1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2012-2014 Intel Corporation
5  */
6 
7 #include <linux/mmu_context.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/sched/mm.h>
12 
13 #include <drm/i915_drm.h>
14 
15 #include "i915_drv.h"
16 #include "i915_gem_ioctls.h"
17 #include "i915_gem_object.h"
18 #include "i915_scatterlist.h"
19 
20 struct i915_mm_struct {
21 	struct mm_struct *mm;
22 	struct drm_i915_private *i915;
23 	struct i915_mmu_notifier *mn;
24 	struct hlist_node node;
25 	struct kref kref;
26 	struct work_struct work;
27 };
28 
29 #if defined(CONFIG_MMU_NOTIFIER)
30 #include <linux/interval_tree.h>
31 
32 struct i915_mmu_notifier {
33 	spinlock_t lock;
34 	struct hlist_node node;
35 	struct mmu_notifier mn;
36 	struct rb_root_cached objects;
37 	struct i915_mm_struct *mm;
38 };
39 
40 struct i915_mmu_object {
41 	struct i915_mmu_notifier *mn;
42 	struct drm_i915_gem_object *obj;
43 	struct interval_tree_node it;
44 };
45 
46 static void add_object(struct i915_mmu_object *mo)
47 {
48 	GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb));
49 	interval_tree_insert(&mo->it, &mo->mn->objects);
50 }
51 
52 static void del_object(struct i915_mmu_object *mo)
53 {
54 	if (RB_EMPTY_NODE(&mo->it.rb))
55 		return;
56 
57 	interval_tree_remove(&mo->it, &mo->mn->objects);
58 	RB_CLEAR_NODE(&mo->it.rb);
59 }
60 
61 static void
62 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
63 {
64 	struct i915_mmu_object *mo = obj->userptr.mmu_object;
65 
66 	/*
67 	 * During mm_invalidate_range we need to cancel any userptr that
68 	 * overlaps the range being invalidated. Doing so requires the
69 	 * struct_mutex, and that risks recursion. In order to cause
70 	 * recursion, the user must alias the userptr address space with
71 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
72 	 * to invalidate that mmaping, mm_invalidate_range is called with
73 	 * the userptr address *and* the struct_mutex held.  To prevent that
74 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
75 	 * whether this object is valid.
76 	 */
77 	if (!mo)
78 		return;
79 
80 	spin_lock(&mo->mn->lock);
81 	if (value)
82 		add_object(mo);
83 	else
84 		del_object(mo);
85 	spin_unlock(&mo->mn->lock);
86 }
87 
88 static int
89 userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
90 				  const struct mmu_notifier_range *range)
91 {
92 	struct i915_mmu_notifier *mn =
93 		container_of(_mn, struct i915_mmu_notifier, mn);
94 	struct interval_tree_node *it;
95 	unsigned long end;
96 	int ret = 0;
97 
98 	if (RB_EMPTY_ROOT(&mn->objects.rb_root))
99 		return 0;
100 
101 	/* interval ranges are inclusive, but invalidate range is exclusive */
102 	end = range->end - 1;
103 
104 	spin_lock(&mn->lock);
105 	it = interval_tree_iter_first(&mn->objects, range->start, end);
106 	while (it) {
107 		struct drm_i915_gem_object *obj;
108 
109 		if (!mmu_notifier_range_blockable(range)) {
110 			ret = -EAGAIN;
111 			break;
112 		}
113 
114 		/*
115 		 * The mmu_object is released late when destroying the
116 		 * GEM object so it is entirely possible to gain a
117 		 * reference on an object in the process of being freed
118 		 * since our serialisation is via the spinlock and not
119 		 * the struct_mutex - and consequently use it after it
120 		 * is freed and then double free it. To prevent that
121 		 * use-after-free we only acquire a reference on the
122 		 * object if it is not in the process of being destroyed.
123 		 */
124 		obj = container_of(it, struct i915_mmu_object, it)->obj;
125 		if (!kref_get_unless_zero(&obj->base.refcount)) {
126 			it = interval_tree_iter_next(it, range->start, end);
127 			continue;
128 		}
129 		spin_unlock(&mn->lock);
130 
131 		ret = i915_gem_object_unbind(obj,
132 					     I915_GEM_OBJECT_UNBIND_ACTIVE);
133 		if (ret == 0)
134 			ret = __i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
135 		i915_gem_object_put(obj);
136 		if (ret)
137 			return ret;
138 
139 		spin_lock(&mn->lock);
140 
141 		/*
142 		 * As we do not (yet) protect the mmu from concurrent insertion
143 		 * over this range, there is no guarantee that this search will
144 		 * terminate given a pathologic workload.
145 		 */
146 		it = interval_tree_iter_first(&mn->objects, range->start, end);
147 	}
148 	spin_unlock(&mn->lock);
149 
150 	return ret;
151 
152 }
153 
154 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
155 	.invalidate_range_start = userptr_mn_invalidate_range_start,
156 };
157 
158 static struct i915_mmu_notifier *
159 i915_mmu_notifier_create(struct i915_mm_struct *mm)
160 {
161 	struct i915_mmu_notifier *mn;
162 
163 	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
164 	if (mn == NULL)
165 		return ERR_PTR(-ENOMEM);
166 
167 	spin_lock_init(&mn->lock);
168 	mn->mn.ops = &i915_gem_userptr_notifier;
169 	mn->objects = RB_ROOT_CACHED;
170 	mn->mm = mm;
171 
172 	return mn;
173 }
174 
175 static void
176 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
177 {
178 	struct i915_mmu_object *mo;
179 
180 	mo = fetch_and_zero(&obj->userptr.mmu_object);
181 	if (!mo)
182 		return;
183 
184 	spin_lock(&mo->mn->lock);
185 	del_object(mo);
186 	spin_unlock(&mo->mn->lock);
187 	kfree(mo);
188 }
189 
190 static struct i915_mmu_notifier *
191 i915_mmu_notifier_find(struct i915_mm_struct *mm)
192 {
193 	struct i915_mmu_notifier *mn;
194 	int err = 0;
195 
196 	mn = mm->mn;
197 	if (mn)
198 		return mn;
199 
200 	mn = i915_mmu_notifier_create(mm);
201 	if (IS_ERR(mn))
202 		err = PTR_ERR(mn);
203 
204 	down_write(&mm->mm->mmap_sem);
205 	mutex_lock(&mm->i915->mm_lock);
206 	if (mm->mn == NULL && !err) {
207 		/* Protected by mmap_sem (write-lock) */
208 		err = __mmu_notifier_register(&mn->mn, mm->mm);
209 		if (!err) {
210 			/* Protected by mm_lock */
211 			mm->mn = fetch_and_zero(&mn);
212 		}
213 	} else if (mm->mn) {
214 		/*
215 		 * Someone else raced and successfully installed the mmu
216 		 * notifier, we can cancel our own errors.
217 		 */
218 		err = 0;
219 	}
220 	mutex_unlock(&mm->i915->mm_lock);
221 	up_write(&mm->mm->mmap_sem);
222 
223 	if (mn && !IS_ERR(mn))
224 		kfree(mn);
225 
226 	return err ? ERR_PTR(err) : mm->mn;
227 }
228 
229 static int
230 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
231 				    unsigned flags)
232 {
233 	struct i915_mmu_notifier *mn;
234 	struct i915_mmu_object *mo;
235 
236 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
237 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
238 
239 	if (WARN_ON(obj->userptr.mm == NULL))
240 		return -EINVAL;
241 
242 	mn = i915_mmu_notifier_find(obj->userptr.mm);
243 	if (IS_ERR(mn))
244 		return PTR_ERR(mn);
245 
246 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
247 	if (!mo)
248 		return -ENOMEM;
249 
250 	mo->mn = mn;
251 	mo->obj = obj;
252 	mo->it.start = obj->userptr.ptr;
253 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
254 	RB_CLEAR_NODE(&mo->it.rb);
255 
256 	obj->userptr.mmu_object = mo;
257 	return 0;
258 }
259 
260 static void
261 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
262 		       struct mm_struct *mm)
263 {
264 	if (mn == NULL)
265 		return;
266 
267 	mmu_notifier_unregister(&mn->mn, mm);
268 	kfree(mn);
269 }
270 
271 #else
272 
273 static void
274 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
275 {
276 }
277 
278 static void
279 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
280 {
281 }
282 
283 static int
284 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
285 				    unsigned flags)
286 {
287 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
288 		return -ENODEV;
289 
290 	if (!capable(CAP_SYS_ADMIN))
291 		return -EPERM;
292 
293 	return 0;
294 }
295 
296 static void
297 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
298 		       struct mm_struct *mm)
299 {
300 }
301 
302 #endif
303 
304 static struct i915_mm_struct *
305 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
306 {
307 	struct i915_mm_struct *mm;
308 
309 	/* Protected by dev_priv->mm_lock */
310 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
311 		if (mm->mm == real)
312 			return mm;
313 
314 	return NULL;
315 }
316 
317 static int
318 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
319 {
320 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
321 	struct i915_mm_struct *mm;
322 	int ret = 0;
323 
324 	/* During release of the GEM object we hold the struct_mutex. This
325 	 * precludes us from calling mmput() at that time as that may be
326 	 * the last reference and so call exit_mmap(). exit_mmap() will
327 	 * attempt to reap the vma, and if we were holding a GTT mmap
328 	 * would then call drm_gem_vm_close() and attempt to reacquire
329 	 * the struct mutex. So in order to avoid that recursion, we have
330 	 * to defer releasing the mm reference until after we drop the
331 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
332 	 * up.
333 	 */
334 	mutex_lock(&dev_priv->mm_lock);
335 	mm = __i915_mm_struct_find(dev_priv, current->mm);
336 	if (mm == NULL) {
337 		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
338 		if (mm == NULL) {
339 			ret = -ENOMEM;
340 			goto out;
341 		}
342 
343 		kref_init(&mm->kref);
344 		mm->i915 = to_i915(obj->base.dev);
345 
346 		mm->mm = current->mm;
347 		mmgrab(current->mm);
348 
349 		mm->mn = NULL;
350 
351 		/* Protected by dev_priv->mm_lock */
352 		hash_add(dev_priv->mm_structs,
353 			 &mm->node, (unsigned long)mm->mm);
354 	} else
355 		kref_get(&mm->kref);
356 
357 	obj->userptr.mm = mm;
358 out:
359 	mutex_unlock(&dev_priv->mm_lock);
360 	return ret;
361 }
362 
363 static void
364 __i915_mm_struct_free__worker(struct work_struct *work)
365 {
366 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
367 	i915_mmu_notifier_free(mm->mn, mm->mm);
368 	mmdrop(mm->mm);
369 	kfree(mm);
370 }
371 
372 static void
373 __i915_mm_struct_free(struct kref *kref)
374 {
375 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
376 
377 	/* Protected by dev_priv->mm_lock */
378 	hash_del(&mm->node);
379 	mutex_unlock(&mm->i915->mm_lock);
380 
381 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
382 	queue_work(mm->i915->mm.userptr_wq, &mm->work);
383 }
384 
385 static void
386 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
387 {
388 	if (obj->userptr.mm == NULL)
389 		return;
390 
391 	kref_put_mutex(&obj->userptr.mm->kref,
392 		       __i915_mm_struct_free,
393 		       &to_i915(obj->base.dev)->mm_lock);
394 	obj->userptr.mm = NULL;
395 }
396 
397 struct get_pages_work {
398 	struct work_struct work;
399 	struct drm_i915_gem_object *obj;
400 	struct task_struct *task;
401 };
402 
403 static struct sg_table *
404 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
405 			       struct page **pvec, unsigned long num_pages)
406 {
407 	unsigned int max_segment = i915_sg_segment_size();
408 	struct sg_table *st;
409 	unsigned int sg_page_sizes;
410 	int ret;
411 
412 	st = kmalloc(sizeof(*st), GFP_KERNEL);
413 	if (!st)
414 		return ERR_PTR(-ENOMEM);
415 
416 alloc_table:
417 	ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
418 					  0, num_pages << PAGE_SHIFT,
419 					  max_segment,
420 					  GFP_KERNEL);
421 	if (ret) {
422 		kfree(st);
423 		return ERR_PTR(ret);
424 	}
425 
426 	ret = i915_gem_gtt_prepare_pages(obj, st);
427 	if (ret) {
428 		sg_free_table(st);
429 
430 		if (max_segment > PAGE_SIZE) {
431 			max_segment = PAGE_SIZE;
432 			goto alloc_table;
433 		}
434 
435 		kfree(st);
436 		return ERR_PTR(ret);
437 	}
438 
439 	sg_page_sizes = i915_sg_page_sizes(st->sgl);
440 
441 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
442 
443 	return st;
444 }
445 
446 static void
447 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
448 {
449 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
450 	struct drm_i915_gem_object *obj = work->obj;
451 	const unsigned long npages = obj->base.size >> PAGE_SHIFT;
452 	unsigned long pinned;
453 	struct page **pvec;
454 	int ret;
455 
456 	ret = -ENOMEM;
457 	pinned = 0;
458 
459 	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
460 	if (pvec != NULL) {
461 		struct mm_struct *mm = obj->userptr.mm->mm;
462 		unsigned int flags = 0;
463 
464 		if (!i915_gem_object_is_readonly(obj))
465 			flags |= FOLL_WRITE;
466 
467 		ret = -EFAULT;
468 		if (mmget_not_zero(mm)) {
469 			down_read(&mm->mmap_sem);
470 			while (pinned < npages) {
471 				ret = get_user_pages_remote
472 					(work->task, mm,
473 					 obj->userptr.ptr + pinned * PAGE_SIZE,
474 					 npages - pinned,
475 					 flags,
476 					 pvec + pinned, NULL, NULL);
477 				if (ret < 0)
478 					break;
479 
480 				pinned += ret;
481 			}
482 			up_read(&mm->mmap_sem);
483 			mmput(mm);
484 		}
485 	}
486 
487 	mutex_lock(&obj->mm.lock);
488 	if (obj->userptr.work == &work->work) {
489 		struct sg_table *pages = ERR_PTR(ret);
490 
491 		if (pinned == npages) {
492 			pages = __i915_gem_userptr_alloc_pages(obj, pvec,
493 							       npages);
494 			if (!IS_ERR(pages)) {
495 				pinned = 0;
496 				pages = NULL;
497 			}
498 		}
499 
500 		obj->userptr.work = ERR_CAST(pages);
501 		if (IS_ERR(pages))
502 			__i915_gem_userptr_set_active(obj, false);
503 	}
504 	mutex_unlock(&obj->mm.lock);
505 
506 	release_pages(pvec, pinned);
507 	kvfree(pvec);
508 
509 	i915_gem_object_put(obj);
510 	put_task_struct(work->task);
511 	kfree(work);
512 }
513 
514 static struct sg_table *
515 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
516 {
517 	struct get_pages_work *work;
518 
519 	/* Spawn a worker so that we can acquire the
520 	 * user pages without holding our mutex. Access
521 	 * to the user pages requires mmap_sem, and we have
522 	 * a strict lock ordering of mmap_sem, struct_mutex -
523 	 * we already hold struct_mutex here and so cannot
524 	 * call gup without encountering a lock inversion.
525 	 *
526 	 * Userspace will keep on repeating the operation
527 	 * (thanks to EAGAIN) until either we hit the fast
528 	 * path or the worker completes. If the worker is
529 	 * cancelled or superseded, the task is still run
530 	 * but the results ignored. (This leads to
531 	 * complications that we may have a stray object
532 	 * refcount that we need to be wary of when
533 	 * checking for existing objects during creation.)
534 	 * If the worker encounters an error, it reports
535 	 * that error back to this function through
536 	 * obj->userptr.work = ERR_PTR.
537 	 */
538 	work = kmalloc(sizeof(*work), GFP_KERNEL);
539 	if (work == NULL)
540 		return ERR_PTR(-ENOMEM);
541 
542 	obj->userptr.work = &work->work;
543 
544 	work->obj = i915_gem_object_get(obj);
545 
546 	work->task = current;
547 	get_task_struct(work->task);
548 
549 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
550 	queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
551 
552 	return ERR_PTR(-EAGAIN);
553 }
554 
555 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
556 {
557 	const unsigned long num_pages = obj->base.size >> PAGE_SHIFT;
558 	struct mm_struct *mm = obj->userptr.mm->mm;
559 	struct page **pvec;
560 	struct sg_table *pages;
561 	bool active;
562 	int pinned;
563 
564 	/* If userspace should engineer that these pages are replaced in
565 	 * the vma between us binding this page into the GTT and completion
566 	 * of rendering... Their loss. If they change the mapping of their
567 	 * pages they need to create a new bo to point to the new vma.
568 	 *
569 	 * However, that still leaves open the possibility of the vma
570 	 * being copied upon fork. Which falls under the same userspace
571 	 * synchronisation issue as a regular bo, except that this time
572 	 * the process may not be expecting that a particular piece of
573 	 * memory is tied to the GPU.
574 	 *
575 	 * Fortunately, we can hook into the mmu_notifier in order to
576 	 * discard the page references prior to anything nasty happening
577 	 * to the vma (discard or cloning) which should prevent the more
578 	 * egregious cases from causing harm.
579 	 */
580 
581 	if (obj->userptr.work) {
582 		/* active flag should still be held for the pending work */
583 		if (IS_ERR(obj->userptr.work))
584 			return PTR_ERR(obj->userptr.work);
585 		else
586 			return -EAGAIN;
587 	}
588 
589 	pvec = NULL;
590 	pinned = 0;
591 
592 	if (mm == current->mm) {
593 		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
594 				      GFP_KERNEL |
595 				      __GFP_NORETRY |
596 				      __GFP_NOWARN);
597 		if (pvec) /* defer to worker if malloc fails */
598 			pinned = __get_user_pages_fast(obj->userptr.ptr,
599 						       num_pages,
600 						       !i915_gem_object_is_readonly(obj),
601 						       pvec);
602 	}
603 
604 	active = false;
605 	if (pinned < 0) {
606 		pages = ERR_PTR(pinned);
607 		pinned = 0;
608 	} else if (pinned < num_pages) {
609 		pages = __i915_gem_userptr_get_pages_schedule(obj);
610 		active = pages == ERR_PTR(-EAGAIN);
611 	} else {
612 		pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
613 		active = !IS_ERR(pages);
614 	}
615 	if (active)
616 		__i915_gem_userptr_set_active(obj, true);
617 
618 	if (IS_ERR(pages))
619 		release_pages(pvec, pinned);
620 	kvfree(pvec);
621 
622 	return PTR_ERR_OR_ZERO(pages);
623 }
624 
625 static void
626 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
627 			   struct sg_table *pages)
628 {
629 	struct sgt_iter sgt_iter;
630 	struct page *page;
631 
632 	/* Cancel any inflight work and force them to restart their gup */
633 	obj->userptr.work = NULL;
634 	__i915_gem_userptr_set_active(obj, false);
635 	if (!pages)
636 		return;
637 
638 	__i915_gem_object_release_shmem(obj, pages, true);
639 	i915_gem_gtt_finish_pages(obj, pages);
640 
641 	/*
642 	 * We always mark objects as dirty when they are used by the GPU,
643 	 * just in case. However, if we set the vma as being read-only we know
644 	 * that the object will never have been written to.
645 	 */
646 	if (i915_gem_object_is_readonly(obj))
647 		obj->mm.dirty = false;
648 
649 	for_each_sgt_page(page, sgt_iter, pages) {
650 		if (obj->mm.dirty && trylock_page(page)) {
651 			/*
652 			 * As this may not be anonymous memory (e.g. shmem)
653 			 * but exist on a real mapping, we have to lock
654 			 * the page in order to dirty it -- holding
655 			 * the page reference is not sufficient to
656 			 * prevent the inode from being truncated.
657 			 * Play safe and take the lock.
658 			 *
659 			 * However...!
660 			 *
661 			 * The mmu-notifier can be invalidated for a
662 			 * migrate_page, that is alreadying holding the lock
663 			 * on the page. Such a try_to_unmap() will result
664 			 * in us calling put_pages() and so recursively try
665 			 * to lock the page. We avoid that deadlock with
666 			 * a trylock_page() and in exchange we risk missing
667 			 * some page dirtying.
668 			 */
669 			set_page_dirty(page);
670 			unlock_page(page);
671 		}
672 
673 		mark_page_accessed(page);
674 		put_page(page);
675 	}
676 	obj->mm.dirty = false;
677 
678 	sg_free_table(pages);
679 	kfree(pages);
680 }
681 
682 static void
683 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
684 {
685 	i915_gem_userptr_release__mmu_notifier(obj);
686 	i915_gem_userptr_release__mm_struct(obj);
687 }
688 
689 static int
690 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
691 {
692 	if (obj->userptr.mmu_object)
693 		return 0;
694 
695 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
696 }
697 
698 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
699 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
700 		 I915_GEM_OBJECT_IS_SHRINKABLE |
701 		 I915_GEM_OBJECT_NO_GGTT |
702 		 I915_GEM_OBJECT_ASYNC_CANCEL,
703 	.get_pages = i915_gem_userptr_get_pages,
704 	.put_pages = i915_gem_userptr_put_pages,
705 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
706 	.release = i915_gem_userptr_release,
707 };
708 
709 /*
710  * Creates a new mm object that wraps some normal memory from the process
711  * context - user memory.
712  *
713  * We impose several restrictions upon the memory being mapped
714  * into the GPU.
715  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
716  * 2. It must be normal system memory, not a pointer into another map of IO
717  *    space (e.g. it must not be a GTT mmapping of another object).
718  * 3. We only allow a bo as large as we could in theory map into the GTT,
719  *    that is we limit the size to the total size of the GTT.
720  * 4. The bo is marked as being snoopable. The backing pages are left
721  *    accessible directly by the CPU, but reads and writes by the GPU may
722  *    incur the cost of a snoop (unless you have an LLC architecture).
723  *
724  * Synchronisation between multiple users and the GPU is left to userspace
725  * through the normal set-domain-ioctl. The kernel will enforce that the
726  * GPU relinquishes the VMA before it is returned back to the system
727  * i.e. upon free(), munmap() or process termination. However, the userspace
728  * malloc() library may not immediately relinquish the VMA after free() and
729  * instead reuse it whilst the GPU is still reading and writing to the VMA.
730  * Caveat emptor.
731  *
732  * Also note, that the object created here is not currently a "first class"
733  * object, in that several ioctls are banned. These are the CPU access
734  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
735  * direct access via your pointer rather than use those ioctls. Another
736  * restriction is that we do not allow userptr surfaces to be pinned to the
737  * hardware and so we reject any attempt to create a framebuffer out of a
738  * userptr.
739  *
740  * If you think this is a good interface to use to pass GPU memory between
741  * drivers, please use dma-buf instead. In fact, wherever possible use
742  * dma-buf instead.
743  */
744 int
745 i915_gem_userptr_ioctl(struct drm_device *dev,
746 		       void *data,
747 		       struct drm_file *file)
748 {
749 	static struct lock_class_key lock_class;
750 	struct drm_i915_private *dev_priv = to_i915(dev);
751 	struct drm_i915_gem_userptr *args = data;
752 	struct drm_i915_gem_object *obj;
753 	int ret;
754 	u32 handle;
755 
756 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
757 		/* We cannot support coherent userptr objects on hw without
758 		 * LLC and broken snooping.
759 		 */
760 		return -ENODEV;
761 	}
762 
763 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
764 			    I915_USERPTR_UNSYNCHRONIZED))
765 		return -EINVAL;
766 
767 	if (!args->user_size)
768 		return -EINVAL;
769 
770 	if (offset_in_page(args->user_ptr | args->user_size))
771 		return -EINVAL;
772 
773 	if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size))
774 		return -EFAULT;
775 
776 	if (args->flags & I915_USERPTR_READ_ONLY) {
777 		struct i915_address_space *vm;
778 
779 		/*
780 		 * On almost all of the older hw, we cannot tell the GPU that
781 		 * a page is readonly.
782 		 */
783 		vm = rcu_dereference_protected(dev_priv->kernel_context->vm,
784 					       true); /* static vm */
785 		if (!vm || !vm->has_read_only)
786 			return -ENODEV;
787 	}
788 
789 	obj = i915_gem_object_alloc();
790 	if (obj == NULL)
791 		return -ENOMEM;
792 
793 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
794 	i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class);
795 	obj->read_domains = I915_GEM_DOMAIN_CPU;
796 	obj->write_domain = I915_GEM_DOMAIN_CPU;
797 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
798 
799 	obj->userptr.ptr = args->user_ptr;
800 	if (args->flags & I915_USERPTR_READ_ONLY)
801 		i915_gem_object_set_readonly(obj);
802 
803 	/* And keep a pointer to the current->mm for resolving the user pages
804 	 * at binding. This means that we need to hook into the mmu_notifier
805 	 * in order to detect if the mmu is destroyed.
806 	 */
807 	ret = i915_gem_userptr_init__mm_struct(obj);
808 	if (ret == 0)
809 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
810 	if (ret == 0)
811 		ret = drm_gem_handle_create(file, &obj->base, &handle);
812 
813 	/* drop reference from allocate - handle holds it now */
814 	i915_gem_object_put(obj);
815 	if (ret)
816 		return ret;
817 
818 	args->handle = handle;
819 	return 0;
820 }
821 
822 int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
823 {
824 	mutex_init(&dev_priv->mm_lock);
825 	hash_init(dev_priv->mm_structs);
826 
827 	dev_priv->mm.userptr_wq =
828 		alloc_workqueue("i915-userptr-acquire",
829 				WQ_HIGHPRI | WQ_UNBOUND,
830 				0);
831 	if (!dev_priv->mm.userptr_wq)
832 		return -ENOMEM;
833 
834 	return 0;
835 }
836 
837 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
838 {
839 	destroy_workqueue(dev_priv->mm.userptr_wq);
840 }
841