1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include "gen8_engine_cs.h" 7 #include "i915_drv.h" 8 #include "intel_engine_regs.h" 9 #include "intel_gpu_commands.h" 10 #include "intel_lrc.h" 11 #include "intel_ring.h" 12 13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode) 14 { 15 bool vf_flush_wa = false, dc_flush_wa = false; 16 u32 *cs, flags = 0; 17 int len; 18 19 flags |= PIPE_CONTROL_CS_STALL; 20 21 if (mode & EMIT_FLUSH) { 22 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 23 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 24 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 25 flags |= PIPE_CONTROL_FLUSH_ENABLE; 26 } 27 28 if (mode & EMIT_INVALIDATE) { 29 flags |= PIPE_CONTROL_TLB_INVALIDATE; 30 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 31 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 32 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 33 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 34 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 35 flags |= PIPE_CONTROL_QW_WRITE; 36 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 37 38 /* 39 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 40 * pipe control. 41 */ 42 if (GRAPHICS_VER(rq->i915) == 9) 43 vf_flush_wa = true; 44 45 /* WaForGAMHang:kbl */ 46 if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0)) 47 dc_flush_wa = true; 48 } 49 50 len = 6; 51 52 if (vf_flush_wa) 53 len += 6; 54 55 if (dc_flush_wa) 56 len += 12; 57 58 cs = intel_ring_begin(rq, len); 59 if (IS_ERR(cs)) 60 return PTR_ERR(cs); 61 62 if (vf_flush_wa) 63 cs = gen8_emit_pipe_control(cs, 0, 0); 64 65 if (dc_flush_wa) 66 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 67 0); 68 69 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 70 71 if (dc_flush_wa) 72 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 73 74 intel_ring_advance(rq, cs); 75 76 return 0; 77 } 78 79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode) 80 { 81 u32 cmd, *cs; 82 83 cs = intel_ring_begin(rq, 4); 84 if (IS_ERR(cs)) 85 return PTR_ERR(cs); 86 87 cmd = MI_FLUSH_DW + 1; 88 89 /* 90 * We always require a command barrier so that subsequent 91 * commands, such as breadcrumb interrupts, are strictly ordered 92 * wrt the contents of the write cache being flushed to memory 93 * (and thus being coherent from the CPU). 94 */ 95 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 96 97 if (mode & EMIT_INVALIDATE) { 98 cmd |= MI_INVALIDATE_TLB; 99 if (rq->engine->class == VIDEO_DECODE_CLASS) 100 cmd |= MI_INVALIDATE_BSD; 101 } 102 103 *cs++ = cmd; 104 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 105 *cs++ = 0; /* upper addr */ 106 *cs++ = 0; /* value */ 107 intel_ring_advance(rq, cs); 108 109 return 0; 110 } 111 112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode) 113 { 114 if (mode & EMIT_FLUSH) { 115 u32 *cs; 116 u32 flags = 0; 117 118 flags |= PIPE_CONTROL_CS_STALL; 119 120 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; 121 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 122 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 123 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 124 flags |= PIPE_CONTROL_FLUSH_ENABLE; 125 flags |= PIPE_CONTROL_QW_WRITE; 126 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 127 128 cs = intel_ring_begin(rq, 6); 129 if (IS_ERR(cs)) 130 return PTR_ERR(cs); 131 132 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 133 intel_ring_advance(rq, cs); 134 } 135 136 if (mode & EMIT_INVALIDATE) { 137 u32 *cs; 138 u32 flags = 0; 139 140 flags |= PIPE_CONTROL_CS_STALL; 141 142 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 143 flags |= PIPE_CONTROL_TLB_INVALIDATE; 144 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 145 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 146 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 147 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 148 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 149 flags |= PIPE_CONTROL_QW_WRITE; 150 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 151 152 cs = intel_ring_begin(rq, 6); 153 if (IS_ERR(cs)) 154 return PTR_ERR(cs); 155 156 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 157 intel_ring_advance(rq, cs); 158 } 159 160 return 0; 161 } 162 163 static u32 preparser_disable(bool state) 164 { 165 return MI_ARB_CHECK | 1 << 8 | state; 166 } 167 168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine) 169 { 170 switch (engine->id) { 171 case RCS0: 172 return GEN12_CCS_AUX_INV; 173 case BCS0: 174 return GEN12_BCS0_AUX_INV; 175 case VCS0: 176 return GEN12_VD0_AUX_INV; 177 case VCS2: 178 return GEN12_VD2_AUX_INV; 179 case VECS0: 180 return GEN12_VE0_AUX_INV; 181 case CCS0: 182 return GEN12_CCS0_AUX_INV; 183 default: 184 return INVALID_MMIO_REG; 185 } 186 } 187 188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine) 189 { 190 i915_reg_t reg = gen12_get_aux_inv_reg(engine); 191 192 if (IS_PONTEVECCHIO(engine->i915)) 193 return false; 194 195 /* 196 * So far platforms supported by i915 having flat ccs do not require 197 * AUX invalidation. Check also whether the engine requires it. 198 */ 199 return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915); 200 } 201 202 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs) 203 { 204 i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine); 205 u32 gsi_offset = engine->gt->uncore->gsi_offset; 206 207 if (!gen12_needs_ccs_aux_inv(engine)) 208 return cs; 209 210 *cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN; 211 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset; 212 *cs++ = AUX_INV; 213 214 *cs++ = MI_SEMAPHORE_WAIT_TOKEN | 215 MI_SEMAPHORE_REGISTER_POLL | 216 MI_SEMAPHORE_POLL | 217 MI_SEMAPHORE_SAD_EQ_SDD; 218 *cs++ = 0; 219 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset; 220 *cs++ = 0; 221 *cs++ = 0; 222 223 return cs; 224 } 225 226 static int mtl_dummy_pipe_control(struct i915_request *rq) 227 { 228 /* Wa_14016712196 */ 229 if (IS_MTL_GRAPHICS_STEP(rq->i915, M, STEP_A0, STEP_B0) || 230 IS_MTL_GRAPHICS_STEP(rq->i915, P, STEP_A0, STEP_B0)) { 231 u32 *cs; 232 233 /* dummy PIPE_CONTROL + depth flush */ 234 cs = intel_ring_begin(rq, 6); 235 if (IS_ERR(cs)) 236 return PTR_ERR(cs); 237 cs = gen12_emit_pipe_control(cs, 238 0, 239 PIPE_CONTROL_DEPTH_CACHE_FLUSH, 240 LRC_PPHWSP_SCRATCH_ADDR); 241 intel_ring_advance(rq, cs); 242 } 243 244 return 0; 245 } 246 247 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode) 248 { 249 struct intel_engine_cs *engine = rq->engine; 250 251 /* 252 * On Aux CCS platforms the invalidation of the Aux 253 * table requires quiescing memory traffic beforehand 254 */ 255 if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) { 256 u32 bit_group_0 = 0; 257 u32 bit_group_1 = 0; 258 int err; 259 u32 *cs; 260 261 err = mtl_dummy_pipe_control(rq); 262 if (err) 263 return err; 264 265 bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH; 266 267 /* 268 * When required, in MTL and beyond platforms we 269 * need to set the CCS_FLUSH bit in the pipe control 270 */ 271 if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70)) 272 bit_group_0 |= PIPE_CONTROL_CCS_FLUSH; 273 274 bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH; 275 bit_group_1 |= PIPE_CONTROL_FLUSH_L3; 276 bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 277 bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 278 /* Wa_1409600907:tgl,adl-p */ 279 bit_group_1 |= PIPE_CONTROL_DEPTH_STALL; 280 bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE; 281 bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE; 282 283 bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX; 284 bit_group_1 |= PIPE_CONTROL_QW_WRITE; 285 286 bit_group_1 |= PIPE_CONTROL_CS_STALL; 287 288 if (!HAS_3D_PIPELINE(engine->i915)) 289 bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS; 290 else if (engine->class == COMPUTE_CLASS) 291 bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; 292 293 cs = intel_ring_begin(rq, 6); 294 if (IS_ERR(cs)) 295 return PTR_ERR(cs); 296 297 cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1, 298 LRC_PPHWSP_SCRATCH_ADDR); 299 intel_ring_advance(rq, cs); 300 } 301 302 if (mode & EMIT_INVALIDATE) { 303 u32 flags = 0; 304 u32 *cs, count; 305 int err; 306 307 err = mtl_dummy_pipe_control(rq); 308 if (err) 309 return err; 310 311 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 312 flags |= PIPE_CONTROL_TLB_INVALIDATE; 313 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 314 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 315 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 316 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 317 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 318 319 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 320 flags |= PIPE_CONTROL_QW_WRITE; 321 322 flags |= PIPE_CONTROL_CS_STALL; 323 324 if (!HAS_3D_PIPELINE(engine->i915)) 325 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS; 326 else if (engine->class == COMPUTE_CLASS) 327 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; 328 329 count = 8; 330 if (gen12_needs_ccs_aux_inv(rq->engine)) 331 count += 8; 332 333 cs = intel_ring_begin(rq, count); 334 if (IS_ERR(cs)) 335 return PTR_ERR(cs); 336 337 /* 338 * Prevent the pre-parser from skipping past the TLB 339 * invalidate and loading a stale page for the batch 340 * buffer / request payload. 341 */ 342 *cs++ = preparser_disable(true); 343 344 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 345 346 cs = gen12_emit_aux_table_inv(engine, cs); 347 348 *cs++ = preparser_disable(false); 349 intel_ring_advance(rq, cs); 350 } 351 352 return 0; 353 } 354 355 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode) 356 { 357 u32 cmd = 4; 358 u32 *cs; 359 360 if (mode & EMIT_INVALIDATE) { 361 cmd += 2; 362 363 if (gen12_needs_ccs_aux_inv(rq->engine)) 364 cmd += 8; 365 } 366 367 cs = intel_ring_begin(rq, cmd); 368 if (IS_ERR(cs)) 369 return PTR_ERR(cs); 370 371 if (mode & EMIT_INVALIDATE) 372 *cs++ = preparser_disable(true); 373 374 cmd = MI_FLUSH_DW + 1; 375 376 /* 377 * We always require a command barrier so that subsequent 378 * commands, such as breadcrumb interrupts, are strictly ordered 379 * wrt the contents of the write cache being flushed to memory 380 * (and thus being coherent from the CPU). 381 */ 382 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 383 384 if (mode & EMIT_INVALIDATE) { 385 cmd |= MI_INVALIDATE_TLB; 386 if (rq->engine->class == VIDEO_DECODE_CLASS) 387 cmd |= MI_INVALIDATE_BSD; 388 389 if (gen12_needs_ccs_aux_inv(rq->engine) && 390 rq->engine->class == COPY_ENGINE_CLASS) 391 cmd |= MI_FLUSH_DW_CCS; 392 } 393 394 *cs++ = cmd; 395 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 396 *cs++ = 0; /* upper addr */ 397 *cs++ = 0; /* value */ 398 399 cs = gen12_emit_aux_table_inv(rq->engine, cs); 400 401 if (mode & EMIT_INVALIDATE) 402 *cs++ = preparser_disable(false); 403 404 intel_ring_advance(rq, cs); 405 406 return 0; 407 } 408 409 static u32 preempt_address(struct intel_engine_cs *engine) 410 { 411 return (i915_ggtt_offset(engine->status_page.vma) + 412 I915_GEM_HWS_PREEMPT_ADDR); 413 } 414 415 static u32 hwsp_offset(const struct i915_request *rq) 416 { 417 const struct intel_timeline *tl; 418 419 /* Before the request is executed, the timeline is fixed */ 420 tl = rcu_dereference_protected(rq->timeline, 421 !i915_request_signaled(rq)); 422 423 /* See the comment in i915_request_active_seqno(). */ 424 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno); 425 } 426 427 int gen8_emit_init_breadcrumb(struct i915_request *rq) 428 { 429 u32 *cs; 430 431 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq)); 432 if (!i915_request_timeline(rq)->has_initial_breadcrumb) 433 return 0; 434 435 cs = intel_ring_begin(rq, 6); 436 if (IS_ERR(cs)) 437 return PTR_ERR(cs); 438 439 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 440 *cs++ = hwsp_offset(rq); 441 *cs++ = 0; 442 *cs++ = rq->fence.seqno - 1; 443 444 /* 445 * Check if we have been preempted before we even get started. 446 * 447 * After this point i915_request_started() reports true, even if 448 * we get preempted and so are no longer running. 449 * 450 * i915_request_started() is used during preemption processing 451 * to decide if the request is currently inside the user payload 452 * or spinning on a kernel semaphore (or earlier). For no-preemption 453 * requests, we do allow preemption on the semaphore before the user 454 * payload, but do not allow preemption once the request is started. 455 * 456 * i915_request_started() is similarly used during GPU hangs to 457 * determine if the user's payload was guilty, and if so, the 458 * request is banned. Before the request is started, it is assumed 459 * to be unharmed and an innocent victim of another's hang. 460 */ 461 *cs++ = MI_NOOP; 462 *cs++ = MI_ARB_CHECK; 463 464 intel_ring_advance(rq, cs); 465 466 /* Record the updated position of the request's payload */ 467 rq->infix = intel_ring_offset(rq, cs); 468 469 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 470 471 return 0; 472 } 473 474 static int __xehp_emit_bb_start(struct i915_request *rq, 475 u64 offset, u32 len, 476 const unsigned int flags, 477 u32 arb) 478 { 479 struct intel_context *ce = rq->context; 480 u32 wa_offset = lrc_indirect_bb(ce); 481 u32 *cs; 482 483 GEM_BUG_ON(!ce->wa_bb_page); 484 485 cs = intel_ring_begin(rq, 12); 486 if (IS_ERR(cs)) 487 return PTR_ERR(cs); 488 489 *cs++ = MI_ARB_ON_OFF | arb; 490 491 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 492 MI_SRM_LRM_GLOBAL_GTT | 493 MI_LRI_LRM_CS_MMIO; 494 *cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0)); 495 *cs++ = wa_offset + DG2_PREDICATE_RESULT_WA; 496 *cs++ = 0; 497 498 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 499 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 500 *cs++ = lower_32_bits(offset); 501 *cs++ = upper_32_bits(offset); 502 503 /* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */ 504 *cs++ = MI_BATCH_BUFFER_START_GEN8; 505 *cs++ = wa_offset + DG2_PREDICATE_RESULT_BB; 506 *cs++ = 0; 507 508 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 509 510 intel_ring_advance(rq, cs); 511 512 return 0; 513 } 514 515 int xehp_emit_bb_start_noarb(struct i915_request *rq, 516 u64 offset, u32 len, 517 const unsigned int flags) 518 { 519 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE); 520 } 521 522 int xehp_emit_bb_start(struct i915_request *rq, 523 u64 offset, u32 len, 524 const unsigned int flags) 525 { 526 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE); 527 } 528 529 int gen8_emit_bb_start_noarb(struct i915_request *rq, 530 u64 offset, u32 len, 531 const unsigned int flags) 532 { 533 u32 *cs; 534 535 cs = intel_ring_begin(rq, 4); 536 if (IS_ERR(cs)) 537 return PTR_ERR(cs); 538 539 /* 540 * WaDisableCtxRestoreArbitration:bdw,chv 541 * 542 * We don't need to perform MI_ARB_ENABLE as often as we do (in 543 * particular all the gen that do not need the w/a at all!), if we 544 * took care to make sure that on every switch into this context 545 * (both ordinary and for preemption) that arbitrartion was enabled 546 * we would be fine. However, for gen8 there is another w/a that 547 * requires us to not preempt inside GPGPU execution, so we keep 548 * arbitration disabled for gen8 batches. Arbitration will be 549 * re-enabled before we close the request 550 * (engine->emit_fini_breadcrumb). 551 */ 552 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 553 554 /* FIXME(BDW+): Address space and security selectors. */ 555 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 556 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 557 *cs++ = lower_32_bits(offset); 558 *cs++ = upper_32_bits(offset); 559 560 intel_ring_advance(rq, cs); 561 562 return 0; 563 } 564 565 int gen8_emit_bb_start(struct i915_request *rq, 566 u64 offset, u32 len, 567 const unsigned int flags) 568 { 569 u32 *cs; 570 571 if (unlikely(i915_request_has_nopreempt(rq))) 572 return gen8_emit_bb_start_noarb(rq, offset, len, flags); 573 574 cs = intel_ring_begin(rq, 6); 575 if (IS_ERR(cs)) 576 return PTR_ERR(cs); 577 578 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 579 580 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 581 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 582 *cs++ = lower_32_bits(offset); 583 *cs++ = upper_32_bits(offset); 584 585 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 586 *cs++ = MI_NOOP; 587 588 intel_ring_advance(rq, cs); 589 590 return 0; 591 } 592 593 static void assert_request_valid(struct i915_request *rq) 594 { 595 struct intel_ring *ring __maybe_unused = rq->ring; 596 597 /* Can we unwind this request without appearing to go forwards? */ 598 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0); 599 } 600 601 /* 602 * Reserve space for 2 NOOPs at the end of each request to be 603 * used as a workaround for not being allowed to do lite 604 * restore with HEAD==TAIL (WaIdleLiteRestore). 605 */ 606 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs) 607 { 608 /* Ensure there's always at least one preemption point per-request. */ 609 *cs++ = MI_ARB_CHECK; 610 *cs++ = MI_NOOP; 611 rq->wa_tail = intel_ring_offset(rq, cs); 612 613 /* Check that entire request is less than half the ring */ 614 assert_request_valid(rq); 615 616 return cs; 617 } 618 619 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs) 620 { 621 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ 622 *cs++ = MI_SEMAPHORE_WAIT | 623 MI_SEMAPHORE_GLOBAL_GTT | 624 MI_SEMAPHORE_POLL | 625 MI_SEMAPHORE_SAD_EQ_SDD; 626 *cs++ = 0; 627 *cs++ = preempt_address(rq->engine); 628 *cs++ = 0; 629 *cs++ = MI_NOOP; 630 631 return cs; 632 } 633 634 static __always_inline u32* 635 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) 636 { 637 *cs++ = MI_USER_INTERRUPT; 638 639 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 640 if (intel_engine_has_semaphores(rq->engine) && 641 !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) 642 cs = emit_preempt_busywait(rq, cs); 643 644 rq->tail = intel_ring_offset(rq, cs); 645 assert_ring_tail_valid(rq->ring, rq->tail); 646 647 return gen8_emit_wa_tail(rq, cs); 648 } 649 650 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs) 651 { 652 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0); 653 } 654 655 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) 656 { 657 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs)); 658 } 659 660 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 661 { 662 cs = gen8_emit_pipe_control(cs, 663 PIPE_CONTROL_CS_STALL | 664 PIPE_CONTROL_TLB_INVALIDATE | 665 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 666 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 667 PIPE_CONTROL_DC_FLUSH_ENABLE, 668 0); 669 670 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 671 cs = gen8_emit_ggtt_write_rcs(cs, 672 rq->fence.seqno, 673 hwsp_offset(rq), 674 PIPE_CONTROL_FLUSH_ENABLE | 675 PIPE_CONTROL_CS_STALL); 676 677 return gen8_emit_fini_breadcrumb_tail(rq, cs); 678 } 679 680 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 681 { 682 cs = gen8_emit_pipe_control(cs, 683 PIPE_CONTROL_CS_STALL | 684 PIPE_CONTROL_TLB_INVALIDATE | 685 PIPE_CONTROL_TILE_CACHE_FLUSH | 686 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 687 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 688 PIPE_CONTROL_DC_FLUSH_ENABLE, 689 0); 690 691 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */ 692 cs = gen8_emit_ggtt_write_rcs(cs, 693 rq->fence.seqno, 694 hwsp_offset(rq), 695 PIPE_CONTROL_FLUSH_ENABLE | 696 PIPE_CONTROL_CS_STALL); 697 698 return gen8_emit_fini_breadcrumb_tail(rq, cs); 699 } 700 701 /* 702 * Note that the CS instruction pre-parser will not stall on the breadcrumb 703 * flush and will continue pre-fetching the instructions after it before the 704 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at 705 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble 706 * of the next request before the memory has been flushed, we're guaranteed that 707 * we won't access the batch itself too early. 708 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, 709 * so, if the current request is modifying an instruction in the next request on 710 * the same intel_context, we might pre-fetch and then execute the pre-update 711 * instruction. To avoid this, the users of self-modifying code should either 712 * disable the parser around the code emitting the memory writes, via a new flag 713 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For 714 * the in-kernel use-cases we've opted to use a separate context, see 715 * reloc_gpu() as an example. 716 * All the above applies only to the instructions themselves. Non-inline data 717 * used by the instructions is not pre-fetched. 718 */ 719 720 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs) 721 { 722 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ 723 *cs++ = MI_SEMAPHORE_WAIT_TOKEN | 724 MI_SEMAPHORE_GLOBAL_GTT | 725 MI_SEMAPHORE_POLL | 726 MI_SEMAPHORE_SAD_EQ_SDD; 727 *cs++ = 0; 728 *cs++ = preempt_address(rq->engine); 729 *cs++ = 0; 730 *cs++ = 0; 731 732 return cs; 733 } 734 735 /* Wa_14014475959:dg2 */ 736 #define CCS_SEMAPHORE_PPHWSP_OFFSET 0x540 737 static u32 ccs_semaphore_offset(struct i915_request *rq) 738 { 739 return i915_ggtt_offset(rq->context->state) + 740 (LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET; 741 } 742 743 /* Wa_14014475959:dg2 */ 744 static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs) 745 { 746 int i; 747 748 *cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL | 749 MI_ATOMIC_MOVE; 750 *cs++ = ccs_semaphore_offset(rq); 751 *cs++ = 0; 752 *cs++ = 1; 753 754 /* 755 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP) 756 * to align. 4 DWs above + 8 filler DWs here. 757 */ 758 for (i = 0; i < 8; ++i) 759 *cs++ = 0; 760 761 *cs++ = MI_SEMAPHORE_WAIT | 762 MI_SEMAPHORE_GLOBAL_GTT | 763 MI_SEMAPHORE_POLL | 764 MI_SEMAPHORE_SAD_EQ_SDD; 765 *cs++ = 0; 766 *cs++ = ccs_semaphore_offset(rq); 767 *cs++ = 0; 768 769 return cs; 770 } 771 772 static __always_inline u32* 773 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) 774 { 775 *cs++ = MI_USER_INTERRUPT; 776 777 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 778 if (intel_engine_has_semaphores(rq->engine) && 779 !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) 780 cs = gen12_emit_preempt_busywait(rq, cs); 781 782 /* Wa_14014475959:dg2 */ 783 if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine)) 784 cs = ccs_emit_wa_busywait(rq, cs); 785 786 rq->tail = intel_ring_offset(rq, cs); 787 assert_ring_tail_valid(rq->ring, rq->tail); 788 789 return gen8_emit_wa_tail(rq, cs); 790 } 791 792 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) 793 { 794 /* XXX Stalling flush before seqno write; post-sync not */ 795 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0)); 796 return gen12_emit_fini_breadcrumb_tail(rq, cs); 797 } 798 799 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) 800 { 801 struct drm_i915_private *i915 = rq->i915; 802 u32 flags = (PIPE_CONTROL_CS_STALL | 803 PIPE_CONTROL_TLB_INVALIDATE | 804 PIPE_CONTROL_TILE_CACHE_FLUSH | 805 PIPE_CONTROL_FLUSH_L3 | 806 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 807 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 808 PIPE_CONTROL_DC_FLUSH_ENABLE | 809 PIPE_CONTROL_FLUSH_ENABLE); 810 811 /* Wa_14016712196 */ 812 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 813 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) 814 /* dummy PIPE_CONTROL + depth flush */ 815 cs = gen12_emit_pipe_control(cs, 0, 816 PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0); 817 818 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) 819 /* Wa_1409600907 */ 820 flags |= PIPE_CONTROL_DEPTH_STALL; 821 822 if (!HAS_3D_PIPELINE(rq->i915)) 823 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS; 824 else if (rq->engine->class == COMPUTE_CLASS) 825 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; 826 827 cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0); 828 829 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */ 830 cs = gen12_emit_ggtt_write_rcs(cs, 831 rq->fence.seqno, 832 hwsp_offset(rq), 833 0, 834 PIPE_CONTROL_FLUSH_ENABLE | 835 PIPE_CONTROL_CS_STALL); 836 837 return gen12_emit_fini_breadcrumb_tail(rq, cs); 838 } 839