1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <drm/ttm/ttm_tt.h> 7 8 #include "i915_deps.h" 9 #include "i915_drv.h" 10 #include "intel_memory_region.h" 11 #include "intel_region_ttm.h" 12 13 #include "gem/i915_gem_object.h" 14 #include "gem/i915_gem_region.h" 15 #include "gem/i915_gem_ttm.h" 16 #include "gem/i915_gem_ttm_move.h" 17 18 #include "gt/intel_engine_pm.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_migrate.h" 21 22 /** 23 * DOC: Selftest failure modes for failsafe migration: 24 * 25 * For fail_gpu_migration, the gpu blit scheduled is always a clear blit 26 * rather than a copy blit, and then we force the failure paths as if 27 * the blit fence returned an error. 28 * 29 * For fail_work_allocation we fail the kmalloc of the async worker, we 30 * sync the gpu blit. If it then fails, or fail_gpu_migration is set to 31 * true, then a memcpy operation is performed sync. 32 */ 33 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 34 static bool fail_gpu_migration; 35 static bool fail_work_allocation; 36 static bool ban_memcpy; 37 38 void i915_ttm_migrate_set_failure_modes(bool gpu_migration, 39 bool work_allocation) 40 { 41 fail_gpu_migration = gpu_migration; 42 fail_work_allocation = work_allocation; 43 } 44 45 void i915_ttm_migrate_set_ban_memcpy(bool ban) 46 { 47 ban_memcpy = ban; 48 } 49 #endif 50 51 static enum i915_cache_level 52 i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res, 53 struct ttm_tt *ttm) 54 { 55 return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && 56 !i915_ttm_gtt_binds_lmem(res) && 57 ttm->caching == ttm_cached) ? I915_CACHE_LLC : 58 I915_CACHE_NONE; 59 } 60 61 static struct intel_memory_region * 62 i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type) 63 { 64 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 65 66 /* There's some room for optimization here... */ 67 GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM && 68 ttm_mem_type < I915_PL_LMEM0); 69 if (ttm_mem_type == I915_PL_SYSTEM) 70 return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM, 71 0); 72 73 return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL, 74 ttm_mem_type - I915_PL_LMEM0); 75 } 76 77 /** 78 * i915_ttm_adjust_domains_after_move - Adjust the GEM domains after a 79 * TTM move 80 * @obj: The gem object 81 */ 82 void i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj) 83 { 84 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 85 86 if (i915_ttm_cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) { 87 obj->write_domain = I915_GEM_DOMAIN_WC; 88 obj->read_domains = I915_GEM_DOMAIN_WC; 89 } else { 90 obj->write_domain = I915_GEM_DOMAIN_CPU; 91 obj->read_domains = I915_GEM_DOMAIN_CPU; 92 } 93 } 94 95 /** 96 * i915_ttm_adjust_gem_after_move - Adjust the GEM state after a TTM move 97 * @obj: The gem object 98 * 99 * Adjusts the GEM object's region, mem_flags and cache coherency after a 100 * TTM move. 101 */ 102 void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj) 103 { 104 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 105 unsigned int cache_level; 106 unsigned int mem_flags; 107 unsigned int i; 108 int mem_type; 109 110 /* 111 * We might have been purged (or swapped out) if the resource is NULL, 112 * in which case the SYSTEM placement is the closest match to describe 113 * the current domain. If the object is ever used in this state then we 114 * will require moving it again. 115 */ 116 if (!bo->resource) { 117 mem_flags = I915_BO_FLAG_STRUCT_PAGE; 118 mem_type = I915_PL_SYSTEM; 119 cache_level = I915_CACHE_NONE; 120 } else { 121 mem_flags = i915_ttm_cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM : 122 I915_BO_FLAG_STRUCT_PAGE; 123 mem_type = bo->resource->mem_type; 124 cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource, 125 bo->ttm); 126 } 127 128 /* 129 * If object was moved to an allowable region, update the object 130 * region to consider it migrated. Note that if it's currently not 131 * in an allowable region, it's evicted and we don't update the 132 * object region. 133 */ 134 if (intel_region_to_ttm_type(obj->mm.region) != mem_type) { 135 for (i = 0; i < obj->mm.n_placements; ++i) { 136 struct intel_memory_region *mr = obj->mm.placements[i]; 137 138 if (intel_region_to_ttm_type(mr) == mem_type && 139 mr != obj->mm.region) { 140 i915_gem_object_release_memory_region(obj); 141 i915_gem_object_init_memory_region(obj, mr); 142 break; 143 } 144 } 145 } 146 147 obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM); 148 obj->mem_flags |= mem_flags; 149 150 i915_gem_object_set_cache_coherency(obj, cache_level); 151 } 152 153 /** 154 * i915_ttm_move_notify - Prepare an object for move 155 * @bo: The ttm buffer object. 156 * 157 * This function prepares an object for move by removing all GPU bindings, 158 * removing all CPU mapings and finally releasing the pages sg-table. 159 * 160 * Return: 0 if successful, negative error code on error. 161 */ 162 int i915_ttm_move_notify(struct ttm_buffer_object *bo) 163 { 164 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 165 int ret; 166 167 /* 168 * Note: The async unbinding here will actually transform the 169 * blocking wait for unbind into a wait before finally submitting 170 * evict / migration blit and thus stall the migration timeline 171 * which may not be good for overall throughput. We should make 172 * sure we await the unbind fences *after* the migration blit 173 * instead of *before* as we currently do. 174 */ 175 ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE | 176 I915_GEM_OBJECT_UNBIND_ASYNC); 177 if (ret) 178 return ret; 179 180 ret = __i915_gem_object_put_pages(obj); 181 if (ret) 182 return ret; 183 184 return 0; 185 } 186 187 static struct dma_fence *i915_ttm_accel_move(struct ttm_buffer_object *bo, 188 bool clear, 189 struct ttm_resource *dst_mem, 190 struct ttm_tt *dst_ttm, 191 struct sg_table *dst_st, 192 const struct i915_deps *deps) 193 { 194 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 195 bdev); 196 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 197 struct i915_request *rq; 198 struct ttm_tt *src_ttm = bo->ttm; 199 enum i915_cache_level src_level, dst_level; 200 int ret; 201 202 if (!to_gt(i915)->migrate.context || intel_gt_is_wedged(to_gt(i915))) 203 return ERR_PTR(-EINVAL); 204 205 /* With fail_gpu_migration, we always perform a GPU clear. */ 206 if (I915_SELFTEST_ONLY(fail_gpu_migration)) 207 clear = true; 208 209 dst_level = i915_ttm_cache_level(i915, dst_mem, dst_ttm); 210 if (clear) { 211 if (bo->type == ttm_bo_type_kernel && 212 !I915_SELFTEST_ONLY(fail_gpu_migration)) 213 return ERR_PTR(-EINVAL); 214 215 intel_engine_pm_get(to_gt(i915)->migrate.context->engine); 216 ret = intel_context_migrate_clear(to_gt(i915)->migrate.context, deps, 217 dst_st->sgl, dst_level, 218 i915_ttm_gtt_binds_lmem(dst_mem), 219 0, &rq); 220 } else { 221 struct i915_refct_sgt *src_rsgt = 222 i915_ttm_resource_get_st(obj, bo->resource); 223 224 if (IS_ERR(src_rsgt)) 225 return ERR_CAST(src_rsgt); 226 227 src_level = i915_ttm_cache_level(i915, bo->resource, src_ttm); 228 intel_engine_pm_get(to_gt(i915)->migrate.context->engine); 229 ret = intel_context_migrate_copy(to_gt(i915)->migrate.context, 230 deps, src_rsgt->table.sgl, 231 src_level, 232 i915_ttm_gtt_binds_lmem(bo->resource), 233 dst_st->sgl, dst_level, 234 i915_ttm_gtt_binds_lmem(dst_mem), 235 &rq); 236 237 i915_refct_sgt_put(src_rsgt); 238 } 239 240 intel_engine_pm_put(to_gt(i915)->migrate.context->engine); 241 242 if (ret && rq) { 243 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); 244 i915_request_put(rq); 245 } 246 247 return ret ? ERR_PTR(ret) : &rq->fence; 248 } 249 250 /** 251 * struct i915_ttm_memcpy_arg - argument for the bo memcpy functionality. 252 * @_dst_iter: Storage space for the destination kmap iterator. 253 * @_src_iter: Storage space for the source kmap iterator. 254 * @dst_iter: Pointer to the destination kmap iterator. 255 * @src_iter: Pointer to the source kmap iterator. 256 * @clear: Whether to clear instead of copy. 257 * @src_rsgt: Refcounted scatter-gather list of source memory. 258 * @dst_rsgt: Refcounted scatter-gather list of destination memory. 259 */ 260 struct i915_ttm_memcpy_arg { 261 union { 262 struct ttm_kmap_iter_tt tt; 263 struct ttm_kmap_iter_iomap io; 264 } _dst_iter, 265 _src_iter; 266 struct ttm_kmap_iter *dst_iter; 267 struct ttm_kmap_iter *src_iter; 268 unsigned long num_pages; 269 bool clear; 270 struct i915_refct_sgt *src_rsgt; 271 struct i915_refct_sgt *dst_rsgt; 272 }; 273 274 /** 275 * struct i915_ttm_memcpy_work - Async memcpy worker under a dma-fence. 276 * @fence: The dma-fence. 277 * @work: The work struct use for the memcpy work. 278 * @lock: The fence lock. Not used to protect anything else ATM. 279 * @irq_work: Low latency worker to signal the fence since it can't be done 280 * from the callback for lockdep reasons. 281 * @cb: Callback for the accelerated migration fence. 282 * @arg: The argument for the memcpy functionality. 283 * @i915: The i915 pointer. 284 * @obj: The GEM object. 285 * @memcpy_allowed: Instead of processing the @arg, and falling back to memcpy 286 * or memset, we wedge the device and set the @obj unknown_state, to prevent 287 * further access to the object with the CPU or GPU. On some devices we might 288 * only be permitted to use the blitter engine for such operations. 289 */ 290 struct i915_ttm_memcpy_work { 291 struct dma_fence fence; 292 struct work_struct work; 293 spinlock_t lock; 294 struct irq_work irq_work; 295 struct dma_fence_cb cb; 296 struct i915_ttm_memcpy_arg arg; 297 struct drm_i915_private *i915; 298 struct drm_i915_gem_object *obj; 299 bool memcpy_allowed; 300 }; 301 302 static void i915_ttm_move_memcpy(struct i915_ttm_memcpy_arg *arg) 303 { 304 ttm_move_memcpy(arg->clear, arg->num_pages, 305 arg->dst_iter, arg->src_iter); 306 } 307 308 static void i915_ttm_memcpy_init(struct i915_ttm_memcpy_arg *arg, 309 struct ttm_buffer_object *bo, bool clear, 310 struct ttm_resource *dst_mem, 311 struct ttm_tt *dst_ttm, 312 struct i915_refct_sgt *dst_rsgt) 313 { 314 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 315 struct intel_memory_region *dst_reg, *src_reg; 316 317 dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type); 318 src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type); 319 GEM_BUG_ON(!dst_reg || !src_reg); 320 321 arg->dst_iter = !i915_ttm_cpu_maps_iomem(dst_mem) ? 322 ttm_kmap_iter_tt_init(&arg->_dst_iter.tt, dst_ttm) : 323 ttm_kmap_iter_iomap_init(&arg->_dst_iter.io, &dst_reg->iomap, 324 &dst_rsgt->table, dst_reg->region.start); 325 326 arg->src_iter = !i915_ttm_cpu_maps_iomem(bo->resource) ? 327 ttm_kmap_iter_tt_init(&arg->_src_iter.tt, bo->ttm) : 328 ttm_kmap_iter_iomap_init(&arg->_src_iter.io, &src_reg->iomap, 329 &obj->ttm.cached_io_rsgt->table, 330 src_reg->region.start); 331 arg->clear = clear; 332 arg->num_pages = bo->base.size >> PAGE_SHIFT; 333 334 arg->dst_rsgt = i915_refct_sgt_get(dst_rsgt); 335 arg->src_rsgt = clear ? NULL : 336 i915_ttm_resource_get_st(obj, bo->resource); 337 } 338 339 static void i915_ttm_memcpy_release(struct i915_ttm_memcpy_arg *arg) 340 { 341 i915_refct_sgt_put(arg->src_rsgt); 342 i915_refct_sgt_put(arg->dst_rsgt); 343 } 344 345 static void __memcpy_work(struct work_struct *work) 346 { 347 struct i915_ttm_memcpy_work *copy_work = 348 container_of(work, typeof(*copy_work), work); 349 struct i915_ttm_memcpy_arg *arg = ©_work->arg; 350 bool cookie; 351 352 /* 353 * FIXME: We need to take a closer look here. We should be able to plonk 354 * this into the fence critical section. 355 */ 356 if (!copy_work->memcpy_allowed) { 357 struct intel_gt *gt; 358 unsigned int id; 359 360 for_each_gt(gt, copy_work->i915, id) 361 intel_gt_set_wedged(gt); 362 } 363 364 cookie = dma_fence_begin_signalling(); 365 366 if (copy_work->memcpy_allowed) { 367 i915_ttm_move_memcpy(arg); 368 } else { 369 /* 370 * Prevent further use of the object. Any future GTT binding or 371 * CPU access is not allowed once we signal the fence. Outside 372 * of the fence critical section, we then also then wedge the gpu 373 * to indicate the device is not functional. 374 * 375 * The below dma_fence_signal() is our write-memory-barrier. 376 */ 377 copy_work->obj->mm.unknown_state = true; 378 } 379 380 dma_fence_end_signalling(cookie); 381 382 dma_fence_signal(©_work->fence); 383 384 i915_ttm_memcpy_release(arg); 385 i915_gem_object_put(copy_work->obj); 386 dma_fence_put(©_work->fence); 387 } 388 389 static void __memcpy_irq_work(struct irq_work *irq_work) 390 { 391 struct i915_ttm_memcpy_work *copy_work = 392 container_of(irq_work, typeof(*copy_work), irq_work); 393 struct i915_ttm_memcpy_arg *arg = ©_work->arg; 394 395 dma_fence_signal(©_work->fence); 396 i915_ttm_memcpy_release(arg); 397 i915_gem_object_put(copy_work->obj); 398 dma_fence_put(©_work->fence); 399 } 400 401 static void __memcpy_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 402 { 403 struct i915_ttm_memcpy_work *copy_work = 404 container_of(cb, typeof(*copy_work), cb); 405 406 if (unlikely(fence->error || I915_SELFTEST_ONLY(fail_gpu_migration))) { 407 INIT_WORK(©_work->work, __memcpy_work); 408 queue_work(system_unbound_wq, ©_work->work); 409 } else { 410 init_irq_work(©_work->irq_work, __memcpy_irq_work); 411 irq_work_queue(©_work->irq_work); 412 } 413 } 414 415 static const char *get_driver_name(struct dma_fence *fence) 416 { 417 return "i915_ttm_memcpy_work"; 418 } 419 420 static const char *get_timeline_name(struct dma_fence *fence) 421 { 422 return "unbound"; 423 } 424 425 static const struct dma_fence_ops dma_fence_memcpy_ops = { 426 .get_driver_name = get_driver_name, 427 .get_timeline_name = get_timeline_name, 428 }; 429 430 static struct dma_fence * 431 i915_ttm_memcpy_work_arm(struct i915_ttm_memcpy_work *work, 432 struct dma_fence *dep) 433 { 434 int ret; 435 436 spin_lock_init(&work->lock); 437 dma_fence_init(&work->fence, &dma_fence_memcpy_ops, &work->lock, 0, 0); 438 dma_fence_get(&work->fence); 439 ret = dma_fence_add_callback(dep, &work->cb, __memcpy_cb); 440 if (ret) { 441 if (ret != -ENOENT) 442 dma_fence_wait(dep, false); 443 444 return ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? -EINVAL : 445 dep->error); 446 } 447 448 return &work->fence; 449 } 450 451 static bool i915_ttm_memcpy_allowed(struct ttm_buffer_object *bo, 452 struct ttm_resource *dst_mem) 453 { 454 if (i915_gem_object_needs_ccs_pages(i915_ttm_to_gem(bo))) 455 return false; 456 457 if (!(i915_ttm_resource_mappable(bo->resource) && 458 i915_ttm_resource_mappable(dst_mem))) 459 return false; 460 461 return I915_SELFTEST_ONLY(ban_memcpy) ? false : true; 462 } 463 464 static struct dma_fence * 465 __i915_ttm_move(struct ttm_buffer_object *bo, 466 const struct ttm_operation_ctx *ctx, bool clear, 467 struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm, 468 struct i915_refct_sgt *dst_rsgt, bool allow_accel, 469 const struct i915_deps *move_deps) 470 { 471 const bool memcpy_allowed = i915_ttm_memcpy_allowed(bo, dst_mem); 472 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 473 struct drm_i915_private *i915 = to_i915(bo->base.dev); 474 struct i915_ttm_memcpy_work *copy_work = NULL; 475 struct i915_ttm_memcpy_arg _arg, *arg = &_arg; 476 struct dma_fence *fence = ERR_PTR(-EINVAL); 477 478 if (allow_accel) { 479 fence = i915_ttm_accel_move(bo, clear, dst_mem, dst_ttm, 480 &dst_rsgt->table, move_deps); 481 482 /* 483 * We only need to intercept the error when moving to lmem. 484 * When moving to system, TTM or shmem will provide us with 485 * cleared pages. 486 */ 487 if (!IS_ERR(fence) && !i915_ttm_gtt_binds_lmem(dst_mem) && 488 !I915_SELFTEST_ONLY(fail_gpu_migration || 489 fail_work_allocation)) 490 goto out; 491 } 492 493 /* If we've scheduled gpu migration. Try to arm error intercept. */ 494 if (!IS_ERR(fence)) { 495 struct dma_fence *dep = fence; 496 497 if (!I915_SELFTEST_ONLY(fail_work_allocation)) 498 copy_work = kzalloc(sizeof(*copy_work), GFP_KERNEL); 499 500 if (copy_work) { 501 copy_work->i915 = i915; 502 copy_work->memcpy_allowed = memcpy_allowed; 503 copy_work->obj = i915_gem_object_get(obj); 504 arg = ©_work->arg; 505 if (memcpy_allowed) 506 i915_ttm_memcpy_init(arg, bo, clear, dst_mem, 507 dst_ttm, dst_rsgt); 508 509 fence = i915_ttm_memcpy_work_arm(copy_work, dep); 510 } else { 511 dma_fence_wait(dep, false); 512 fence = ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? 513 -EINVAL : fence->error); 514 } 515 dma_fence_put(dep); 516 517 if (!IS_ERR(fence)) 518 goto out; 519 } else { 520 int err = PTR_ERR(fence); 521 522 if (err == -EINTR || err == -ERESTARTSYS || err == -EAGAIN) 523 return fence; 524 525 if (move_deps) { 526 err = i915_deps_sync(move_deps, ctx); 527 if (err) 528 return ERR_PTR(err); 529 } 530 } 531 532 /* Error intercept failed or no accelerated migration to start with */ 533 534 if (memcpy_allowed) { 535 if (!copy_work) 536 i915_ttm_memcpy_init(arg, bo, clear, dst_mem, dst_ttm, 537 dst_rsgt); 538 i915_ttm_move_memcpy(arg); 539 i915_ttm_memcpy_release(arg); 540 } 541 if (copy_work) 542 i915_gem_object_put(copy_work->obj); 543 kfree(copy_work); 544 545 return memcpy_allowed ? NULL : ERR_PTR(-EIO); 546 out: 547 if (!fence && copy_work) { 548 i915_ttm_memcpy_release(arg); 549 i915_gem_object_put(copy_work->obj); 550 kfree(copy_work); 551 } 552 553 return fence; 554 } 555 556 /** 557 * i915_ttm_move - The TTM move callback used by i915. 558 * @bo: The buffer object. 559 * @evict: Whether this is an eviction. 560 * @dst_mem: The destination ttm resource. 561 * @hop: If we need multihop, what temporary memory type to move to. 562 * 563 * Return: 0 if successful, negative error code otherwise. 564 */ 565 int i915_ttm_move(struct ttm_buffer_object *bo, bool evict, 566 struct ttm_operation_ctx *ctx, 567 struct ttm_resource *dst_mem, 568 struct ttm_place *hop) 569 { 570 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 571 struct ttm_resource_manager *dst_man = 572 ttm_manager_type(bo->bdev, dst_mem->mem_type); 573 struct dma_fence *migration_fence = NULL; 574 struct ttm_tt *ttm = bo->ttm; 575 struct i915_refct_sgt *dst_rsgt; 576 bool clear; 577 int ret; 578 579 if (GEM_WARN_ON(i915_ttm_is_ghost_object(bo))) { 580 ttm_bo_move_null(bo, dst_mem); 581 return 0; 582 } 583 584 if (!bo->resource) { 585 if (dst_mem->mem_type != TTM_PL_SYSTEM) { 586 hop->mem_type = TTM_PL_SYSTEM; 587 hop->flags = TTM_PL_FLAG_TEMPORARY; 588 return -EMULTIHOP; 589 } 590 591 /* 592 * This is only reached when first creating the object, or if 593 * the object was purged or swapped out (pipeline-gutting). For 594 * the former we can safely skip all of the below since we are 595 * only using a dummy SYSTEM placement here. And with the latter 596 * we will always re-enter here with bo->resource set correctly 597 * (as per the above), since this is part of a multi-hop 598 * sequence, where at the end we can do the move for real. 599 * 600 * The special case here is when the dst_mem is TTM_PL_SYSTEM, 601 * which doens't require any kind of move, so it should be safe 602 * to skip all the below and call ttm_bo_move_null() here, where 603 * the caller in __i915_ttm_get_pages() will take care of the 604 * rest, since we should have a valid ttm_tt. 605 */ 606 ttm_bo_move_null(bo, dst_mem); 607 return 0; 608 } 609 610 ret = i915_ttm_move_notify(bo); 611 if (ret) 612 return ret; 613 614 if (obj->mm.madv != I915_MADV_WILLNEED) { 615 i915_ttm_purge(obj); 616 ttm_resource_free(bo, &dst_mem); 617 return 0; 618 } 619 620 /* Populate ttm with pages if needed. Typically system memory. */ 621 if (ttm && (dst_man->use_tt || (ttm->page_flags & TTM_TT_FLAG_SWAPPED))) { 622 ret = ttm_tt_populate(bo->bdev, ttm, ctx); 623 if (ret) 624 return ret; 625 } 626 627 dst_rsgt = i915_ttm_resource_get_st(obj, dst_mem); 628 if (IS_ERR(dst_rsgt)) 629 return PTR_ERR(dst_rsgt); 630 631 clear = !i915_ttm_cpu_maps_iomem(bo->resource) && (!ttm || !ttm_tt_is_populated(ttm)); 632 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) { 633 struct i915_deps deps; 634 635 i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 636 ret = i915_deps_add_resv(&deps, bo->base.resv, ctx); 637 if (ret) { 638 i915_refct_sgt_put(dst_rsgt); 639 return ret; 640 } 641 642 migration_fence = __i915_ttm_move(bo, ctx, clear, dst_mem, ttm, 643 dst_rsgt, true, &deps); 644 i915_deps_fini(&deps); 645 } 646 647 /* We can possibly get an -ERESTARTSYS here */ 648 if (IS_ERR(migration_fence)) { 649 i915_refct_sgt_put(dst_rsgt); 650 return PTR_ERR(migration_fence); 651 } 652 653 if (migration_fence) { 654 if (I915_SELFTEST_ONLY(evict && fail_gpu_migration)) 655 ret = -EIO; /* never feed non-migrate fences into ttm */ 656 else 657 ret = ttm_bo_move_accel_cleanup(bo, migration_fence, evict, 658 true, dst_mem); 659 if (ret) { 660 dma_fence_wait(migration_fence, false); 661 ttm_bo_move_sync_cleanup(bo, dst_mem); 662 } 663 dma_fence_put(migration_fence); 664 } else { 665 ttm_bo_move_sync_cleanup(bo, dst_mem); 666 } 667 668 i915_ttm_adjust_domains_after_move(obj); 669 i915_ttm_free_cached_io_rsgt(obj); 670 671 if (i915_ttm_gtt_binds_lmem(dst_mem) || i915_ttm_cpu_maps_iomem(dst_mem)) { 672 obj->ttm.cached_io_rsgt = dst_rsgt; 673 obj->ttm.get_io_page.sg_pos = dst_rsgt->table.sgl; 674 obj->ttm.get_io_page.sg_idx = 0; 675 } else { 676 i915_refct_sgt_put(dst_rsgt); 677 } 678 679 i915_ttm_adjust_lru(obj); 680 i915_ttm_adjust_gem_after_move(obj); 681 return 0; 682 } 683 684 /** 685 * i915_gem_obj_copy_ttm - Copy the contents of one ttm-based gem object to 686 * another 687 * @dst: The destination object 688 * @src: The source object 689 * @allow_accel: Allow using the blitter. Otherwise TTM memcpy is used. 690 * @intr: Whether to perform waits interruptible: 691 * 692 * Note: The caller is responsible for assuring that the underlying 693 * TTM objects are populated if needed and locked. 694 * 695 * Return: Zero on success. Negative error code on error. If @intr == true, 696 * then it may return -ERESTARTSYS or -EINTR. 697 */ 698 int i915_gem_obj_copy_ttm(struct drm_i915_gem_object *dst, 699 struct drm_i915_gem_object *src, 700 bool allow_accel, bool intr) 701 { 702 struct ttm_buffer_object *dst_bo = i915_gem_to_ttm(dst); 703 struct ttm_buffer_object *src_bo = i915_gem_to_ttm(src); 704 struct ttm_operation_ctx ctx = { 705 .interruptible = intr, 706 }; 707 struct i915_refct_sgt *dst_rsgt; 708 struct dma_fence *copy_fence; 709 struct i915_deps deps; 710 int ret; 711 712 assert_object_held(dst); 713 assert_object_held(src); 714 i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 715 716 ret = dma_resv_reserve_fences(src_bo->base.resv, 1); 717 if (ret) 718 return ret; 719 720 ret = dma_resv_reserve_fences(dst_bo->base.resv, 1); 721 if (ret) 722 return ret; 723 724 ret = i915_deps_add_resv(&deps, dst_bo->base.resv, &ctx); 725 if (ret) 726 return ret; 727 728 ret = i915_deps_add_resv(&deps, src_bo->base.resv, &ctx); 729 if (ret) 730 return ret; 731 732 dst_rsgt = i915_ttm_resource_get_st(dst, dst_bo->resource); 733 copy_fence = __i915_ttm_move(src_bo, &ctx, false, dst_bo->resource, 734 dst_bo->ttm, dst_rsgt, allow_accel, 735 &deps); 736 737 i915_deps_fini(&deps); 738 i915_refct_sgt_put(dst_rsgt); 739 if (IS_ERR_OR_NULL(copy_fence)) 740 return PTR_ERR_OR_ZERO(copy_fence); 741 742 dma_resv_add_fence(dst_bo->base.resv, copy_fence, DMA_RESV_USAGE_WRITE); 743 dma_resv_add_fence(src_bo->base.resv, copy_fence, DMA_RESV_USAGE_READ); 744 dma_fence_put(copy_fence); 745 746 return 0; 747 } 748