xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_userptr.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2012-2014 Intel Corporation
5  */
6 
7 #include <linux/mmu_context.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/sched/mm.h>
12 
13 #include "i915_drv.h"
14 #include "i915_gem_ioctls.h"
15 #include "i915_gem_object.h"
16 #include "i915_scatterlist.h"
17 
18 struct i915_mm_struct {
19 	struct mm_struct *mm;
20 	struct drm_i915_private *i915;
21 	struct i915_mmu_notifier *mn;
22 	struct hlist_node node;
23 	struct kref kref;
24 	struct rcu_work work;
25 };
26 
27 #if defined(CONFIG_MMU_NOTIFIER)
28 #include <linux/interval_tree.h>
29 
30 struct i915_mmu_notifier {
31 	spinlock_t lock;
32 	struct hlist_node node;
33 	struct mmu_notifier mn;
34 	struct rb_root_cached objects;
35 	struct i915_mm_struct *mm;
36 };
37 
38 struct i915_mmu_object {
39 	struct i915_mmu_notifier *mn;
40 	struct drm_i915_gem_object *obj;
41 	struct interval_tree_node it;
42 };
43 
44 static void add_object(struct i915_mmu_object *mo)
45 {
46 	GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb));
47 	interval_tree_insert(&mo->it, &mo->mn->objects);
48 }
49 
50 static void del_object(struct i915_mmu_object *mo)
51 {
52 	if (RB_EMPTY_NODE(&mo->it.rb))
53 		return;
54 
55 	interval_tree_remove(&mo->it, &mo->mn->objects);
56 	RB_CLEAR_NODE(&mo->it.rb);
57 }
58 
59 static void
60 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
61 {
62 	struct i915_mmu_object *mo = obj->userptr.mmu_object;
63 
64 	/*
65 	 * During mm_invalidate_range we need to cancel any userptr that
66 	 * overlaps the range being invalidated. Doing so requires the
67 	 * struct_mutex, and that risks recursion. In order to cause
68 	 * recursion, the user must alias the userptr address space with
69 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
70 	 * to invalidate that mmaping, mm_invalidate_range is called with
71 	 * the userptr address *and* the struct_mutex held.  To prevent that
72 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
73 	 * whether this object is valid.
74 	 */
75 	if (!mo)
76 		return;
77 
78 	spin_lock(&mo->mn->lock);
79 	if (value)
80 		add_object(mo);
81 	else
82 		del_object(mo);
83 	spin_unlock(&mo->mn->lock);
84 }
85 
86 static int
87 userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
88 				  const struct mmu_notifier_range *range)
89 {
90 	struct i915_mmu_notifier *mn =
91 		container_of(_mn, struct i915_mmu_notifier, mn);
92 	struct interval_tree_node *it;
93 	unsigned long end;
94 	int ret = 0;
95 
96 	if (RB_EMPTY_ROOT(&mn->objects.rb_root))
97 		return 0;
98 
99 	/* interval ranges are inclusive, but invalidate range is exclusive */
100 	end = range->end - 1;
101 
102 	spin_lock(&mn->lock);
103 	it = interval_tree_iter_first(&mn->objects, range->start, end);
104 	while (it) {
105 		struct drm_i915_gem_object *obj;
106 
107 		if (!mmu_notifier_range_blockable(range)) {
108 			ret = -EAGAIN;
109 			break;
110 		}
111 
112 		/*
113 		 * The mmu_object is released late when destroying the
114 		 * GEM object so it is entirely possible to gain a
115 		 * reference on an object in the process of being freed
116 		 * since our serialisation is via the spinlock and not
117 		 * the struct_mutex - and consequently use it after it
118 		 * is freed and then double free it. To prevent that
119 		 * use-after-free we only acquire a reference on the
120 		 * object if it is not in the process of being destroyed.
121 		 */
122 		obj = container_of(it, struct i915_mmu_object, it)->obj;
123 		if (!kref_get_unless_zero(&obj->base.refcount)) {
124 			it = interval_tree_iter_next(it, range->start, end);
125 			continue;
126 		}
127 		spin_unlock(&mn->lock);
128 
129 		ret = i915_gem_object_unbind(obj,
130 					     I915_GEM_OBJECT_UNBIND_ACTIVE |
131 					     I915_GEM_OBJECT_UNBIND_BARRIER);
132 		if (ret == 0)
133 			ret = __i915_gem_object_put_pages(obj);
134 		i915_gem_object_put(obj);
135 		if (ret)
136 			return ret;
137 
138 		spin_lock(&mn->lock);
139 
140 		/*
141 		 * As we do not (yet) protect the mmu from concurrent insertion
142 		 * over this range, there is no guarantee that this search will
143 		 * terminate given a pathologic workload.
144 		 */
145 		it = interval_tree_iter_first(&mn->objects, range->start, end);
146 	}
147 	spin_unlock(&mn->lock);
148 
149 	return ret;
150 
151 }
152 
153 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
154 	.invalidate_range_start = userptr_mn_invalidate_range_start,
155 };
156 
157 static struct i915_mmu_notifier *
158 i915_mmu_notifier_create(struct i915_mm_struct *mm)
159 {
160 	struct i915_mmu_notifier *mn;
161 
162 	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
163 	if (mn == NULL)
164 		return ERR_PTR(-ENOMEM);
165 
166 	spin_lock_init(&mn->lock);
167 	mn->mn.ops = &i915_gem_userptr_notifier;
168 	mn->objects = RB_ROOT_CACHED;
169 	mn->mm = mm;
170 
171 	return mn;
172 }
173 
174 static void
175 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
176 {
177 	struct i915_mmu_object *mo;
178 
179 	mo = fetch_and_zero(&obj->userptr.mmu_object);
180 	if (!mo)
181 		return;
182 
183 	spin_lock(&mo->mn->lock);
184 	del_object(mo);
185 	spin_unlock(&mo->mn->lock);
186 	kfree(mo);
187 }
188 
189 static struct i915_mmu_notifier *
190 i915_mmu_notifier_find(struct i915_mm_struct *mm)
191 {
192 	struct i915_mmu_notifier *mn, *old;
193 	int err;
194 
195 	mn = READ_ONCE(mm->mn);
196 	if (likely(mn))
197 		return mn;
198 
199 	mn = i915_mmu_notifier_create(mm);
200 	if (IS_ERR(mn))
201 		return mn;
202 
203 	err = mmu_notifier_register(&mn->mn, mm->mm);
204 	if (err) {
205 		kfree(mn);
206 		return ERR_PTR(err);
207 	}
208 
209 	old = cmpxchg(&mm->mn, NULL, mn);
210 	if (old) {
211 		mmu_notifier_unregister(&mn->mn, mm->mm);
212 		kfree(mn);
213 		mn = old;
214 	}
215 
216 	return mn;
217 }
218 
219 static int
220 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
221 				    unsigned flags)
222 {
223 	struct i915_mmu_notifier *mn;
224 	struct i915_mmu_object *mo;
225 
226 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
227 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
228 
229 	if (GEM_WARN_ON(!obj->userptr.mm))
230 		return -EINVAL;
231 
232 	mn = i915_mmu_notifier_find(obj->userptr.mm);
233 	if (IS_ERR(mn))
234 		return PTR_ERR(mn);
235 
236 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
237 	if (!mo)
238 		return -ENOMEM;
239 
240 	mo->mn = mn;
241 	mo->obj = obj;
242 	mo->it.start = obj->userptr.ptr;
243 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
244 	RB_CLEAR_NODE(&mo->it.rb);
245 
246 	obj->userptr.mmu_object = mo;
247 	return 0;
248 }
249 
250 static void
251 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
252 		       struct mm_struct *mm)
253 {
254 	if (mn == NULL)
255 		return;
256 
257 	mmu_notifier_unregister(&mn->mn, mm);
258 	kfree(mn);
259 }
260 
261 #else
262 
263 static void
264 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
265 {
266 }
267 
268 static void
269 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
270 {
271 }
272 
273 static int
274 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
275 				    unsigned flags)
276 {
277 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
278 		return -ENODEV;
279 
280 	if (!capable(CAP_SYS_ADMIN))
281 		return -EPERM;
282 
283 	return 0;
284 }
285 
286 static void
287 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
288 		       struct mm_struct *mm)
289 {
290 }
291 
292 #endif
293 
294 static struct i915_mm_struct *
295 __i915_mm_struct_find(struct drm_i915_private *i915, struct mm_struct *real)
296 {
297 	struct i915_mm_struct *it, *mm = NULL;
298 
299 	rcu_read_lock();
300 	hash_for_each_possible_rcu(i915->mm_structs,
301 				   it, node,
302 				   (unsigned long)real)
303 		if (it->mm == real && kref_get_unless_zero(&it->kref)) {
304 			mm = it;
305 			break;
306 		}
307 	rcu_read_unlock();
308 
309 	return mm;
310 }
311 
312 static int
313 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
314 {
315 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
316 	struct i915_mm_struct *mm, *new;
317 	int ret = 0;
318 
319 	/* During release of the GEM object we hold the struct_mutex. This
320 	 * precludes us from calling mmput() at that time as that may be
321 	 * the last reference and so call exit_mmap(). exit_mmap() will
322 	 * attempt to reap the vma, and if we were holding a GTT mmap
323 	 * would then call drm_gem_vm_close() and attempt to reacquire
324 	 * the struct mutex. So in order to avoid that recursion, we have
325 	 * to defer releasing the mm reference until after we drop the
326 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
327 	 * up.
328 	 */
329 	mm = __i915_mm_struct_find(i915, current->mm);
330 	if (mm)
331 		goto out;
332 
333 	new = kmalloc(sizeof(*mm), GFP_KERNEL);
334 	if (!new)
335 		return -ENOMEM;
336 
337 	kref_init(&new->kref);
338 	new->i915 = to_i915(obj->base.dev);
339 	new->mm = current->mm;
340 	new->mn = NULL;
341 
342 	spin_lock(&i915->mm_lock);
343 	mm = __i915_mm_struct_find(i915, current->mm);
344 	if (!mm) {
345 		hash_add_rcu(i915->mm_structs,
346 			     &new->node,
347 			     (unsigned long)new->mm);
348 		mmgrab(current->mm);
349 		mm = new;
350 	}
351 	spin_unlock(&i915->mm_lock);
352 	if (mm != new)
353 		kfree(new);
354 
355 out:
356 	obj->userptr.mm = mm;
357 	return ret;
358 }
359 
360 static void
361 __i915_mm_struct_free__worker(struct work_struct *work)
362 {
363 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work.work);
364 
365 	i915_mmu_notifier_free(mm->mn, mm->mm);
366 	mmdrop(mm->mm);
367 	kfree(mm);
368 }
369 
370 static void
371 __i915_mm_struct_free(struct kref *kref)
372 {
373 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
374 
375 	spin_lock(&mm->i915->mm_lock);
376 	hash_del_rcu(&mm->node);
377 	spin_unlock(&mm->i915->mm_lock);
378 
379 	INIT_RCU_WORK(&mm->work, __i915_mm_struct_free__worker);
380 	queue_rcu_work(system_wq, &mm->work);
381 }
382 
383 static void
384 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
385 {
386 	if (obj->userptr.mm == NULL)
387 		return;
388 
389 	kref_put(&obj->userptr.mm->kref, __i915_mm_struct_free);
390 	obj->userptr.mm = NULL;
391 }
392 
393 struct get_pages_work {
394 	struct work_struct work;
395 	struct drm_i915_gem_object *obj;
396 	struct task_struct *task;
397 };
398 
399 static struct sg_table *
400 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
401 			       struct page **pvec, unsigned long num_pages)
402 {
403 	unsigned int max_segment = i915_sg_segment_size();
404 	struct sg_table *st;
405 	unsigned int sg_page_sizes;
406 	int ret;
407 
408 	st = kmalloc(sizeof(*st), GFP_KERNEL);
409 	if (!st)
410 		return ERR_PTR(-ENOMEM);
411 
412 alloc_table:
413 	ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
414 					  0, num_pages << PAGE_SHIFT,
415 					  max_segment,
416 					  GFP_KERNEL);
417 	if (ret) {
418 		kfree(st);
419 		return ERR_PTR(ret);
420 	}
421 
422 	ret = i915_gem_gtt_prepare_pages(obj, st);
423 	if (ret) {
424 		sg_free_table(st);
425 
426 		if (max_segment > PAGE_SIZE) {
427 			max_segment = PAGE_SIZE;
428 			goto alloc_table;
429 		}
430 
431 		kfree(st);
432 		return ERR_PTR(ret);
433 	}
434 
435 	sg_page_sizes = i915_sg_page_sizes(st->sgl);
436 
437 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
438 
439 	return st;
440 }
441 
442 static void
443 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
444 {
445 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
446 	struct drm_i915_gem_object *obj = work->obj;
447 	const unsigned long npages = obj->base.size >> PAGE_SHIFT;
448 	unsigned long pinned;
449 	struct page **pvec;
450 	int ret;
451 
452 	ret = -ENOMEM;
453 	pinned = 0;
454 
455 	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
456 	if (pvec != NULL) {
457 		struct mm_struct *mm = obj->userptr.mm->mm;
458 		unsigned int flags = 0;
459 		int locked = 0;
460 
461 		if (!i915_gem_object_is_readonly(obj))
462 			flags |= FOLL_WRITE;
463 
464 		ret = -EFAULT;
465 		if (mmget_not_zero(mm)) {
466 			while (pinned < npages) {
467 				if (!locked) {
468 					mmap_read_lock(mm);
469 					locked = 1;
470 				}
471 				ret = pin_user_pages_remote
472 					(mm,
473 					 obj->userptr.ptr + pinned * PAGE_SIZE,
474 					 npages - pinned,
475 					 flags,
476 					 pvec + pinned, NULL, &locked);
477 				if (ret < 0)
478 					break;
479 
480 				pinned += ret;
481 			}
482 			if (locked)
483 				mmap_read_unlock(mm);
484 			mmput(mm);
485 		}
486 	}
487 
488 	mutex_lock_nested(&obj->mm.lock, I915_MM_GET_PAGES);
489 	if (obj->userptr.work == &work->work) {
490 		struct sg_table *pages = ERR_PTR(ret);
491 
492 		if (pinned == npages) {
493 			pages = __i915_gem_userptr_alloc_pages(obj, pvec,
494 							       npages);
495 			if (!IS_ERR(pages)) {
496 				pinned = 0;
497 				pages = NULL;
498 			}
499 		}
500 
501 		obj->userptr.work = ERR_CAST(pages);
502 		if (IS_ERR(pages))
503 			__i915_gem_userptr_set_active(obj, false);
504 	}
505 	mutex_unlock(&obj->mm.lock);
506 
507 	unpin_user_pages(pvec, pinned);
508 	kvfree(pvec);
509 
510 	i915_gem_object_put(obj);
511 	put_task_struct(work->task);
512 	kfree(work);
513 }
514 
515 static struct sg_table *
516 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
517 {
518 	struct get_pages_work *work;
519 
520 	/* Spawn a worker so that we can acquire the
521 	 * user pages without holding our mutex. Access
522 	 * to the user pages requires mmap_lock, and we have
523 	 * a strict lock ordering of mmap_lock, struct_mutex -
524 	 * we already hold struct_mutex here and so cannot
525 	 * call gup without encountering a lock inversion.
526 	 *
527 	 * Userspace will keep on repeating the operation
528 	 * (thanks to EAGAIN) until either we hit the fast
529 	 * path or the worker completes. If the worker is
530 	 * cancelled or superseded, the task is still run
531 	 * but the results ignored. (This leads to
532 	 * complications that we may have a stray object
533 	 * refcount that we need to be wary of when
534 	 * checking for existing objects during creation.)
535 	 * If the worker encounters an error, it reports
536 	 * that error back to this function through
537 	 * obj->userptr.work = ERR_PTR.
538 	 */
539 	work = kmalloc(sizeof(*work), GFP_KERNEL);
540 	if (work == NULL)
541 		return ERR_PTR(-ENOMEM);
542 
543 	obj->userptr.work = &work->work;
544 
545 	work->obj = i915_gem_object_get(obj);
546 
547 	work->task = current;
548 	get_task_struct(work->task);
549 
550 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
551 	queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
552 
553 	return ERR_PTR(-EAGAIN);
554 }
555 
556 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
557 {
558 	const unsigned long num_pages = obj->base.size >> PAGE_SHIFT;
559 	struct mm_struct *mm = obj->userptr.mm->mm;
560 	struct page **pvec;
561 	struct sg_table *pages;
562 	bool active;
563 	int pinned;
564 	unsigned int gup_flags = 0;
565 
566 	/* If userspace should engineer that these pages are replaced in
567 	 * the vma between us binding this page into the GTT and completion
568 	 * of rendering... Their loss. If they change the mapping of their
569 	 * pages they need to create a new bo to point to the new vma.
570 	 *
571 	 * However, that still leaves open the possibility of the vma
572 	 * being copied upon fork. Which falls under the same userspace
573 	 * synchronisation issue as a regular bo, except that this time
574 	 * the process may not be expecting that a particular piece of
575 	 * memory is tied to the GPU.
576 	 *
577 	 * Fortunately, we can hook into the mmu_notifier in order to
578 	 * discard the page references prior to anything nasty happening
579 	 * to the vma (discard or cloning) which should prevent the more
580 	 * egregious cases from causing harm.
581 	 */
582 
583 	if (obj->userptr.work) {
584 		/* active flag should still be held for the pending work */
585 		if (IS_ERR(obj->userptr.work))
586 			return PTR_ERR(obj->userptr.work);
587 		else
588 			return -EAGAIN;
589 	}
590 
591 	pvec = NULL;
592 	pinned = 0;
593 
594 	if (mm == current->mm) {
595 		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
596 				      GFP_KERNEL |
597 				      __GFP_NORETRY |
598 				      __GFP_NOWARN);
599 		/*
600 		 * Using __get_user_pages_fast() with a read-only
601 		 * access is questionable. A read-only page may be
602 		 * COW-broken, and then this might end up giving
603 		 * the wrong side of the COW..
604 		 *
605 		 * We may or may not care.
606 		 */
607 		if (pvec) {
608 			/* defer to worker if malloc fails */
609 			if (!i915_gem_object_is_readonly(obj))
610 				gup_flags |= FOLL_WRITE;
611 			pinned = pin_user_pages_fast_only(obj->userptr.ptr,
612 							  num_pages, gup_flags,
613 							  pvec);
614 		}
615 	}
616 
617 	active = false;
618 	if (pinned < 0) {
619 		pages = ERR_PTR(pinned);
620 		pinned = 0;
621 	} else if (pinned < num_pages) {
622 		pages = __i915_gem_userptr_get_pages_schedule(obj);
623 		active = pages == ERR_PTR(-EAGAIN);
624 	} else {
625 		pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
626 		active = !IS_ERR(pages);
627 	}
628 	if (active)
629 		__i915_gem_userptr_set_active(obj, true);
630 
631 	if (IS_ERR(pages))
632 		unpin_user_pages(pvec, pinned);
633 	kvfree(pvec);
634 
635 	return PTR_ERR_OR_ZERO(pages);
636 }
637 
638 static void
639 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
640 			   struct sg_table *pages)
641 {
642 	struct sgt_iter sgt_iter;
643 	struct page *page;
644 
645 	/* Cancel any inflight work and force them to restart their gup */
646 	obj->userptr.work = NULL;
647 	__i915_gem_userptr_set_active(obj, false);
648 	if (!pages)
649 		return;
650 
651 	__i915_gem_object_release_shmem(obj, pages, true);
652 	i915_gem_gtt_finish_pages(obj, pages);
653 
654 	/*
655 	 * We always mark objects as dirty when they are used by the GPU,
656 	 * just in case. However, if we set the vma as being read-only we know
657 	 * that the object will never have been written to.
658 	 */
659 	if (i915_gem_object_is_readonly(obj))
660 		obj->mm.dirty = false;
661 
662 	for_each_sgt_page(page, sgt_iter, pages) {
663 		if (obj->mm.dirty && trylock_page(page)) {
664 			/*
665 			 * As this may not be anonymous memory (e.g. shmem)
666 			 * but exist on a real mapping, we have to lock
667 			 * the page in order to dirty it -- holding
668 			 * the page reference is not sufficient to
669 			 * prevent the inode from being truncated.
670 			 * Play safe and take the lock.
671 			 *
672 			 * However...!
673 			 *
674 			 * The mmu-notifier can be invalidated for a
675 			 * migrate_page, that is alreadying holding the lock
676 			 * on the page. Such a try_to_unmap() will result
677 			 * in us calling put_pages() and so recursively try
678 			 * to lock the page. We avoid that deadlock with
679 			 * a trylock_page() and in exchange we risk missing
680 			 * some page dirtying.
681 			 */
682 			set_page_dirty(page);
683 			unlock_page(page);
684 		}
685 
686 		mark_page_accessed(page);
687 		unpin_user_page(page);
688 	}
689 	obj->mm.dirty = false;
690 
691 	sg_free_table(pages);
692 	kfree(pages);
693 }
694 
695 static void
696 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
697 {
698 	i915_gem_userptr_release__mmu_notifier(obj);
699 	i915_gem_userptr_release__mm_struct(obj);
700 }
701 
702 static int
703 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
704 {
705 	if (obj->userptr.mmu_object)
706 		return 0;
707 
708 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
709 }
710 
711 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
712 	.name = "i915_gem_object_userptr",
713 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
714 		 I915_GEM_OBJECT_IS_SHRINKABLE |
715 		 I915_GEM_OBJECT_NO_MMAP |
716 		 I915_GEM_OBJECT_ASYNC_CANCEL,
717 	.get_pages = i915_gem_userptr_get_pages,
718 	.put_pages = i915_gem_userptr_put_pages,
719 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
720 	.release = i915_gem_userptr_release,
721 };
722 
723 /*
724  * Creates a new mm object that wraps some normal memory from the process
725  * context - user memory.
726  *
727  * We impose several restrictions upon the memory being mapped
728  * into the GPU.
729  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
730  * 2. It must be normal system memory, not a pointer into another map of IO
731  *    space (e.g. it must not be a GTT mmapping of another object).
732  * 3. We only allow a bo as large as we could in theory map into the GTT,
733  *    that is we limit the size to the total size of the GTT.
734  * 4. The bo is marked as being snoopable. The backing pages are left
735  *    accessible directly by the CPU, but reads and writes by the GPU may
736  *    incur the cost of a snoop (unless you have an LLC architecture).
737  *
738  * Synchronisation between multiple users and the GPU is left to userspace
739  * through the normal set-domain-ioctl. The kernel will enforce that the
740  * GPU relinquishes the VMA before it is returned back to the system
741  * i.e. upon free(), munmap() or process termination. However, the userspace
742  * malloc() library may not immediately relinquish the VMA after free() and
743  * instead reuse it whilst the GPU is still reading and writing to the VMA.
744  * Caveat emptor.
745  *
746  * Also note, that the object created here is not currently a "first class"
747  * object, in that several ioctls are banned. These are the CPU access
748  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
749  * direct access via your pointer rather than use those ioctls. Another
750  * restriction is that we do not allow userptr surfaces to be pinned to the
751  * hardware and so we reject any attempt to create a framebuffer out of a
752  * userptr.
753  *
754  * If you think this is a good interface to use to pass GPU memory between
755  * drivers, please use dma-buf instead. In fact, wherever possible use
756  * dma-buf instead.
757  */
758 int
759 i915_gem_userptr_ioctl(struct drm_device *dev,
760 		       void *data,
761 		       struct drm_file *file)
762 {
763 	static struct lock_class_key lock_class;
764 	struct drm_i915_private *dev_priv = to_i915(dev);
765 	struct drm_i915_gem_userptr *args = data;
766 	struct drm_i915_gem_object *obj;
767 	int ret;
768 	u32 handle;
769 
770 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
771 		/* We cannot support coherent userptr objects on hw without
772 		 * LLC and broken snooping.
773 		 */
774 		return -ENODEV;
775 	}
776 
777 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
778 			    I915_USERPTR_UNSYNCHRONIZED))
779 		return -EINVAL;
780 
781 	/*
782 	 * XXX: There is a prevalence of the assumption that we fit the
783 	 * object's page count inside a 32bit _signed_ variable. Let's document
784 	 * this and catch if we ever need to fix it. In the meantime, if you do
785 	 * spot such a local variable, please consider fixing!
786 	 *
787 	 * Aside from our own locals (for which we have no excuse!):
788 	 * - sg_table embeds unsigned int for num_pages
789 	 * - get_user_pages*() mixed ints with longs
790 	 */
791 
792 	if (args->user_size >> PAGE_SHIFT > INT_MAX)
793 		return -E2BIG;
794 
795 	if (overflows_type(args->user_size, obj->base.size))
796 		return -E2BIG;
797 
798 	if (!args->user_size)
799 		return -EINVAL;
800 
801 	if (offset_in_page(args->user_ptr | args->user_size))
802 		return -EINVAL;
803 
804 	if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size))
805 		return -EFAULT;
806 
807 	if (args->flags & I915_USERPTR_READ_ONLY) {
808 		/*
809 		 * On almost all of the older hw, we cannot tell the GPU that
810 		 * a page is readonly.
811 		 */
812 		if (!dev_priv->gt.vm->has_read_only)
813 			return -ENODEV;
814 	}
815 
816 	obj = i915_gem_object_alloc();
817 	if (obj == NULL)
818 		return -ENOMEM;
819 
820 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
821 	i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class);
822 	obj->read_domains = I915_GEM_DOMAIN_CPU;
823 	obj->write_domain = I915_GEM_DOMAIN_CPU;
824 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
825 
826 	obj->userptr.ptr = args->user_ptr;
827 	if (args->flags & I915_USERPTR_READ_ONLY)
828 		i915_gem_object_set_readonly(obj);
829 
830 	/* And keep a pointer to the current->mm for resolving the user pages
831 	 * at binding. This means that we need to hook into the mmu_notifier
832 	 * in order to detect if the mmu is destroyed.
833 	 */
834 	ret = i915_gem_userptr_init__mm_struct(obj);
835 	if (ret == 0)
836 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
837 	if (ret == 0)
838 		ret = drm_gem_handle_create(file, &obj->base, &handle);
839 
840 	/* drop reference from allocate - handle holds it now */
841 	i915_gem_object_put(obj);
842 	if (ret)
843 		return ret;
844 
845 	args->handle = handle;
846 	return 0;
847 }
848 
849 int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
850 {
851 	spin_lock_init(&dev_priv->mm_lock);
852 	hash_init(dev_priv->mm_structs);
853 
854 	dev_priv->mm.userptr_wq =
855 		alloc_workqueue("i915-userptr-acquire",
856 				WQ_HIGHPRI | WQ_UNBOUND,
857 				0);
858 	if (!dev_priv->mm.userptr_wq)
859 		return -ENOMEM;
860 
861 	return 0;
862 }
863 
864 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
865 {
866 	destroy_workqueue(dev_priv->mm.userptr_wq);
867 }
868