1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2012-2014 Intel Corporation 5 */ 6 7 #include <linux/mmu_context.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/mempolicy.h> 10 #include <linux/swap.h> 11 #include <linux/sched/mm.h> 12 13 #include "i915_drv.h" 14 #include "i915_gem_ioctls.h" 15 #include "i915_gem_object.h" 16 #include "i915_scatterlist.h" 17 18 struct i915_mm_struct { 19 struct mm_struct *mm; 20 struct drm_i915_private *i915; 21 struct i915_mmu_notifier *mn; 22 struct hlist_node node; 23 struct kref kref; 24 struct work_struct work; 25 }; 26 27 #if defined(CONFIG_MMU_NOTIFIER) 28 #include <linux/interval_tree.h> 29 30 struct i915_mmu_notifier { 31 spinlock_t lock; 32 struct hlist_node node; 33 struct mmu_notifier mn; 34 struct rb_root_cached objects; 35 struct i915_mm_struct *mm; 36 }; 37 38 struct i915_mmu_object { 39 struct i915_mmu_notifier *mn; 40 struct drm_i915_gem_object *obj; 41 struct interval_tree_node it; 42 }; 43 44 static void add_object(struct i915_mmu_object *mo) 45 { 46 GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb)); 47 interval_tree_insert(&mo->it, &mo->mn->objects); 48 } 49 50 static void del_object(struct i915_mmu_object *mo) 51 { 52 if (RB_EMPTY_NODE(&mo->it.rb)) 53 return; 54 55 interval_tree_remove(&mo->it, &mo->mn->objects); 56 RB_CLEAR_NODE(&mo->it.rb); 57 } 58 59 static void 60 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value) 61 { 62 struct i915_mmu_object *mo = obj->userptr.mmu_object; 63 64 /* 65 * During mm_invalidate_range we need to cancel any userptr that 66 * overlaps the range being invalidated. Doing so requires the 67 * struct_mutex, and that risks recursion. In order to cause 68 * recursion, the user must alias the userptr address space with 69 * a GTT mmapping (possible with a MAP_FIXED) - then when we have 70 * to invalidate that mmaping, mm_invalidate_range is called with 71 * the userptr address *and* the struct_mutex held. To prevent that 72 * we set a flag under the i915_mmu_notifier spinlock to indicate 73 * whether this object is valid. 74 */ 75 if (!mo) 76 return; 77 78 spin_lock(&mo->mn->lock); 79 if (value) 80 add_object(mo); 81 else 82 del_object(mo); 83 spin_unlock(&mo->mn->lock); 84 } 85 86 static int 87 userptr_mn_invalidate_range_start(struct mmu_notifier *_mn, 88 const struct mmu_notifier_range *range) 89 { 90 struct i915_mmu_notifier *mn = 91 container_of(_mn, struct i915_mmu_notifier, mn); 92 struct interval_tree_node *it; 93 unsigned long end; 94 int ret = 0; 95 96 if (RB_EMPTY_ROOT(&mn->objects.rb_root)) 97 return 0; 98 99 /* interval ranges are inclusive, but invalidate range is exclusive */ 100 end = range->end - 1; 101 102 spin_lock(&mn->lock); 103 it = interval_tree_iter_first(&mn->objects, range->start, end); 104 while (it) { 105 struct drm_i915_gem_object *obj; 106 107 if (!mmu_notifier_range_blockable(range)) { 108 ret = -EAGAIN; 109 break; 110 } 111 112 /* 113 * The mmu_object is released late when destroying the 114 * GEM object so it is entirely possible to gain a 115 * reference on an object in the process of being freed 116 * since our serialisation is via the spinlock and not 117 * the struct_mutex - and consequently use it after it 118 * is freed and then double free it. To prevent that 119 * use-after-free we only acquire a reference on the 120 * object if it is not in the process of being destroyed. 121 */ 122 obj = container_of(it, struct i915_mmu_object, it)->obj; 123 if (!kref_get_unless_zero(&obj->base.refcount)) { 124 it = interval_tree_iter_next(it, range->start, end); 125 continue; 126 } 127 spin_unlock(&mn->lock); 128 129 ret = i915_gem_object_unbind(obj, 130 I915_GEM_OBJECT_UNBIND_ACTIVE | 131 I915_GEM_OBJECT_UNBIND_BARRIER); 132 if (ret == 0) 133 ret = __i915_gem_object_put_pages(obj); 134 i915_gem_object_put(obj); 135 if (ret) 136 return ret; 137 138 spin_lock(&mn->lock); 139 140 /* 141 * As we do not (yet) protect the mmu from concurrent insertion 142 * over this range, there is no guarantee that this search will 143 * terminate given a pathologic workload. 144 */ 145 it = interval_tree_iter_first(&mn->objects, range->start, end); 146 } 147 spin_unlock(&mn->lock); 148 149 return ret; 150 151 } 152 153 static const struct mmu_notifier_ops i915_gem_userptr_notifier = { 154 .invalidate_range_start = userptr_mn_invalidate_range_start, 155 }; 156 157 static struct i915_mmu_notifier * 158 i915_mmu_notifier_create(struct i915_mm_struct *mm) 159 { 160 struct i915_mmu_notifier *mn; 161 162 mn = kmalloc(sizeof(*mn), GFP_KERNEL); 163 if (mn == NULL) 164 return ERR_PTR(-ENOMEM); 165 166 spin_lock_init(&mn->lock); 167 mn->mn.ops = &i915_gem_userptr_notifier; 168 mn->objects = RB_ROOT_CACHED; 169 mn->mm = mm; 170 171 return mn; 172 } 173 174 static void 175 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj) 176 { 177 struct i915_mmu_object *mo; 178 179 mo = fetch_and_zero(&obj->userptr.mmu_object); 180 if (!mo) 181 return; 182 183 spin_lock(&mo->mn->lock); 184 del_object(mo); 185 spin_unlock(&mo->mn->lock); 186 kfree(mo); 187 } 188 189 static struct i915_mmu_notifier * 190 i915_mmu_notifier_find(struct i915_mm_struct *mm) 191 { 192 struct i915_mmu_notifier *mn; 193 int err = 0; 194 195 mn = mm->mn; 196 if (mn) 197 return mn; 198 199 mn = i915_mmu_notifier_create(mm); 200 if (IS_ERR(mn)) 201 err = PTR_ERR(mn); 202 203 down_write(&mm->mm->mmap_sem); 204 mutex_lock(&mm->i915->mm_lock); 205 if (mm->mn == NULL && !err) { 206 /* Protected by mmap_sem (write-lock) */ 207 err = __mmu_notifier_register(&mn->mn, mm->mm); 208 if (!err) { 209 /* Protected by mm_lock */ 210 mm->mn = fetch_and_zero(&mn); 211 } 212 } else if (mm->mn) { 213 /* 214 * Someone else raced and successfully installed the mmu 215 * notifier, we can cancel our own errors. 216 */ 217 err = 0; 218 } 219 mutex_unlock(&mm->i915->mm_lock); 220 up_write(&mm->mm->mmap_sem); 221 222 if (mn && !IS_ERR(mn)) 223 kfree(mn); 224 225 return err ? ERR_PTR(err) : mm->mn; 226 } 227 228 static int 229 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj, 230 unsigned flags) 231 { 232 struct i915_mmu_notifier *mn; 233 struct i915_mmu_object *mo; 234 235 if (flags & I915_USERPTR_UNSYNCHRONIZED) 236 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM; 237 238 if (WARN_ON(obj->userptr.mm == NULL)) 239 return -EINVAL; 240 241 mn = i915_mmu_notifier_find(obj->userptr.mm); 242 if (IS_ERR(mn)) 243 return PTR_ERR(mn); 244 245 mo = kzalloc(sizeof(*mo), GFP_KERNEL); 246 if (!mo) 247 return -ENOMEM; 248 249 mo->mn = mn; 250 mo->obj = obj; 251 mo->it.start = obj->userptr.ptr; 252 mo->it.last = obj->userptr.ptr + obj->base.size - 1; 253 RB_CLEAR_NODE(&mo->it.rb); 254 255 obj->userptr.mmu_object = mo; 256 return 0; 257 } 258 259 static void 260 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 261 struct mm_struct *mm) 262 { 263 if (mn == NULL) 264 return; 265 266 mmu_notifier_unregister(&mn->mn, mm); 267 kfree(mn); 268 } 269 270 #else 271 272 static void 273 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value) 274 { 275 } 276 277 static void 278 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj) 279 { 280 } 281 282 static int 283 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj, 284 unsigned flags) 285 { 286 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0) 287 return -ENODEV; 288 289 if (!capable(CAP_SYS_ADMIN)) 290 return -EPERM; 291 292 return 0; 293 } 294 295 static void 296 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 297 struct mm_struct *mm) 298 { 299 } 300 301 #endif 302 303 static struct i915_mm_struct * 304 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real) 305 { 306 struct i915_mm_struct *mm; 307 308 /* Protected by dev_priv->mm_lock */ 309 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real) 310 if (mm->mm == real) 311 return mm; 312 313 return NULL; 314 } 315 316 static int 317 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj) 318 { 319 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 320 struct i915_mm_struct *mm; 321 int ret = 0; 322 323 /* During release of the GEM object we hold the struct_mutex. This 324 * precludes us from calling mmput() at that time as that may be 325 * the last reference and so call exit_mmap(). exit_mmap() will 326 * attempt to reap the vma, and if we were holding a GTT mmap 327 * would then call drm_gem_vm_close() and attempt to reacquire 328 * the struct mutex. So in order to avoid that recursion, we have 329 * to defer releasing the mm reference until after we drop the 330 * struct_mutex, i.e. we need to schedule a worker to do the clean 331 * up. 332 */ 333 mutex_lock(&dev_priv->mm_lock); 334 mm = __i915_mm_struct_find(dev_priv, current->mm); 335 if (mm == NULL) { 336 mm = kmalloc(sizeof(*mm), GFP_KERNEL); 337 if (mm == NULL) { 338 ret = -ENOMEM; 339 goto out; 340 } 341 342 kref_init(&mm->kref); 343 mm->i915 = to_i915(obj->base.dev); 344 345 mm->mm = current->mm; 346 mmgrab(current->mm); 347 348 mm->mn = NULL; 349 350 /* Protected by dev_priv->mm_lock */ 351 hash_add(dev_priv->mm_structs, 352 &mm->node, (unsigned long)mm->mm); 353 } else 354 kref_get(&mm->kref); 355 356 obj->userptr.mm = mm; 357 out: 358 mutex_unlock(&dev_priv->mm_lock); 359 return ret; 360 } 361 362 static void 363 __i915_mm_struct_free__worker(struct work_struct *work) 364 { 365 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work); 366 i915_mmu_notifier_free(mm->mn, mm->mm); 367 mmdrop(mm->mm); 368 kfree(mm); 369 } 370 371 static void 372 __i915_mm_struct_free(struct kref *kref) 373 { 374 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref); 375 376 /* Protected by dev_priv->mm_lock */ 377 hash_del(&mm->node); 378 mutex_unlock(&mm->i915->mm_lock); 379 380 INIT_WORK(&mm->work, __i915_mm_struct_free__worker); 381 queue_work(mm->i915->mm.userptr_wq, &mm->work); 382 } 383 384 static void 385 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj) 386 { 387 if (obj->userptr.mm == NULL) 388 return; 389 390 kref_put_mutex(&obj->userptr.mm->kref, 391 __i915_mm_struct_free, 392 &to_i915(obj->base.dev)->mm_lock); 393 obj->userptr.mm = NULL; 394 } 395 396 struct get_pages_work { 397 struct work_struct work; 398 struct drm_i915_gem_object *obj; 399 struct task_struct *task; 400 }; 401 402 static struct sg_table * 403 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj, 404 struct page **pvec, unsigned long num_pages) 405 { 406 unsigned int max_segment = i915_sg_segment_size(); 407 struct sg_table *st; 408 unsigned int sg_page_sizes; 409 int ret; 410 411 st = kmalloc(sizeof(*st), GFP_KERNEL); 412 if (!st) 413 return ERR_PTR(-ENOMEM); 414 415 alloc_table: 416 ret = __sg_alloc_table_from_pages(st, pvec, num_pages, 417 0, num_pages << PAGE_SHIFT, 418 max_segment, 419 GFP_KERNEL); 420 if (ret) { 421 kfree(st); 422 return ERR_PTR(ret); 423 } 424 425 ret = i915_gem_gtt_prepare_pages(obj, st); 426 if (ret) { 427 sg_free_table(st); 428 429 if (max_segment > PAGE_SIZE) { 430 max_segment = PAGE_SIZE; 431 goto alloc_table; 432 } 433 434 kfree(st); 435 return ERR_PTR(ret); 436 } 437 438 sg_page_sizes = i915_sg_page_sizes(st->sgl); 439 440 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 441 442 return st; 443 } 444 445 static void 446 __i915_gem_userptr_get_pages_worker(struct work_struct *_work) 447 { 448 struct get_pages_work *work = container_of(_work, typeof(*work), work); 449 struct drm_i915_gem_object *obj = work->obj; 450 const unsigned long npages = obj->base.size >> PAGE_SHIFT; 451 unsigned long pinned; 452 struct page **pvec; 453 int ret; 454 455 ret = -ENOMEM; 456 pinned = 0; 457 458 pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 459 if (pvec != NULL) { 460 struct mm_struct *mm = obj->userptr.mm->mm; 461 unsigned int flags = 0; 462 int locked = 0; 463 464 if (!i915_gem_object_is_readonly(obj)) 465 flags |= FOLL_WRITE; 466 467 ret = -EFAULT; 468 if (mmget_not_zero(mm)) { 469 while (pinned < npages) { 470 if (!locked) { 471 down_read(&mm->mmap_sem); 472 locked = 1; 473 } 474 ret = get_user_pages_remote 475 (work->task, mm, 476 obj->userptr.ptr + pinned * PAGE_SIZE, 477 npages - pinned, 478 flags, 479 pvec + pinned, NULL, &locked); 480 if (ret < 0) 481 break; 482 483 pinned += ret; 484 } 485 if (locked) 486 up_read(&mm->mmap_sem); 487 mmput(mm); 488 } 489 } 490 491 mutex_lock_nested(&obj->mm.lock, I915_MM_GET_PAGES); 492 if (obj->userptr.work == &work->work) { 493 struct sg_table *pages = ERR_PTR(ret); 494 495 if (pinned == npages) { 496 pages = __i915_gem_userptr_alloc_pages(obj, pvec, 497 npages); 498 if (!IS_ERR(pages)) { 499 pinned = 0; 500 pages = NULL; 501 } 502 } 503 504 obj->userptr.work = ERR_CAST(pages); 505 if (IS_ERR(pages)) 506 __i915_gem_userptr_set_active(obj, false); 507 } 508 mutex_unlock(&obj->mm.lock); 509 510 release_pages(pvec, pinned); 511 kvfree(pvec); 512 513 i915_gem_object_put(obj); 514 put_task_struct(work->task); 515 kfree(work); 516 } 517 518 static struct sg_table * 519 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj) 520 { 521 struct get_pages_work *work; 522 523 /* Spawn a worker so that we can acquire the 524 * user pages without holding our mutex. Access 525 * to the user pages requires mmap_sem, and we have 526 * a strict lock ordering of mmap_sem, struct_mutex - 527 * we already hold struct_mutex here and so cannot 528 * call gup without encountering a lock inversion. 529 * 530 * Userspace will keep on repeating the operation 531 * (thanks to EAGAIN) until either we hit the fast 532 * path or the worker completes. If the worker is 533 * cancelled or superseded, the task is still run 534 * but the results ignored. (This leads to 535 * complications that we may have a stray object 536 * refcount that we need to be wary of when 537 * checking for existing objects during creation.) 538 * If the worker encounters an error, it reports 539 * that error back to this function through 540 * obj->userptr.work = ERR_PTR. 541 */ 542 work = kmalloc(sizeof(*work), GFP_KERNEL); 543 if (work == NULL) 544 return ERR_PTR(-ENOMEM); 545 546 obj->userptr.work = &work->work; 547 548 work->obj = i915_gem_object_get(obj); 549 550 work->task = current; 551 get_task_struct(work->task); 552 553 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker); 554 queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work); 555 556 return ERR_PTR(-EAGAIN); 557 } 558 559 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj) 560 { 561 const unsigned long num_pages = obj->base.size >> PAGE_SHIFT; 562 struct mm_struct *mm = obj->userptr.mm->mm; 563 struct page **pvec; 564 struct sg_table *pages; 565 bool active; 566 int pinned; 567 568 /* If userspace should engineer that these pages are replaced in 569 * the vma between us binding this page into the GTT and completion 570 * of rendering... Their loss. If they change the mapping of their 571 * pages they need to create a new bo to point to the new vma. 572 * 573 * However, that still leaves open the possibility of the vma 574 * being copied upon fork. Which falls under the same userspace 575 * synchronisation issue as a regular bo, except that this time 576 * the process may not be expecting that a particular piece of 577 * memory is tied to the GPU. 578 * 579 * Fortunately, we can hook into the mmu_notifier in order to 580 * discard the page references prior to anything nasty happening 581 * to the vma (discard or cloning) which should prevent the more 582 * egregious cases from causing harm. 583 */ 584 585 if (obj->userptr.work) { 586 /* active flag should still be held for the pending work */ 587 if (IS_ERR(obj->userptr.work)) 588 return PTR_ERR(obj->userptr.work); 589 else 590 return -EAGAIN; 591 } 592 593 pvec = NULL; 594 pinned = 0; 595 596 if (mm == current->mm) { 597 pvec = kvmalloc_array(num_pages, sizeof(struct page *), 598 GFP_KERNEL | 599 __GFP_NORETRY | 600 __GFP_NOWARN); 601 if (pvec) /* defer to worker if malloc fails */ 602 pinned = __get_user_pages_fast(obj->userptr.ptr, 603 num_pages, 604 !i915_gem_object_is_readonly(obj), 605 pvec); 606 } 607 608 active = false; 609 if (pinned < 0) { 610 pages = ERR_PTR(pinned); 611 pinned = 0; 612 } else if (pinned < num_pages) { 613 pages = __i915_gem_userptr_get_pages_schedule(obj); 614 active = pages == ERR_PTR(-EAGAIN); 615 } else { 616 pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages); 617 active = !IS_ERR(pages); 618 } 619 if (active) 620 __i915_gem_userptr_set_active(obj, true); 621 622 if (IS_ERR(pages)) 623 release_pages(pvec, pinned); 624 kvfree(pvec); 625 626 return PTR_ERR_OR_ZERO(pages); 627 } 628 629 static void 630 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj, 631 struct sg_table *pages) 632 { 633 struct sgt_iter sgt_iter; 634 struct page *page; 635 636 /* Cancel any inflight work and force them to restart their gup */ 637 obj->userptr.work = NULL; 638 __i915_gem_userptr_set_active(obj, false); 639 if (!pages) 640 return; 641 642 __i915_gem_object_release_shmem(obj, pages, true); 643 i915_gem_gtt_finish_pages(obj, pages); 644 645 /* 646 * We always mark objects as dirty when they are used by the GPU, 647 * just in case. However, if we set the vma as being read-only we know 648 * that the object will never have been written to. 649 */ 650 if (i915_gem_object_is_readonly(obj)) 651 obj->mm.dirty = false; 652 653 for_each_sgt_page(page, sgt_iter, pages) { 654 if (obj->mm.dirty && trylock_page(page)) { 655 /* 656 * As this may not be anonymous memory (e.g. shmem) 657 * but exist on a real mapping, we have to lock 658 * the page in order to dirty it -- holding 659 * the page reference is not sufficient to 660 * prevent the inode from being truncated. 661 * Play safe and take the lock. 662 * 663 * However...! 664 * 665 * The mmu-notifier can be invalidated for a 666 * migrate_page, that is alreadying holding the lock 667 * on the page. Such a try_to_unmap() will result 668 * in us calling put_pages() and so recursively try 669 * to lock the page. We avoid that deadlock with 670 * a trylock_page() and in exchange we risk missing 671 * some page dirtying. 672 */ 673 set_page_dirty(page); 674 unlock_page(page); 675 } 676 677 mark_page_accessed(page); 678 put_page(page); 679 } 680 obj->mm.dirty = false; 681 682 sg_free_table(pages); 683 kfree(pages); 684 } 685 686 static void 687 i915_gem_userptr_release(struct drm_i915_gem_object *obj) 688 { 689 i915_gem_userptr_release__mmu_notifier(obj); 690 i915_gem_userptr_release__mm_struct(obj); 691 } 692 693 static int 694 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj) 695 { 696 if (obj->userptr.mmu_object) 697 return 0; 698 699 return i915_gem_userptr_init__mmu_notifier(obj, 0); 700 } 701 702 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = { 703 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 704 I915_GEM_OBJECT_IS_SHRINKABLE | 705 I915_GEM_OBJECT_NO_MMAP | 706 I915_GEM_OBJECT_ASYNC_CANCEL, 707 .get_pages = i915_gem_userptr_get_pages, 708 .put_pages = i915_gem_userptr_put_pages, 709 .dmabuf_export = i915_gem_userptr_dmabuf_export, 710 .release = i915_gem_userptr_release, 711 }; 712 713 /* 714 * Creates a new mm object that wraps some normal memory from the process 715 * context - user memory. 716 * 717 * We impose several restrictions upon the memory being mapped 718 * into the GPU. 719 * 1. It must be page aligned (both start/end addresses, i.e ptr and size). 720 * 2. It must be normal system memory, not a pointer into another map of IO 721 * space (e.g. it must not be a GTT mmapping of another object). 722 * 3. We only allow a bo as large as we could in theory map into the GTT, 723 * that is we limit the size to the total size of the GTT. 724 * 4. The bo is marked as being snoopable. The backing pages are left 725 * accessible directly by the CPU, but reads and writes by the GPU may 726 * incur the cost of a snoop (unless you have an LLC architecture). 727 * 728 * Synchronisation between multiple users and the GPU is left to userspace 729 * through the normal set-domain-ioctl. The kernel will enforce that the 730 * GPU relinquishes the VMA before it is returned back to the system 731 * i.e. upon free(), munmap() or process termination. However, the userspace 732 * malloc() library may not immediately relinquish the VMA after free() and 733 * instead reuse it whilst the GPU is still reading and writing to the VMA. 734 * Caveat emptor. 735 * 736 * Also note, that the object created here is not currently a "first class" 737 * object, in that several ioctls are banned. These are the CPU access 738 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use 739 * direct access via your pointer rather than use those ioctls. Another 740 * restriction is that we do not allow userptr surfaces to be pinned to the 741 * hardware and so we reject any attempt to create a framebuffer out of a 742 * userptr. 743 * 744 * If you think this is a good interface to use to pass GPU memory between 745 * drivers, please use dma-buf instead. In fact, wherever possible use 746 * dma-buf instead. 747 */ 748 int 749 i915_gem_userptr_ioctl(struct drm_device *dev, 750 void *data, 751 struct drm_file *file) 752 { 753 static struct lock_class_key lock_class; 754 struct drm_i915_private *dev_priv = to_i915(dev); 755 struct drm_i915_gem_userptr *args = data; 756 struct drm_i915_gem_object *obj; 757 int ret; 758 u32 handle; 759 760 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) { 761 /* We cannot support coherent userptr objects on hw without 762 * LLC and broken snooping. 763 */ 764 return -ENODEV; 765 } 766 767 if (args->flags & ~(I915_USERPTR_READ_ONLY | 768 I915_USERPTR_UNSYNCHRONIZED)) 769 return -EINVAL; 770 771 /* 772 * XXX: There is a prevalence of the assumption that we fit the 773 * object's page count inside a 32bit _signed_ variable. Let's document 774 * this and catch if we ever need to fix it. In the meantime, if you do 775 * spot such a local variable, please consider fixing! 776 * 777 * Aside from our own locals (for which we have no excuse!): 778 * - sg_table embeds unsigned int for num_pages 779 * - get_user_pages*() mixed ints with longs 780 */ 781 782 if (args->user_size >> PAGE_SHIFT > INT_MAX) 783 return -E2BIG; 784 785 if (overflows_type(args->user_size, obj->base.size)) 786 return -E2BIG; 787 788 if (!args->user_size) 789 return -EINVAL; 790 791 if (offset_in_page(args->user_ptr | args->user_size)) 792 return -EINVAL; 793 794 if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size)) 795 return -EFAULT; 796 797 if (args->flags & I915_USERPTR_READ_ONLY) { 798 /* 799 * On almost all of the older hw, we cannot tell the GPU that 800 * a page is readonly. 801 */ 802 if (!dev_priv->gt.vm->has_read_only) 803 return -ENODEV; 804 } 805 806 obj = i915_gem_object_alloc(); 807 if (obj == NULL) 808 return -ENOMEM; 809 810 drm_gem_private_object_init(dev, &obj->base, args->user_size); 811 i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class); 812 obj->read_domains = I915_GEM_DOMAIN_CPU; 813 obj->write_domain = I915_GEM_DOMAIN_CPU; 814 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 815 816 obj->userptr.ptr = args->user_ptr; 817 if (args->flags & I915_USERPTR_READ_ONLY) 818 i915_gem_object_set_readonly(obj); 819 820 /* And keep a pointer to the current->mm for resolving the user pages 821 * at binding. This means that we need to hook into the mmu_notifier 822 * in order to detect if the mmu is destroyed. 823 */ 824 ret = i915_gem_userptr_init__mm_struct(obj); 825 if (ret == 0) 826 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags); 827 if (ret == 0) 828 ret = drm_gem_handle_create(file, &obj->base, &handle); 829 830 /* drop reference from allocate - handle holds it now */ 831 i915_gem_object_put(obj); 832 if (ret) 833 return ret; 834 835 args->handle = handle; 836 return 0; 837 } 838 839 int i915_gem_init_userptr(struct drm_i915_private *dev_priv) 840 { 841 mutex_init(&dev_priv->mm_lock); 842 hash_init(dev_priv->mm_structs); 843 844 dev_priv->mm.userptr_wq = 845 alloc_workqueue("i915-userptr-acquire", 846 WQ_HIGHPRI | WQ_UNBOUND, 847 0); 848 if (!dev_priv->mm.userptr_wq) 849 return -ENOMEM; 850 851 return 0; 852 } 853 854 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv) 855 { 856 destroy_workqueue(dev_priv->mm.userptr_wq); 857 } 858