1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include "gen8_engine_cs.h" 7 #include "i915_drv.h" 8 #include "intel_lrc.h" 9 #include "intel_gpu_commands.h" 10 #include "intel_ring.h" 11 12 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode) 13 { 14 bool vf_flush_wa = false, dc_flush_wa = false; 15 u32 *cs, flags = 0; 16 int len; 17 18 flags |= PIPE_CONTROL_CS_STALL; 19 20 if (mode & EMIT_FLUSH) { 21 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 22 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 23 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 24 flags |= PIPE_CONTROL_FLUSH_ENABLE; 25 } 26 27 if (mode & EMIT_INVALIDATE) { 28 flags |= PIPE_CONTROL_TLB_INVALIDATE; 29 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 30 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 31 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 32 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 33 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 34 flags |= PIPE_CONTROL_QW_WRITE; 35 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 36 37 /* 38 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 39 * pipe control. 40 */ 41 if (GRAPHICS_VER(rq->engine->i915) == 9) 42 vf_flush_wa = true; 43 44 /* WaForGAMHang:kbl */ 45 if (IS_KBL_GRAPHICS_STEP(rq->engine->i915, 0, STEP_C0)) 46 dc_flush_wa = true; 47 } 48 49 len = 6; 50 51 if (vf_flush_wa) 52 len += 6; 53 54 if (dc_flush_wa) 55 len += 12; 56 57 cs = intel_ring_begin(rq, len); 58 if (IS_ERR(cs)) 59 return PTR_ERR(cs); 60 61 if (vf_flush_wa) 62 cs = gen8_emit_pipe_control(cs, 0, 0); 63 64 if (dc_flush_wa) 65 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 66 0); 67 68 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 69 70 if (dc_flush_wa) 71 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 72 73 intel_ring_advance(rq, cs); 74 75 return 0; 76 } 77 78 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode) 79 { 80 u32 cmd, *cs; 81 82 cs = intel_ring_begin(rq, 4); 83 if (IS_ERR(cs)) 84 return PTR_ERR(cs); 85 86 cmd = MI_FLUSH_DW + 1; 87 88 /* 89 * We always require a command barrier so that subsequent 90 * commands, such as breadcrumb interrupts, are strictly ordered 91 * wrt the contents of the write cache being flushed to memory 92 * (and thus being coherent from the CPU). 93 */ 94 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 95 96 if (mode & EMIT_INVALIDATE) { 97 cmd |= MI_INVALIDATE_TLB; 98 if (rq->engine->class == VIDEO_DECODE_CLASS) 99 cmd |= MI_INVALIDATE_BSD; 100 } 101 102 *cs++ = cmd; 103 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 104 *cs++ = 0; /* upper addr */ 105 *cs++ = 0; /* value */ 106 intel_ring_advance(rq, cs); 107 108 return 0; 109 } 110 111 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode) 112 { 113 if (mode & EMIT_FLUSH) { 114 u32 *cs; 115 u32 flags = 0; 116 117 flags |= PIPE_CONTROL_CS_STALL; 118 119 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; 120 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 121 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 122 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 123 flags |= PIPE_CONTROL_FLUSH_ENABLE; 124 flags |= PIPE_CONTROL_QW_WRITE; 125 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 126 127 cs = intel_ring_begin(rq, 6); 128 if (IS_ERR(cs)) 129 return PTR_ERR(cs); 130 131 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 132 intel_ring_advance(rq, cs); 133 } 134 135 if (mode & EMIT_INVALIDATE) { 136 u32 *cs; 137 u32 flags = 0; 138 139 flags |= PIPE_CONTROL_CS_STALL; 140 141 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 142 flags |= PIPE_CONTROL_TLB_INVALIDATE; 143 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 144 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 145 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 146 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 147 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 148 flags |= PIPE_CONTROL_QW_WRITE; 149 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 150 151 cs = intel_ring_begin(rq, 6); 152 if (IS_ERR(cs)) 153 return PTR_ERR(cs); 154 155 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 156 intel_ring_advance(rq, cs); 157 } 158 159 return 0; 160 } 161 162 static u32 preparser_disable(bool state) 163 { 164 return MI_ARB_CHECK | 1 << 8 | state; 165 } 166 167 static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine) 168 { 169 static const i915_reg_t vd[] = { 170 GEN12_VD0_AUX_NV, 171 GEN12_VD1_AUX_NV, 172 GEN12_VD2_AUX_NV, 173 GEN12_VD3_AUX_NV, 174 }; 175 176 static const i915_reg_t ve[] = { 177 GEN12_VE0_AUX_NV, 178 GEN12_VE1_AUX_NV, 179 }; 180 181 if (engine->class == VIDEO_DECODE_CLASS) 182 return vd[engine->instance]; 183 184 if (engine->class == VIDEO_ENHANCEMENT_CLASS) 185 return ve[engine->instance]; 186 187 GEM_BUG_ON("unknown aux_inv reg\n"); 188 return INVALID_MMIO_REG; 189 } 190 191 static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs) 192 { 193 *cs++ = MI_LOAD_REGISTER_IMM(1); 194 *cs++ = i915_mmio_reg_offset(inv_reg); 195 *cs++ = AUX_INV; 196 *cs++ = MI_NOOP; 197 198 return cs; 199 } 200 201 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode) 202 { 203 if (mode & EMIT_FLUSH) { 204 u32 flags = 0; 205 u32 *cs; 206 207 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; 208 flags |= PIPE_CONTROL_FLUSH_L3; 209 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 210 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 211 /* Wa_1409600907:tgl,adl-p */ 212 flags |= PIPE_CONTROL_DEPTH_STALL; 213 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 214 flags |= PIPE_CONTROL_FLUSH_ENABLE; 215 216 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 217 flags |= PIPE_CONTROL_QW_WRITE; 218 219 flags |= PIPE_CONTROL_CS_STALL; 220 221 cs = intel_ring_begin(rq, 6); 222 if (IS_ERR(cs)) 223 return PTR_ERR(cs); 224 225 cs = gen12_emit_pipe_control(cs, 226 PIPE_CONTROL0_HDC_PIPELINE_FLUSH, 227 flags, LRC_PPHWSP_SCRATCH_ADDR); 228 intel_ring_advance(rq, cs); 229 } 230 231 if (mode & EMIT_INVALIDATE) { 232 u32 flags = 0; 233 u32 *cs; 234 235 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 236 flags |= PIPE_CONTROL_TLB_INVALIDATE; 237 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 238 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 239 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 240 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 241 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 242 243 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 244 flags |= PIPE_CONTROL_QW_WRITE; 245 246 flags |= PIPE_CONTROL_CS_STALL; 247 248 cs = intel_ring_begin(rq, 8 + 4); 249 if (IS_ERR(cs)) 250 return PTR_ERR(cs); 251 252 /* 253 * Prevent the pre-parser from skipping past the TLB 254 * invalidate and loading a stale page for the batch 255 * buffer / request payload. 256 */ 257 *cs++ = preparser_disable(true); 258 259 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 260 261 /* hsdes: 1809175790 */ 262 cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs); 263 264 *cs++ = preparser_disable(false); 265 intel_ring_advance(rq, cs); 266 } 267 268 return 0; 269 } 270 271 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode) 272 { 273 intel_engine_mask_t aux_inv = 0; 274 u32 cmd, *cs; 275 276 cmd = 4; 277 if (mode & EMIT_INVALIDATE) 278 cmd += 2; 279 if (mode & EMIT_INVALIDATE) 280 aux_inv = rq->engine->mask & ~BIT(BCS0); 281 if (aux_inv) 282 cmd += 2 * hweight32(aux_inv) + 2; 283 284 cs = intel_ring_begin(rq, cmd); 285 if (IS_ERR(cs)) 286 return PTR_ERR(cs); 287 288 if (mode & EMIT_INVALIDATE) 289 *cs++ = preparser_disable(true); 290 291 cmd = MI_FLUSH_DW + 1; 292 293 /* 294 * We always require a command barrier so that subsequent 295 * commands, such as breadcrumb interrupts, are strictly ordered 296 * wrt the contents of the write cache being flushed to memory 297 * (and thus being coherent from the CPU). 298 */ 299 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 300 301 if (mode & EMIT_INVALIDATE) { 302 cmd |= MI_INVALIDATE_TLB; 303 if (rq->engine->class == VIDEO_DECODE_CLASS) 304 cmd |= MI_INVALIDATE_BSD; 305 } 306 307 *cs++ = cmd; 308 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 309 *cs++ = 0; /* upper addr */ 310 *cs++ = 0; /* value */ 311 312 if (aux_inv) { /* hsdes: 1809175790 */ 313 struct intel_engine_cs *engine; 314 unsigned int tmp; 315 316 *cs++ = MI_LOAD_REGISTER_IMM(hweight32(aux_inv)); 317 for_each_engine_masked(engine, rq->engine->gt, aux_inv, tmp) { 318 *cs++ = i915_mmio_reg_offset(aux_inv_reg(engine)); 319 *cs++ = AUX_INV; 320 } 321 *cs++ = MI_NOOP; 322 } 323 324 if (mode & EMIT_INVALIDATE) 325 *cs++ = preparser_disable(false); 326 327 intel_ring_advance(rq, cs); 328 329 return 0; 330 } 331 332 static u32 preempt_address(struct intel_engine_cs *engine) 333 { 334 return (i915_ggtt_offset(engine->status_page.vma) + 335 I915_GEM_HWS_PREEMPT_ADDR); 336 } 337 338 static u32 hwsp_offset(const struct i915_request *rq) 339 { 340 const struct intel_timeline *tl; 341 342 /* Before the request is executed, the timeline is fixed */ 343 tl = rcu_dereference_protected(rq->timeline, 344 !i915_request_signaled(rq)); 345 346 /* See the comment in i915_request_active_seqno(). */ 347 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno); 348 } 349 350 int gen8_emit_init_breadcrumb(struct i915_request *rq) 351 { 352 u32 *cs; 353 354 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq)); 355 if (!i915_request_timeline(rq)->has_initial_breadcrumb) 356 return 0; 357 358 cs = intel_ring_begin(rq, 6); 359 if (IS_ERR(cs)) 360 return PTR_ERR(cs); 361 362 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 363 *cs++ = hwsp_offset(rq); 364 *cs++ = 0; 365 *cs++ = rq->fence.seqno - 1; 366 367 /* 368 * Check if we have been preempted before we even get started. 369 * 370 * After this point i915_request_started() reports true, even if 371 * we get preempted and so are no longer running. 372 * 373 * i915_request_started() is used during preemption processing 374 * to decide if the request is currently inside the user payload 375 * or spinning on a kernel semaphore (or earlier). For no-preemption 376 * requests, we do allow preemption on the semaphore before the user 377 * payload, but do not allow preemption once the request is started. 378 * 379 * i915_request_started() is similarly used during GPU hangs to 380 * determine if the user's payload was guilty, and if so, the 381 * request is banned. Before the request is started, it is assumed 382 * to be unharmed and an innocent victim of another's hang. 383 */ 384 *cs++ = MI_NOOP; 385 *cs++ = MI_ARB_CHECK; 386 387 intel_ring_advance(rq, cs); 388 389 /* Record the updated position of the request's payload */ 390 rq->infix = intel_ring_offset(rq, cs); 391 392 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 393 394 return 0; 395 } 396 397 int gen8_emit_bb_start_noarb(struct i915_request *rq, 398 u64 offset, u32 len, 399 const unsigned int flags) 400 { 401 u32 *cs; 402 403 cs = intel_ring_begin(rq, 4); 404 if (IS_ERR(cs)) 405 return PTR_ERR(cs); 406 407 /* 408 * WaDisableCtxRestoreArbitration:bdw,chv 409 * 410 * We don't need to perform MI_ARB_ENABLE as often as we do (in 411 * particular all the gen that do not need the w/a at all!), if we 412 * took care to make sure that on every switch into this context 413 * (both ordinary and for preemption) that arbitrartion was enabled 414 * we would be fine. However, for gen8 there is another w/a that 415 * requires us to not preempt inside GPGPU execution, so we keep 416 * arbitration disabled for gen8 batches. Arbitration will be 417 * re-enabled before we close the request 418 * (engine->emit_fini_breadcrumb). 419 */ 420 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 421 422 /* FIXME(BDW+): Address space and security selectors. */ 423 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 424 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 425 *cs++ = lower_32_bits(offset); 426 *cs++ = upper_32_bits(offset); 427 428 intel_ring_advance(rq, cs); 429 430 return 0; 431 } 432 433 int gen8_emit_bb_start(struct i915_request *rq, 434 u64 offset, u32 len, 435 const unsigned int flags) 436 { 437 u32 *cs; 438 439 if (unlikely(i915_request_has_nopreempt(rq))) 440 return gen8_emit_bb_start_noarb(rq, offset, len, flags); 441 442 cs = intel_ring_begin(rq, 6); 443 if (IS_ERR(cs)) 444 return PTR_ERR(cs); 445 446 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 447 448 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 449 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 450 *cs++ = lower_32_bits(offset); 451 *cs++ = upper_32_bits(offset); 452 453 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 454 *cs++ = MI_NOOP; 455 456 intel_ring_advance(rq, cs); 457 458 return 0; 459 } 460 461 static void assert_request_valid(struct i915_request *rq) 462 { 463 struct intel_ring *ring __maybe_unused = rq->ring; 464 465 /* Can we unwind this request without appearing to go forwards? */ 466 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0); 467 } 468 469 /* 470 * Reserve space for 2 NOOPs at the end of each request to be 471 * used as a workaround for not being allowed to do lite 472 * restore with HEAD==TAIL (WaIdleLiteRestore). 473 */ 474 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs) 475 { 476 /* Ensure there's always at least one preemption point per-request. */ 477 *cs++ = MI_ARB_CHECK; 478 *cs++ = MI_NOOP; 479 rq->wa_tail = intel_ring_offset(rq, cs); 480 481 /* Check that entire request is less than half the ring */ 482 assert_request_valid(rq); 483 484 return cs; 485 } 486 487 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs) 488 { 489 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ 490 *cs++ = MI_SEMAPHORE_WAIT | 491 MI_SEMAPHORE_GLOBAL_GTT | 492 MI_SEMAPHORE_POLL | 493 MI_SEMAPHORE_SAD_EQ_SDD; 494 *cs++ = 0; 495 *cs++ = preempt_address(rq->engine); 496 *cs++ = 0; 497 *cs++ = MI_NOOP; 498 499 return cs; 500 } 501 502 static __always_inline u32* 503 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) 504 { 505 *cs++ = MI_USER_INTERRUPT; 506 507 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 508 if (intel_engine_has_semaphores(rq->engine) && 509 !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) 510 cs = emit_preempt_busywait(rq, cs); 511 512 rq->tail = intel_ring_offset(rq, cs); 513 assert_ring_tail_valid(rq->ring, rq->tail); 514 515 return gen8_emit_wa_tail(rq, cs); 516 } 517 518 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs) 519 { 520 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0); 521 } 522 523 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) 524 { 525 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs)); 526 } 527 528 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 529 { 530 cs = gen8_emit_pipe_control(cs, 531 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 532 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 533 PIPE_CONTROL_DC_FLUSH_ENABLE, 534 0); 535 536 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 537 cs = gen8_emit_ggtt_write_rcs(cs, 538 rq->fence.seqno, 539 hwsp_offset(rq), 540 PIPE_CONTROL_FLUSH_ENABLE | 541 PIPE_CONTROL_CS_STALL); 542 543 return gen8_emit_fini_breadcrumb_tail(rq, cs); 544 } 545 546 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 547 { 548 cs = gen8_emit_ggtt_write_rcs(cs, 549 rq->fence.seqno, 550 hwsp_offset(rq), 551 PIPE_CONTROL_CS_STALL | 552 PIPE_CONTROL_TILE_CACHE_FLUSH | 553 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 554 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 555 PIPE_CONTROL_DC_FLUSH_ENABLE | 556 PIPE_CONTROL_FLUSH_ENABLE); 557 558 return gen8_emit_fini_breadcrumb_tail(rq, cs); 559 } 560 561 /* 562 * Note that the CS instruction pre-parser will not stall on the breadcrumb 563 * flush and will continue pre-fetching the instructions after it before the 564 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at 565 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble 566 * of the next request before the memory has been flushed, we're guaranteed that 567 * we won't access the batch itself too early. 568 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, 569 * so, if the current request is modifying an instruction in the next request on 570 * the same intel_context, we might pre-fetch and then execute the pre-update 571 * instruction. To avoid this, the users of self-modifying code should either 572 * disable the parser around the code emitting the memory writes, via a new flag 573 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For 574 * the in-kernel use-cases we've opted to use a separate context, see 575 * reloc_gpu() as an example. 576 * All the above applies only to the instructions themselves. Non-inline data 577 * used by the instructions is not pre-fetched. 578 */ 579 580 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs) 581 { 582 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ 583 *cs++ = MI_SEMAPHORE_WAIT_TOKEN | 584 MI_SEMAPHORE_GLOBAL_GTT | 585 MI_SEMAPHORE_POLL | 586 MI_SEMAPHORE_SAD_EQ_SDD; 587 *cs++ = 0; 588 *cs++ = preempt_address(rq->engine); 589 *cs++ = 0; 590 *cs++ = 0; 591 592 return cs; 593 } 594 595 static __always_inline u32* 596 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) 597 { 598 *cs++ = MI_USER_INTERRUPT; 599 600 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 601 if (intel_engine_has_semaphores(rq->engine) && 602 !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) 603 cs = gen12_emit_preempt_busywait(rq, cs); 604 605 rq->tail = intel_ring_offset(rq, cs); 606 assert_ring_tail_valid(rq->ring, rq->tail); 607 608 return gen8_emit_wa_tail(rq, cs); 609 } 610 611 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) 612 { 613 /* XXX Stalling flush before seqno write; post-sync not */ 614 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0)); 615 return gen12_emit_fini_breadcrumb_tail(rq, cs); 616 } 617 618 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 619 { 620 cs = gen12_emit_ggtt_write_rcs(cs, 621 rq->fence.seqno, 622 hwsp_offset(rq), 623 PIPE_CONTROL0_HDC_PIPELINE_FLUSH, 624 PIPE_CONTROL_CS_STALL | 625 PIPE_CONTROL_TILE_CACHE_FLUSH | 626 PIPE_CONTROL_FLUSH_L3 | 627 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 628 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 629 /* Wa_1409600907:tgl */ 630 PIPE_CONTROL_DEPTH_STALL | 631 PIPE_CONTROL_DC_FLUSH_ENABLE | 632 PIPE_CONTROL_FLUSH_ENABLE); 633 634 return gen12_emit_fini_breadcrumb_tail(rq, cs); 635 } 636