1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2015-2021 Intel Corporation
4  */
5 
6 #include <linux/kthread.h>
7 #include <linux/string_helpers.h>
8 #include <trace/events/dma_fence.h>
9 #include <uapi/linux/sched/types.h>
10 
11 #include "i915_drv.h"
12 #include "i915_trace.h"
13 #include "intel_breadcrumbs.h"
14 #include "intel_context.h"
15 #include "intel_engine_pm.h"
16 #include "intel_gt_pm.h"
17 #include "intel_gt_requests.h"
18 
19 static bool irq_enable(struct intel_breadcrumbs *b)
20 {
21 	return intel_engine_irq_enable(b->irq_engine);
22 }
23 
24 static void irq_disable(struct intel_breadcrumbs *b)
25 {
26 	intel_engine_irq_disable(b->irq_engine);
27 }
28 
29 static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
30 {
31 	/*
32 	 * Since we are waiting on a request, the GPU should be busy
33 	 * and should have its own rpm reference.
34 	 */
35 	if (GEM_WARN_ON(!intel_gt_pm_get_if_awake(b->irq_engine->gt)))
36 		return;
37 
38 	/*
39 	 * The breadcrumb irq will be disarmed on the interrupt after the
40 	 * waiters are signaled. This gives us a single interrupt window in
41 	 * which we can add a new waiter and avoid the cost of re-enabling
42 	 * the irq.
43 	 */
44 	WRITE_ONCE(b->irq_armed, true);
45 
46 	/* Requests may have completed before we could enable the interrupt. */
47 	if (!b->irq_enabled++ && b->irq_enable(b))
48 		irq_work_queue(&b->irq_work);
49 }
50 
51 static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
52 {
53 	if (!b->irq_engine)
54 		return;
55 
56 	spin_lock(&b->irq_lock);
57 	if (!b->irq_armed)
58 		__intel_breadcrumbs_arm_irq(b);
59 	spin_unlock(&b->irq_lock);
60 }
61 
62 static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
63 {
64 	GEM_BUG_ON(!b->irq_enabled);
65 	if (!--b->irq_enabled)
66 		b->irq_disable(b);
67 
68 	WRITE_ONCE(b->irq_armed, false);
69 	intel_gt_pm_put_async(b->irq_engine->gt);
70 }
71 
72 static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
73 {
74 	spin_lock(&b->irq_lock);
75 	if (b->irq_armed)
76 		__intel_breadcrumbs_disarm_irq(b);
77 	spin_unlock(&b->irq_lock);
78 }
79 
80 static void add_signaling_context(struct intel_breadcrumbs *b,
81 				  struct intel_context *ce)
82 {
83 	lockdep_assert_held(&ce->signal_lock);
84 
85 	spin_lock(&b->signalers_lock);
86 	list_add_rcu(&ce->signal_link, &b->signalers);
87 	spin_unlock(&b->signalers_lock);
88 }
89 
90 static bool remove_signaling_context(struct intel_breadcrumbs *b,
91 				     struct intel_context *ce)
92 {
93 	lockdep_assert_held(&ce->signal_lock);
94 
95 	if (!list_empty(&ce->signals))
96 		return false;
97 
98 	spin_lock(&b->signalers_lock);
99 	list_del_rcu(&ce->signal_link);
100 	spin_unlock(&b->signalers_lock);
101 
102 	return true;
103 }
104 
105 __maybe_unused static bool
106 check_signal_order(struct intel_context *ce, struct i915_request *rq)
107 {
108 	if (rq->context != ce)
109 		return false;
110 
111 	if (!list_is_last(&rq->signal_link, &ce->signals) &&
112 	    i915_seqno_passed(rq->fence.seqno,
113 			      list_next_entry(rq, signal_link)->fence.seqno))
114 		return false;
115 
116 	if (!list_is_first(&rq->signal_link, &ce->signals) &&
117 	    i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno,
118 			      rq->fence.seqno))
119 		return false;
120 
121 	return true;
122 }
123 
124 static bool
125 __dma_fence_signal(struct dma_fence *fence)
126 {
127 	return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
128 }
129 
130 static void
131 __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp)
132 {
133 	fence->timestamp = timestamp;
134 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
135 	trace_dma_fence_signaled(fence);
136 }
137 
138 static void
139 __dma_fence_signal__notify(struct dma_fence *fence,
140 			   const struct list_head *list)
141 {
142 	struct dma_fence_cb *cur, *tmp;
143 
144 	lockdep_assert_held(fence->lock);
145 
146 	list_for_each_entry_safe(cur, tmp, list, node) {
147 		INIT_LIST_HEAD(&cur->node);
148 		cur->func(fence, cur);
149 	}
150 }
151 
152 static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl)
153 {
154 	if (b->irq_engine)
155 		intel_engine_add_retire(b->irq_engine, tl);
156 }
157 
158 static struct llist_node *
159 slist_add(struct llist_node *node, struct llist_node *head)
160 {
161 	node->next = head;
162 	return node;
163 }
164 
165 static void signal_irq_work(struct irq_work *work)
166 {
167 	struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work);
168 	const ktime_t timestamp = ktime_get();
169 	struct llist_node *signal, *sn;
170 	struct intel_context *ce;
171 
172 	signal = NULL;
173 	if (unlikely(!llist_empty(&b->signaled_requests)))
174 		signal = llist_del_all(&b->signaled_requests);
175 
176 	/*
177 	 * Keep the irq armed until the interrupt after all listeners are gone.
178 	 *
179 	 * Enabling/disabling the interrupt is rather costly, roughly a couple
180 	 * of hundred microseconds. If we are proactive and enable/disable
181 	 * the interrupt around every request that wants a breadcrumb, we
182 	 * quickly drown in the extra orders of magnitude of latency imposed
183 	 * on request submission.
184 	 *
185 	 * So we try to be lazy, and keep the interrupts enabled until no
186 	 * more listeners appear within a breadcrumb interrupt interval (that
187 	 * is until a request completes that no one cares about). The
188 	 * observation is that listeners come in batches, and will often
189 	 * listen to a bunch of requests in succession. Though note on icl+,
190 	 * interrupts are always enabled due to concerns with rc6 being
191 	 * dysfunctional with per-engine interrupt masking.
192 	 *
193 	 * We also try to avoid raising too many interrupts, as they may
194 	 * be generated by userspace batches and it is unfortunately rather
195 	 * too easy to drown the CPU under a flood of GPU interrupts. Thus
196 	 * whenever no one appears to be listening, we turn off the interrupts.
197 	 * Fewer interrupts should conserve power -- at the very least, fewer
198 	 * interrupt draw less ire from other users of the system and tools
199 	 * like powertop.
200 	 */
201 	if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers))
202 		intel_breadcrumbs_disarm_irq(b);
203 
204 	rcu_read_lock();
205 	atomic_inc(&b->signaler_active);
206 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
207 		struct i915_request *rq;
208 
209 		list_for_each_entry_rcu(rq, &ce->signals, signal_link) {
210 			bool release;
211 
212 			if (!__i915_request_is_complete(rq))
213 				break;
214 
215 			if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
216 						&rq->fence.flags))
217 				break;
218 
219 			/*
220 			 * Queue for execution after dropping the signaling
221 			 * spinlock as the callback chain may end up adding
222 			 * more signalers to the same context or engine.
223 			 */
224 			spin_lock(&ce->signal_lock);
225 			list_del_rcu(&rq->signal_link);
226 			release = remove_signaling_context(b, ce);
227 			spin_unlock(&ce->signal_lock);
228 			if (release) {
229 				if (intel_timeline_is_last(ce->timeline, rq))
230 					add_retire(b, ce->timeline);
231 				intel_context_put(ce);
232 			}
233 
234 			if (__dma_fence_signal(&rq->fence))
235 				/* We own signal_node now, xfer to local list */
236 				signal = slist_add(&rq->signal_node, signal);
237 			else
238 				i915_request_put(rq);
239 		}
240 	}
241 	atomic_dec(&b->signaler_active);
242 	rcu_read_unlock();
243 
244 	llist_for_each_safe(signal, sn, signal) {
245 		struct i915_request *rq =
246 			llist_entry(signal, typeof(*rq), signal_node);
247 		struct list_head cb_list;
248 
249 		if (rq->engine->sched_engine->retire_inflight_request_prio)
250 			rq->engine->sched_engine->retire_inflight_request_prio(rq);
251 
252 		spin_lock(&rq->lock);
253 		list_replace(&rq->fence.cb_list, &cb_list);
254 		__dma_fence_signal__timestamp(&rq->fence, timestamp);
255 		__dma_fence_signal__notify(&rq->fence, &cb_list);
256 		spin_unlock(&rq->lock);
257 
258 		i915_request_put(rq);
259 	}
260 
261 	if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers))
262 		intel_breadcrumbs_arm_irq(b);
263 }
264 
265 struct intel_breadcrumbs *
266 intel_breadcrumbs_create(struct intel_engine_cs *irq_engine)
267 {
268 	struct intel_breadcrumbs *b;
269 
270 	b = kzalloc(sizeof(*b), GFP_KERNEL);
271 	if (!b)
272 		return NULL;
273 
274 	kref_init(&b->ref);
275 
276 	spin_lock_init(&b->signalers_lock);
277 	INIT_LIST_HEAD(&b->signalers);
278 	init_llist_head(&b->signaled_requests);
279 
280 	spin_lock_init(&b->irq_lock);
281 	init_irq_work(&b->irq_work, signal_irq_work);
282 
283 	b->irq_engine = irq_engine;
284 	b->irq_enable = irq_enable;
285 	b->irq_disable = irq_disable;
286 
287 	return b;
288 }
289 
290 void intel_breadcrumbs_reset(struct intel_breadcrumbs *b)
291 {
292 	unsigned long flags;
293 
294 	if (!b->irq_engine)
295 		return;
296 
297 	spin_lock_irqsave(&b->irq_lock, flags);
298 
299 	if (b->irq_enabled)
300 		b->irq_enable(b);
301 	else
302 		b->irq_disable(b);
303 
304 	spin_unlock_irqrestore(&b->irq_lock, flags);
305 }
306 
307 void __intel_breadcrumbs_park(struct intel_breadcrumbs *b)
308 {
309 	if (!READ_ONCE(b->irq_armed))
310 		return;
311 
312 	/* Kick the work once more to drain the signalers, and disarm the irq */
313 	irq_work_sync(&b->irq_work);
314 	while (READ_ONCE(b->irq_armed) && !atomic_read(&b->active)) {
315 		local_irq_disable();
316 		signal_irq_work(&b->irq_work);
317 		local_irq_enable();
318 		cond_resched();
319 	}
320 }
321 
322 void intel_breadcrumbs_free(struct kref *kref)
323 {
324 	struct intel_breadcrumbs *b = container_of(kref, typeof(*b), ref);
325 
326 	irq_work_sync(&b->irq_work);
327 	GEM_BUG_ON(!list_empty(&b->signalers));
328 	GEM_BUG_ON(b->irq_armed);
329 
330 	kfree(b);
331 }
332 
333 static void irq_signal_request(struct i915_request *rq,
334 			       struct intel_breadcrumbs *b)
335 {
336 	if (!__dma_fence_signal(&rq->fence))
337 		return;
338 
339 	i915_request_get(rq);
340 	if (llist_add(&rq->signal_node, &b->signaled_requests))
341 		irq_work_queue(&b->irq_work);
342 }
343 
344 static void insert_breadcrumb(struct i915_request *rq)
345 {
346 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
347 	struct intel_context *ce = rq->context;
348 	struct list_head *pos;
349 
350 	if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags))
351 		return;
352 
353 	/*
354 	 * If the request is already completed, we can transfer it
355 	 * straight onto a signaled list, and queue the irq worker for
356 	 * its signal completion.
357 	 */
358 	if (__i915_request_is_complete(rq)) {
359 		irq_signal_request(rq, b);
360 		return;
361 	}
362 
363 	if (list_empty(&ce->signals)) {
364 		intel_context_get(ce);
365 		add_signaling_context(b, ce);
366 		pos = &ce->signals;
367 	} else {
368 		/*
369 		 * We keep the seqno in retirement order, so we can break
370 		 * inside intel_engine_signal_breadcrumbs as soon as we've
371 		 * passed the last completed request (or seen a request that
372 		 * hasn't event started). We could walk the timeline->requests,
373 		 * but keeping a separate signalers_list has the advantage of
374 		 * hopefully being much smaller than the full list and so
375 		 * provides faster iteration and detection when there are no
376 		 * more interrupts required for this context.
377 		 *
378 		 * We typically expect to add new signalers in order, so we
379 		 * start looking for our insertion point from the tail of
380 		 * the list.
381 		 */
382 		list_for_each_prev(pos, &ce->signals) {
383 			struct i915_request *it =
384 				list_entry(pos, typeof(*it), signal_link);
385 
386 			if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno))
387 				break;
388 		}
389 	}
390 
391 	i915_request_get(rq);
392 	list_add_rcu(&rq->signal_link, pos);
393 	GEM_BUG_ON(!check_signal_order(ce, rq));
394 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
395 	set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags);
396 
397 	/*
398 	 * Defer enabling the interrupt to after HW submission and recheck
399 	 * the request as it may have completed and raised the interrupt as
400 	 * we were attaching it into the lists.
401 	 */
402 	if (!b->irq_armed || __i915_request_is_complete(rq))
403 		irq_work_queue(&b->irq_work);
404 }
405 
406 bool i915_request_enable_breadcrumb(struct i915_request *rq)
407 {
408 	struct intel_context *ce = rq->context;
409 
410 	/* Serialises with i915_request_retire() using rq->lock */
411 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
412 		return true;
413 
414 	/*
415 	 * Peek at i915_request_submit()/i915_request_unsubmit() status.
416 	 *
417 	 * If the request is not yet active (and not signaled), we will
418 	 * attach the breadcrumb later.
419 	 */
420 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
421 		return true;
422 
423 	spin_lock(&ce->signal_lock);
424 	if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
425 		insert_breadcrumb(rq);
426 	spin_unlock(&ce->signal_lock);
427 
428 	return true;
429 }
430 
431 void i915_request_cancel_breadcrumb(struct i915_request *rq)
432 {
433 	struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
434 	struct intel_context *ce = rq->context;
435 	bool release;
436 
437 	spin_lock(&ce->signal_lock);
438 	if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) {
439 		spin_unlock(&ce->signal_lock);
440 		return;
441 	}
442 
443 	list_del_rcu(&rq->signal_link);
444 	release = remove_signaling_context(b, ce);
445 	spin_unlock(&ce->signal_lock);
446 	if (release)
447 		intel_context_put(ce);
448 
449 	if (__i915_request_is_complete(rq))
450 		irq_signal_request(rq, b);
451 
452 	i915_request_put(rq);
453 }
454 
455 void intel_context_remove_breadcrumbs(struct intel_context *ce,
456 				      struct intel_breadcrumbs *b)
457 {
458 	struct i915_request *rq, *rn;
459 	bool release = false;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&ce->signal_lock, flags);
463 
464 	if (list_empty(&ce->signals))
465 		goto unlock;
466 
467 	list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) {
468 		GEM_BUG_ON(!__i915_request_is_complete(rq));
469 		if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
470 					&rq->fence.flags))
471 			continue;
472 
473 		list_del_rcu(&rq->signal_link);
474 		irq_signal_request(rq, b);
475 		i915_request_put(rq);
476 	}
477 	release = remove_signaling_context(b, ce);
478 
479 unlock:
480 	spin_unlock_irqrestore(&ce->signal_lock, flags);
481 	if (release)
482 		intel_context_put(ce);
483 
484 	while (atomic_read(&b->signaler_active))
485 		cpu_relax();
486 }
487 
488 static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p)
489 {
490 	struct intel_context *ce;
491 	struct i915_request *rq;
492 
493 	drm_printf(p, "Signals:\n");
494 
495 	rcu_read_lock();
496 	list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
497 		list_for_each_entry_rcu(rq, &ce->signals, signal_link)
498 			drm_printf(p, "\t[%llx:%llx%s] @ %dms\n",
499 				   rq->fence.context, rq->fence.seqno,
500 				   __i915_request_is_complete(rq) ? "!" :
501 				   __i915_request_has_started(rq) ? "*" :
502 				   "",
503 				   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
504 	}
505 	rcu_read_unlock();
506 }
507 
508 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
509 				    struct drm_printer *p)
510 {
511 	struct intel_breadcrumbs *b;
512 
513 	b = engine->breadcrumbs;
514 	if (!b)
515 		return;
516 
517 	drm_printf(p, "IRQ: %s\n", str_enabled_disabled(b->irq_armed));
518 	if (!list_empty(&b->signalers))
519 		print_signals(b, p);
520 }
521