keep the irq armed until the interrupt after all listeners are gone.
191 	 *
192 	 * Enabling/disabling the interrupt is rather costly, roughly a couple
193 	 * of hundred microseconds. If we are proactive and enable/disable
194 	 * the interrupt around every request that wants a breadcrumb, we
195 	 * quickly drown in the extra orders of magnitude of latency imposed
196 	 * on request submission.
197 	 *
198 	 * So we try to be lazy, and keep the interrupts enabled until no
199 	 * more listeners appear within a breadcrumb interrupt interval (that
200 	 * is until a request completes that no one cares about). The
201 	 * observation is that listeners come in batches, and will often
202 	 * listen to a bunch of requests in succession. Though note on icl+,
203 	 * interrupts are always enabled due to concerns with rc6 being
204 	 * dysfunctional with per-engine interrupt masking.
205 	 *
206 	 * We also try to avoid raising too many interrupts, as they may
207 	 * be generated by userspace batches and it is unfortunately rather
208 	 * too easy to drown the CPU under a flood of GPU interrupts. Thus
209 	 * whenever no one appears to be listening, we turn off the interrupts.
210 	 * Fewer interrupts should conserve power -- at the very least, fewer
211 	 * interrupt draw less ire from other users of the system and tools
212 	 * like powertop.
213 	 */
214 	if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers))
215 		intel_breadcrumbs_disarm_irq(b);
216 
217 	rcu_read_lock();
218 	atomic_inc(&b->signaler_active);
219 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
220 		struct i915_request *rq;
221 
222 		list_for_each_entry_rcu(rq, &ce->signals, signal_link) {
223 			bool release;
224 
225 			if (!__i915_request_is_complete(rq))
226 				break;
227 
228 			if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
229 						&rq->fence.flags))
230 				break;
231 
232 			/*
233 			 * Queue for execution after dropping the signaling
234 			 * spinlock as the callback chain may end up adding
235 			 * more signalers to the same context or engine.
236 			 */
237 			spin_lock(&ce->signal_lock);
238 			list_del_rcu(&rq->signal_link);
239 			release = remove_signaling_context(b, ce);
240 			spin_unlock(&ce->signal_lock);
241 			if (release) {
242 				if (intel_timeline_is_last(ce->timeline, rq))
243 					add_retire(b, ce->timeline);
244 				intel_context_put(ce);
245 			}
246 
247 			if (__dma_fence_signal(&rq->fence))
248 				/* We own signal_node now, xfer to local list */
249 				signal = slist_add(&rq->signal_node, signal);
250 			else
251 				i915_request_put(rq);
252 		}
253 	}
254 	atomic_dec(&b->signaler_active);
255 	rcu_read_unlock();
256 
257 	llist_for_each_safe(signal, sn, signal) {
258 		struct i915_request *rq =
259 			llist_entry(signal, typeof(*rq), signal_node);
260 		struct list_head cb_list;
261 
262 		spin_lock(&rq->lock);
263 		list_replace(&rq->fence.cb_list, &cb_list);
264 		__dma_fence_signal__timestamp(&rq->fence, timestamp);
265 		__dma_fence_signal__notify(&rq->fence, &cb_list);
266 		spin_unlock(&rq->lock);
267 
268 		i915_request_put(rq);
269 	}
270 
271 	if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers))
272 		intel_breadcrumbs_arm_irq(b);
273 }
274 
275 struct intel_breadcrumbs *
276 intel_breadcrumbs_create(struct intel_engine_cs *irq_engine)
277 {
278 	struct intel_breadcrumbs *b;
279 
280 	b = kzalloc(sizeof(*b), GFP_KERNEL);
281 	if (!b)
282 		return NULL;
283 
284 	b->irq_engine = irq_engine;
285 
286 	spin_lock_init(&b->signalers_lock);
287 	INIT_LIST_HEAD(&b->signalers);
288 	init_llist_head(&b->signaled_requests);
289 
290 	spin_lock_init(&b->irq_lock);
291 	init_irq_work(&b->irq_work, signal_irq_work);
292 
293 	return b;
294 }
295 
296 void intel_breadcrumbs_reset(struct intel_breadcrumbs *b)
297 {
298 	unsigned long flags;
299 
300 	if (!b->irq_engine)
301 		return;
302 
303 	spin_lock_irqsave(&b->irq_lock, flags);
304 
305 	if (b->irq_enabled)
306 		irq_enable(b->irq_engine);
307 	else
308 		irq_disable(b->irq_engine);
309 
310 	spin_unlock_irqrestore(&b->irq_lock, flags);
311 }
312 
313 void __intel_breadcrumbs_park(struct intel_breadcrumbs *b)
314 {
315 	if (!READ_ONCE(b->irq_armed))
316 		return;
317 
318 	/* Kick the work once more to drain the signalers, and disarm the irq */
319 	irq_work_sync(&b->irq_work);
320 	while (READ_ONCE(b->irq_armed) && !atomic_read(&b->active)) {
321 		local_irq_disable();
322 		signal_irq_work(&b->irq_work);
323 		local_irq_enable();
324 		cond_resched();
325 	}
326 }
327 
328 void intel_breadcrumbs_free(struct intel_breadcrumbs *b)
329 {
330 	irq_work_sync(&b->irq_work);
331 	GEM_BUG_ON(!list_empty(&b->signalers));
332 	GEM_BUG_ON(b->irq_armed);
333 	kfree(b);
334 }
335 
336 static void irq_signal_request(struct i915_request *rq,
337 			       struct intel_breadcrumbs *b)
338 {
339 	if (!__dma_fence_signal(&rq->fence))
340 		return;
341 
342 	i915_request_get(rq);
343 	if (llist_add(&rq->signal_node, &b->signaled_requests))
344 		irq_work_queue(&b->irq_work);
345 }
346 
347 static void insert_breadcrumb(struct i915_request *rq)
348 {
349 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
350 	struct intel_context *ce = rq->context;
351 	struct list_head *pos;
352 
353 	if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags))
354 		return;
355 
356 	/*
357 	 * If the request is already completed, we can transfer it
358 	 * straight onto a signaled list, and queue the irq worker for
359 	 * its signal completion.
360 	 */
361 	if (__i915_request_is_complete(rq)) {
362 		irq_signal_request(rq, b);
363 		return;
364 	}
365 
366 	if (list_empty(&ce->signals)) {
367 		intel_context_get(ce);
368 		add_signaling_context(b, ce);
369 		pos = &ce->signals;
370 	} else {
371 		/*
372 		 * We keep the seqno in retirement order, so we can break
373 		 * inside intel_engine_signal_breadcrumbs as soon as we've
374 		 * passed the last completed request (or seen a request that
375 		 * hasn't event started). We could walk the timeline->requests,
376 		 * but keeping a separate signalers_list has the advantage of
377 		 * hopefully being much smaller than the full list and so
378 		 * provides faster iteration and detection when there are no
379 		 * more interrupts required for this context.
380 		 *
381 		 * We typically expect to add new signalers in order, so we
382 		 * start looking for our insertion point from the tail of
383 		 * the list.
384 		 */
385 		list_for_each_prev(pos, &ce->signals) {
386 			struct i915_request *it =
387 				list_entry(pos, typeof(*it), signal_link);
388 
389 			if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno))
390 				break;
391 		}
392 	}
393 
394 	i915_request_get(rq);
395 	list_add_rcu(&rq->signal_link, pos);
396 	GEM_BUG_ON(!check_signal_order(ce, rq));
397 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
398 	set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags);
399 
400 	/*
401 	 * Defer enabling the interrupt to after HW submission and recheck
402 	 * the request as it may have completed and raised the interrupt as
403 	 * we were attaching it into the lists.
404 	 */
405 	irq_work_queue(&b->irq_work);
406 }
407 
408 bool i915_request_enable_breadcrumb(struct i915_request *rq)
409 {
410 	struct intel_context *ce = rq->context;
411 
412 	/* Serialises with i915_request_retire() using rq->lock */
413 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
414 		return true;
415 
416 	/*
417 	 * Peek at i915_request_submit()/i915_request_unsubmit() status.
418 	 *
419 	 * If the request is not yet active (and not signaled), we will
420 	 * attach the breadcrumb later.
421 	 */
422 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
423 		return true;
424 
425 	spin_lock(&ce->signal_lock);
426 	if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
427 		insert_breadcrumb(rq);
428 	spin_unlock(&ce->signal_lock);
429 
430 	return true;
431 }
432 
433 void i915_request_cancel_breadcrumb(struct i915_request *rq)
434 {
435 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
436 	struct intel_context *ce = rq->context;
437 	bool release;
438 
439 	spin_lock(&ce->signal_lock);
440 	if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) {
441 		spin_unlock(&ce->signal_lock);
442 		return;
443 	}
444 
445 	list_del_rcu(&rq->signal_link);
446 	release = remove_signaling_context(b, ce);
447 	spin_unlock(&ce->signal_lock);
448 	if (release)
449 		intel_context_put(ce);
450 
451 	if (__i915_request_is_complete(rq))
452 		irq_signal_request(rq, b);
453 
454 	i915_request_put(rq);
455 }
456 
457 void intel_context_remove_breadcrumbs(struct intel_context *ce,
458 				      struct intel_breadcrumbs *b)
459 {
460 	struct i915_request *rq, *rn;
461 	bool release = false;
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&ce->signal_lock, flags);
465 
466 	if (list_empty(&ce->signals))
467 		goto unlock;
468 
469 	list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) {
470 		GEM_BUG_ON(!__i915_request_is_complete(rq));
471 		if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
472 					&rq->fence.flags))
473 			continue;
474 
475 		list_del_rcu(&rq->signal_link);
476 		irq_signal_request(rq, b);
477 		i915_request_put(rq);
478 	}
479 	release = remove_signaling_context(b, ce);
480 
481 unlock:
482 	spin_unlock_irqrestore(&ce->signal_lock, flags);
483 	if (release)
484 		intel_context_put(ce);
485 
486 	while (atomic_read(&b->signaler_active))
487 		cpu_relax();
488 }
489 
490 static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p)
491 {
492 	struct intel_context *ce;
493 	struct i915_request *rq;
494 
495 	drm_printf(p, "Signals:\n");
496 
497 	rcu_read_lock();
498 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
499 		list_for_each_entry_rcu(rq, &ce->signals, signal_link)
500 			drm_printf(p, "\t[%llx:%llx%s] @ %dms\n",
501 				   rq->fence.context, rq->fence.seqno,
502 				   __i915_request_is_complete(rq) ? "!" :
503 				   __i915_request_has_started(rq) ? "*" :
504 				   "",
505 				   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
506 	}
507 	rcu_read_unlock();
508 }
509 
510 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
511 				    struct drm_printer *p)
512 {
513 	struct intel_breadcrumbs *b;
514 
515 	b = engine->breadcrumbs;
516 	if (!b)
517 		return;
518 
519 	drm_printf(p, "IRQ: %s\n", enableddisabled(b->irq_armed));
520 	if (!list_empty(&b->signalers))
521 		print_signals(b, p);
522 }
523