1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2012-2014 Intel Corporation 5 */ 6 7 #include <linux/mmu_context.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/mempolicy.h> 10 #include <linux/swap.h> 11 #include <linux/sched/mm.h> 12 13 #include <drm/i915_drm.h> 14 15 #include "i915_drv.h" 16 #include "i915_gem_ioctls.h" 17 #include "i915_gem_object.h" 18 #include "i915_scatterlist.h" 19 20 struct i915_mm_struct { 21 struct mm_struct *mm; 22 struct drm_i915_private *i915; 23 struct i915_mmu_notifier *mn; 24 struct hlist_node node; 25 struct kref kref; 26 struct work_struct work; 27 }; 28 29 #if defined(CONFIG_MMU_NOTIFIER) 30 #include <linux/interval_tree.h> 31 32 struct i915_mmu_notifier { 33 spinlock_t lock; 34 struct hlist_node node; 35 struct mmu_notifier mn; 36 struct rb_root_cached objects; 37 struct i915_mm_struct *mm; 38 }; 39 40 struct i915_mmu_object { 41 struct i915_mmu_notifier *mn; 42 struct drm_i915_gem_object *obj; 43 struct interval_tree_node it; 44 }; 45 46 static void add_object(struct i915_mmu_object *mo) 47 { 48 GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb)); 49 interval_tree_insert(&mo->it, &mo->mn->objects); 50 } 51 52 static void del_object(struct i915_mmu_object *mo) 53 { 54 if (RB_EMPTY_NODE(&mo->it.rb)) 55 return; 56 57 interval_tree_remove(&mo->it, &mo->mn->objects); 58 RB_CLEAR_NODE(&mo->it.rb); 59 } 60 61 static void 62 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value) 63 { 64 struct i915_mmu_object *mo = obj->userptr.mmu_object; 65 66 /* 67 * During mm_invalidate_range we need to cancel any userptr that 68 * overlaps the range being invalidated. Doing so requires the 69 * struct_mutex, and that risks recursion. In order to cause 70 * recursion, the user must alias the userptr address space with 71 * a GTT mmapping (possible with a MAP_FIXED) - then when we have 72 * to invalidate that mmaping, mm_invalidate_range is called with 73 * the userptr address *and* the struct_mutex held. To prevent that 74 * we set a flag under the i915_mmu_notifier spinlock to indicate 75 * whether this object is valid. 76 */ 77 if (!mo) 78 return; 79 80 spin_lock(&mo->mn->lock); 81 if (value) 82 add_object(mo); 83 else 84 del_object(mo); 85 spin_unlock(&mo->mn->lock); 86 } 87 88 static int 89 userptr_mn_invalidate_range_start(struct mmu_notifier *_mn, 90 const struct mmu_notifier_range *range) 91 { 92 struct i915_mmu_notifier *mn = 93 container_of(_mn, struct i915_mmu_notifier, mn); 94 struct interval_tree_node *it; 95 unsigned long end; 96 int ret = 0; 97 98 if (RB_EMPTY_ROOT(&mn->objects.rb_root)) 99 return 0; 100 101 /* interval ranges are inclusive, but invalidate range is exclusive */ 102 end = range->end - 1; 103 104 spin_lock(&mn->lock); 105 it = interval_tree_iter_first(&mn->objects, range->start, end); 106 while (it) { 107 struct drm_i915_gem_object *obj; 108 109 if (!mmu_notifier_range_blockable(range)) { 110 ret = -EAGAIN; 111 break; 112 } 113 114 /* 115 * The mmu_object is released late when destroying the 116 * GEM object so it is entirely possible to gain a 117 * reference on an object in the process of being freed 118 * since our serialisation is via the spinlock and not 119 * the struct_mutex - and consequently use it after it 120 * is freed and then double free it. To prevent that 121 * use-after-free we only acquire a reference on the 122 * object if it is not in the process of being destroyed. 123 */ 124 obj = container_of(it, struct i915_mmu_object, it)->obj; 125 if (!kref_get_unless_zero(&obj->base.refcount)) { 126 it = interval_tree_iter_next(it, range->start, end); 127 continue; 128 } 129 spin_unlock(&mn->lock); 130 131 ret = i915_gem_object_unbind(obj, 132 I915_GEM_OBJECT_UNBIND_ACTIVE | 133 I915_GEM_OBJECT_UNBIND_BARRIER); 134 if (ret == 0) 135 ret = __i915_gem_object_put_pages(obj); 136 i915_gem_object_put(obj); 137 if (ret) 138 return ret; 139 140 spin_lock(&mn->lock); 141 142 /* 143 * As we do not (yet) protect the mmu from concurrent insertion 144 * over this range, there is no guarantee that this search will 145 * terminate given a pathologic workload. 146 */ 147 it = interval_tree_iter_first(&mn->objects, range->start, end); 148 } 149 spin_unlock(&mn->lock); 150 151 return ret; 152 153 } 154 155 static const struct mmu_notifier_ops i915_gem_userptr_notifier = { 156 .invalidate_range_start = userptr_mn_invalidate_range_start, 157 }; 158 159 static struct i915_mmu_notifier * 160 i915_mmu_notifier_create(struct i915_mm_struct *mm) 161 { 162 struct i915_mmu_notifier *mn; 163 164 mn = kmalloc(sizeof(*mn), GFP_KERNEL); 165 if (mn == NULL) 166 return ERR_PTR(-ENOMEM); 167 168 spin_lock_init(&mn->lock); 169 mn->mn.ops = &i915_gem_userptr_notifier; 170 mn->objects = RB_ROOT_CACHED; 171 mn->mm = mm; 172 173 return mn; 174 } 175 176 static void 177 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj) 178 { 179 struct i915_mmu_object *mo; 180 181 mo = fetch_and_zero(&obj->userptr.mmu_object); 182 if (!mo) 183 return; 184 185 spin_lock(&mo->mn->lock); 186 del_object(mo); 187 spin_unlock(&mo->mn->lock); 188 kfree(mo); 189 } 190 191 static struct i915_mmu_notifier * 192 i915_mmu_notifier_find(struct i915_mm_struct *mm) 193 { 194 struct i915_mmu_notifier *mn; 195 int err = 0; 196 197 mn = mm->mn; 198 if (mn) 199 return mn; 200 201 mn = i915_mmu_notifier_create(mm); 202 if (IS_ERR(mn)) 203 err = PTR_ERR(mn); 204 205 down_write(&mm->mm->mmap_sem); 206 mutex_lock(&mm->i915->mm_lock); 207 if (mm->mn == NULL && !err) { 208 /* Protected by mmap_sem (write-lock) */ 209 err = __mmu_notifier_register(&mn->mn, mm->mm); 210 if (!err) { 211 /* Protected by mm_lock */ 212 mm->mn = fetch_and_zero(&mn); 213 } 214 } else if (mm->mn) { 215 /* 216 * Someone else raced and successfully installed the mmu 217 * notifier, we can cancel our own errors. 218 */ 219 err = 0; 220 } 221 mutex_unlock(&mm->i915->mm_lock); 222 up_write(&mm->mm->mmap_sem); 223 224 if (mn && !IS_ERR(mn)) 225 kfree(mn); 226 227 return err ? ERR_PTR(err) : mm->mn; 228 } 229 230 static int 231 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj, 232 unsigned flags) 233 { 234 struct i915_mmu_notifier *mn; 235 struct i915_mmu_object *mo; 236 237 if (flags & I915_USERPTR_UNSYNCHRONIZED) 238 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM; 239 240 if (WARN_ON(obj->userptr.mm == NULL)) 241 return -EINVAL; 242 243 mn = i915_mmu_notifier_find(obj->userptr.mm); 244 if (IS_ERR(mn)) 245 return PTR_ERR(mn); 246 247 mo = kzalloc(sizeof(*mo), GFP_KERNEL); 248 if (!mo) 249 return -ENOMEM; 250 251 mo->mn = mn; 252 mo->obj = obj; 253 mo->it.start = obj->userptr.ptr; 254 mo->it.last = obj->userptr.ptr + obj->base.size - 1; 255 RB_CLEAR_NODE(&mo->it.rb); 256 257 obj->userptr.mmu_object = mo; 258 return 0; 259 } 260 261 static void 262 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 263 struct mm_struct *mm) 264 { 265 if (mn == NULL) 266 return; 267 268 mmu_notifier_unregister(&mn->mn, mm); 269 kfree(mn); 270 } 271 272 #else 273 274 static void 275 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value) 276 { 277 } 278 279 static void 280 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj) 281 { 282 } 283 284 static int 285 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj, 286 unsigned flags) 287 { 288 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0) 289 return -ENODEV; 290 291 if (!capable(CAP_SYS_ADMIN)) 292 return -EPERM; 293 294 return 0; 295 } 296 297 static void 298 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 299 struct mm_struct *mm) 300 { 301 } 302 303 #endif 304 305 static struct i915_mm_struct * 306 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real) 307 { 308 struct i915_mm_struct *mm; 309 310 /* Protected by dev_priv->mm_lock */ 311 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real) 312 if (mm->mm == real) 313 return mm; 314 315 return NULL; 316 } 317 318 static int 319 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj) 320 { 321 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 322 struct i915_mm_struct *mm; 323 int ret = 0; 324 325 /* During release of the GEM object we hold the struct_mutex. This 326 * precludes us from calling mmput() at that time as that may be 327 * the last reference and so call exit_mmap(). exit_mmap() will 328 * attempt to reap the vma, and if we were holding a GTT mmap 329 * would then call drm_gem_vm_close() and attempt to reacquire 330 * the struct mutex. So in order to avoid that recursion, we have 331 * to defer releasing the mm reference until after we drop the 332 * struct_mutex, i.e. we need to schedule a worker to do the clean 333 * up. 334 */ 335 mutex_lock(&dev_priv->mm_lock); 336 mm = __i915_mm_struct_find(dev_priv, current->mm); 337 if (mm == NULL) { 338 mm = kmalloc(sizeof(*mm), GFP_KERNEL); 339 if (mm == NULL) { 340 ret = -ENOMEM; 341 goto out; 342 } 343 344 kref_init(&mm->kref); 345 mm->i915 = to_i915(obj->base.dev); 346 347 mm->mm = current->mm; 348 mmgrab(current->mm); 349 350 mm->mn = NULL; 351 352 /* Protected by dev_priv->mm_lock */ 353 hash_add(dev_priv->mm_structs, 354 &mm->node, (unsigned long)mm->mm); 355 } else 356 kref_get(&mm->kref); 357 358 obj->userptr.mm = mm; 359 out: 360 mutex_unlock(&dev_priv->mm_lock); 361 return ret; 362 } 363 364 static void 365 __i915_mm_struct_free__worker(struct work_struct *work) 366 { 367 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work); 368 i915_mmu_notifier_free(mm->mn, mm->mm); 369 mmdrop(mm->mm); 370 kfree(mm); 371 } 372 373 static void 374 __i915_mm_struct_free(struct kref *kref) 375 { 376 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref); 377 378 /* Protected by dev_priv->mm_lock */ 379 hash_del(&mm->node); 380 mutex_unlock(&mm->i915->mm_lock); 381 382 INIT_WORK(&mm->work, __i915_mm_struct_free__worker); 383 queue_work(mm->i915->mm.userptr_wq, &mm->work); 384 } 385 386 static void 387 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj) 388 { 389 if (obj->userptr.mm == NULL) 390 return; 391 392 kref_put_mutex(&obj->userptr.mm->kref, 393 __i915_mm_struct_free, 394 &to_i915(obj->base.dev)->mm_lock); 395 obj->userptr.mm = NULL; 396 } 397 398 struct get_pages_work { 399 struct work_struct work; 400 struct drm_i915_gem_object *obj; 401 struct task_struct *task; 402 }; 403 404 static struct sg_table * 405 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj, 406 struct page **pvec, unsigned long num_pages) 407 { 408 unsigned int max_segment = i915_sg_segment_size(); 409 struct sg_table *st; 410 unsigned int sg_page_sizes; 411 int ret; 412 413 st = kmalloc(sizeof(*st), GFP_KERNEL); 414 if (!st) 415 return ERR_PTR(-ENOMEM); 416 417 alloc_table: 418 ret = __sg_alloc_table_from_pages(st, pvec, num_pages, 419 0, num_pages << PAGE_SHIFT, 420 max_segment, 421 GFP_KERNEL); 422 if (ret) { 423 kfree(st); 424 return ERR_PTR(ret); 425 } 426 427 ret = i915_gem_gtt_prepare_pages(obj, st); 428 if (ret) { 429 sg_free_table(st); 430 431 if (max_segment > PAGE_SIZE) { 432 max_segment = PAGE_SIZE; 433 goto alloc_table; 434 } 435 436 kfree(st); 437 return ERR_PTR(ret); 438 } 439 440 sg_page_sizes = i915_sg_page_sizes(st->sgl); 441 442 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 443 444 return st; 445 } 446 447 static void 448 __i915_gem_userptr_get_pages_worker(struct work_struct *_work) 449 { 450 struct get_pages_work *work = container_of(_work, typeof(*work), work); 451 struct drm_i915_gem_object *obj = work->obj; 452 const unsigned long npages = obj->base.size >> PAGE_SHIFT; 453 unsigned long pinned; 454 struct page **pvec; 455 int ret; 456 457 ret = -ENOMEM; 458 pinned = 0; 459 460 pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 461 if (pvec != NULL) { 462 struct mm_struct *mm = obj->userptr.mm->mm; 463 unsigned int flags = 0; 464 int locked = 0; 465 466 if (!i915_gem_object_is_readonly(obj)) 467 flags |= FOLL_WRITE; 468 469 ret = -EFAULT; 470 if (mmget_not_zero(mm)) { 471 while (pinned < npages) { 472 if (!locked) { 473 down_read(&mm->mmap_sem); 474 locked = 1; 475 } 476 ret = get_user_pages_remote 477 (work->task, mm, 478 obj->userptr.ptr + pinned * PAGE_SIZE, 479 npages - pinned, 480 flags, 481 pvec + pinned, NULL, &locked); 482 if (ret < 0) 483 break; 484 485 pinned += ret; 486 } 487 if (locked) 488 up_read(&mm->mmap_sem); 489 mmput(mm); 490 } 491 } 492 493 mutex_lock_nested(&obj->mm.lock, I915_MM_GET_PAGES); 494 if (obj->userptr.work == &work->work) { 495 struct sg_table *pages = ERR_PTR(ret); 496 497 if (pinned == npages) { 498 pages = __i915_gem_userptr_alloc_pages(obj, pvec, 499 npages); 500 if (!IS_ERR(pages)) { 501 pinned = 0; 502 pages = NULL; 503 } 504 } 505 506 obj->userptr.work = ERR_CAST(pages); 507 if (IS_ERR(pages)) 508 __i915_gem_userptr_set_active(obj, false); 509 } 510 mutex_unlock(&obj->mm.lock); 511 512 release_pages(pvec, pinned); 513 kvfree(pvec); 514 515 i915_gem_object_put(obj); 516 put_task_struct(work->task); 517 kfree(work); 518 } 519 520 static struct sg_table * 521 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj) 522 { 523 struct get_pages_work *work; 524 525 /* Spawn a worker so that we can acquire the 526 * user pages without holding our mutex. Access 527 * to the user pages requires mmap_sem, and we have 528 * a strict lock ordering of mmap_sem, struct_mutex - 529 * we already hold struct_mutex here and so cannot 530 * call gup without encountering a lock inversion. 531 * 532 * Userspace will keep on repeating the operation 533 * (thanks to EAGAIN) until either we hit the fast 534 * path or the worker completes. If the worker is 535 * cancelled or superseded, the task is still run 536 * but the results ignored. (This leads to 537 * complications that we may have a stray object 538 * refcount that we need to be wary of when 539 * checking for existing objects during creation.) 540 * If the worker encounters an error, it reports 541 * that error back to this function through 542 * obj->userptr.work = ERR_PTR. 543 */ 544 work = kmalloc(sizeof(*work), GFP_KERNEL); 545 if (work == NULL) 546 return ERR_PTR(-ENOMEM); 547 548 obj->userptr.work = &work->work; 549 550 work->obj = i915_gem_object_get(obj); 551 552 work->task = current; 553 get_task_struct(work->task); 554 555 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker); 556 queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work); 557 558 return ERR_PTR(-EAGAIN); 559 } 560 561 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj) 562 { 563 const unsigned long num_pages = obj->base.size >> PAGE_SHIFT; 564 struct mm_struct *mm = obj->userptr.mm->mm; 565 struct page **pvec; 566 struct sg_table *pages; 567 bool active; 568 int pinned; 569 570 /* If userspace should engineer that these pages are replaced in 571 * the vma between us binding this page into the GTT and completion 572 * of rendering... Their loss. If they change the mapping of their 573 * pages they need to create a new bo to point to the new vma. 574 * 575 * However, that still leaves open the possibility of the vma 576 * being copied upon fork. Which falls under the same userspace 577 * synchronisation issue as a regular bo, except that this time 578 * the process may not be expecting that a particular piece of 579 * memory is tied to the GPU. 580 * 581 * Fortunately, we can hook into the mmu_notifier in order to 582 * discard the page references prior to anything nasty happening 583 * to the vma (discard or cloning) which should prevent the more 584 * egregious cases from causing harm. 585 */ 586 587 if (obj->userptr.work) { 588 /* active flag should still be held for the pending work */ 589 if (IS_ERR(obj->userptr.work)) 590 return PTR_ERR(obj->userptr.work); 591 else 592 return -EAGAIN; 593 } 594 595 pvec = NULL; 596 pinned = 0; 597 598 if (mm == current->mm) { 599 pvec = kvmalloc_array(num_pages, sizeof(struct page *), 600 GFP_KERNEL | 601 __GFP_NORETRY | 602 __GFP_NOWARN); 603 if (pvec) /* defer to worker if malloc fails */ 604 pinned = __get_user_pages_fast(obj->userptr.ptr, 605 num_pages, 606 !i915_gem_object_is_readonly(obj), 607 pvec); 608 } 609 610 active = false; 611 if (pinned < 0) { 612 pages = ERR_PTR(pinned); 613 pinned = 0; 614 } else if (pinned < num_pages) { 615 pages = __i915_gem_userptr_get_pages_schedule(obj); 616 active = pages == ERR_PTR(-EAGAIN); 617 } else { 618 pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages); 619 active = !IS_ERR(pages); 620 } 621 if (active) 622 __i915_gem_userptr_set_active(obj, true); 623 624 if (IS_ERR(pages)) 625 release_pages(pvec, pinned); 626 kvfree(pvec); 627 628 return PTR_ERR_OR_ZERO(pages); 629 } 630 631 static void 632 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj, 633 struct sg_table *pages) 634 { 635 struct sgt_iter sgt_iter; 636 struct page *page; 637 638 /* Cancel any inflight work and force them to restart their gup */ 639 obj->userptr.work = NULL; 640 __i915_gem_userptr_set_active(obj, false); 641 if (!pages) 642 return; 643 644 __i915_gem_object_release_shmem(obj, pages, true); 645 i915_gem_gtt_finish_pages(obj, pages); 646 647 /* 648 * We always mark objects as dirty when they are used by the GPU, 649 * just in case. However, if we set the vma as being read-only we know 650 * that the object will never have been written to. 651 */ 652 if (i915_gem_object_is_readonly(obj)) 653 obj->mm.dirty = false; 654 655 for_each_sgt_page(page, sgt_iter, pages) { 656 if (obj->mm.dirty && trylock_page(page)) { 657 /* 658 * As this may not be anonymous memory (e.g. shmem) 659 * but exist on a real mapping, we have to lock 660 * the page in order to dirty it -- holding 661 * the page reference is not sufficient to 662 * prevent the inode from being truncated. 663 * Play safe and take the lock. 664 * 665 * However...! 666 * 667 * The mmu-notifier can be invalidated for a 668 * migrate_page, that is alreadying holding the lock 669 * on the page. Such a try_to_unmap() will result 670 * in us calling put_pages() and so recursively try 671 * to lock the page. We avoid that deadlock with 672 * a trylock_page() and in exchange we risk missing 673 * some page dirtying. 674 */ 675 set_page_dirty(page); 676 unlock_page(page); 677 } 678 679 mark_page_accessed(page); 680 put_page(page); 681 } 682 obj->mm.dirty = false; 683 684 sg_free_table(pages); 685 kfree(pages); 686 } 687 688 static void 689 i915_gem_userptr_release(struct drm_i915_gem_object *obj) 690 { 691 i915_gem_userptr_release__mmu_notifier(obj); 692 i915_gem_userptr_release__mm_struct(obj); 693 } 694 695 static int 696 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj) 697 { 698 if (obj->userptr.mmu_object) 699 return 0; 700 701 return i915_gem_userptr_init__mmu_notifier(obj, 0); 702 } 703 704 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = { 705 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 706 I915_GEM_OBJECT_IS_SHRINKABLE | 707 I915_GEM_OBJECT_NO_GGTT | 708 I915_GEM_OBJECT_ASYNC_CANCEL, 709 .get_pages = i915_gem_userptr_get_pages, 710 .put_pages = i915_gem_userptr_put_pages, 711 .dmabuf_export = i915_gem_userptr_dmabuf_export, 712 .release = i915_gem_userptr_release, 713 }; 714 715 /* 716 * Creates a new mm object that wraps some normal memory from the process 717 * context - user memory. 718 * 719 * We impose several restrictions upon the memory being mapped 720 * into the GPU. 721 * 1. It must be page aligned (both start/end addresses, i.e ptr and size). 722 * 2. It must be normal system memory, not a pointer into another map of IO 723 * space (e.g. it must not be a GTT mmapping of another object). 724 * 3. We only allow a bo as large as we could in theory map into the GTT, 725 * that is we limit the size to the total size of the GTT. 726 * 4. The bo is marked as being snoopable. The backing pages are left 727 * accessible directly by the CPU, but reads and writes by the GPU may 728 * incur the cost of a snoop (unless you have an LLC architecture). 729 * 730 * Synchronisation between multiple users and the GPU is left to userspace 731 * through the normal set-domain-ioctl. The kernel will enforce that the 732 * GPU relinquishes the VMA before it is returned back to the system 733 * i.e. upon free(), munmap() or process termination. However, the userspace 734 * malloc() library may not immediately relinquish the VMA after free() and 735 * instead reuse it whilst the GPU is still reading and writing to the VMA. 736 * Caveat emptor. 737 * 738 * Also note, that the object created here is not currently a "first class" 739 * object, in that several ioctls are banned. These are the CPU access 740 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use 741 * direct access via your pointer rather than use those ioctls. Another 742 * restriction is that we do not allow userptr surfaces to be pinned to the 743 * hardware and so we reject any attempt to create a framebuffer out of a 744 * userptr. 745 * 746 * If you think this is a good interface to use to pass GPU memory between 747 * drivers, please use dma-buf instead. In fact, wherever possible use 748 * dma-buf instead. 749 */ 750 int 751 i915_gem_userptr_ioctl(struct drm_device *dev, 752 void *data, 753 struct drm_file *file) 754 { 755 static struct lock_class_key lock_class; 756 struct drm_i915_private *dev_priv = to_i915(dev); 757 struct drm_i915_gem_userptr *args = data; 758 struct drm_i915_gem_object *obj; 759 int ret; 760 u32 handle; 761 762 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) { 763 /* We cannot support coherent userptr objects on hw without 764 * LLC and broken snooping. 765 */ 766 return -ENODEV; 767 } 768 769 if (args->flags & ~(I915_USERPTR_READ_ONLY | 770 I915_USERPTR_UNSYNCHRONIZED)) 771 return -EINVAL; 772 773 if (!args->user_size) 774 return -EINVAL; 775 776 if (offset_in_page(args->user_ptr | args->user_size)) 777 return -EINVAL; 778 779 if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size)) 780 return -EFAULT; 781 782 if (args->flags & I915_USERPTR_READ_ONLY) { 783 /* 784 * On almost all of the older hw, we cannot tell the GPU that 785 * a page is readonly. 786 */ 787 if (!dev_priv->gt.vm->has_read_only) 788 return -ENODEV; 789 } 790 791 obj = i915_gem_object_alloc(); 792 if (obj == NULL) 793 return -ENOMEM; 794 795 drm_gem_private_object_init(dev, &obj->base, args->user_size); 796 i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class); 797 obj->read_domains = I915_GEM_DOMAIN_CPU; 798 obj->write_domain = I915_GEM_DOMAIN_CPU; 799 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 800 801 obj->userptr.ptr = args->user_ptr; 802 if (args->flags & I915_USERPTR_READ_ONLY) 803 i915_gem_object_set_readonly(obj); 804 805 /* And keep a pointer to the current->mm for resolving the user pages 806 * at binding. This means that we need to hook into the mmu_notifier 807 * in order to detect if the mmu is destroyed. 808 */ 809 ret = i915_gem_userptr_init__mm_struct(obj); 810 if (ret == 0) 811 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags); 812 if (ret == 0) 813 ret = drm_gem_handle_create(file, &obj->base, &handle); 814 815 /* drop reference from allocate - handle holds it now */ 816 i915_gem_object_put(obj); 817 if (ret) 818 return ret; 819 820 args->handle = handle; 821 return 0; 822 } 823 824 int i915_gem_init_userptr(struct drm_i915_private *dev_priv) 825 { 826 mutex_init(&dev_priv->mm_lock); 827 hash_init(dev_priv->mm_structs); 828 829 dev_priv->mm.userptr_wq = 830 alloc_workqueue("i915-userptr-acquire", 831 WQ_HIGHPRI | WQ_UNBOUND, 832 0); 833 if (!dev_priv->mm.userptr_wq) 834 return -ENOMEM; 835 836 return 0; 837 } 838 839 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv) 840 { 841 destroy_workqueue(dev_priv->mm.userptr_wq); 842 } 843