1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <linux/shmem_fs.h> 7 8 #include <drm/ttm/ttm_placement.h> 9 #include <drm/ttm/ttm_tt.h> 10 #include <drm/drm_buddy.h> 11 12 #include "i915_drv.h" 13 #include "i915_ttm_buddy_manager.h" 14 #include "intel_memory_region.h" 15 #include "intel_region_ttm.h" 16 17 #include "gem/i915_gem_mman.h" 18 #include "gem/i915_gem_object.h" 19 #include "gem/i915_gem_region.h" 20 #include "gem/i915_gem_ttm.h" 21 #include "gem/i915_gem_ttm_move.h" 22 #include "gem/i915_gem_ttm_pm.h" 23 #include "gt/intel_gpu_commands.h" 24 25 #define I915_TTM_PRIO_PURGE 0 26 #define I915_TTM_PRIO_NO_PAGES 1 27 #define I915_TTM_PRIO_HAS_PAGES 2 28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3 29 30 /* 31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs 32 */ 33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN 34 35 /** 36 * struct i915_ttm_tt - TTM page vector with additional private information 37 * @ttm: The base TTM page vector. 38 * @dev: The struct device used for dma mapping and unmapping. 39 * @cached_rsgt: The cached scatter-gather table. 40 * @is_shmem: Set if using shmem. 41 * @filp: The shmem file, if using shmem backend. 42 * 43 * Note that DMA may be going on right up to the point where the page- 44 * vector is unpopulated in delayed destroy. Hence keep the 45 * scatter-gather table mapped and cached up to that point. This is 46 * different from the cached gem object io scatter-gather table which 47 * doesn't have an associated dma mapping. 48 */ 49 struct i915_ttm_tt { 50 struct ttm_tt ttm; 51 struct device *dev; 52 struct i915_refct_sgt cached_rsgt; 53 54 bool is_shmem; 55 struct file *filp; 56 }; 57 58 static const struct ttm_place sys_placement_flags = { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = I915_PL_SYSTEM, 62 .flags = 0, 63 }; 64 65 static struct ttm_placement i915_sys_placement = { 66 .num_placement = 1, 67 .placement = &sys_placement_flags, 68 .num_busy_placement = 1, 69 .busy_placement = &sys_placement_flags, 70 }; 71 72 /** 73 * i915_ttm_sys_placement - Return the struct ttm_placement to be 74 * used for an object in system memory. 75 * 76 * Rather than making the struct extern, use this 77 * function. 78 * 79 * Return: A pointer to a static variable for sys placement. 80 */ 81 struct ttm_placement *i915_ttm_sys_placement(void) 82 { 83 return &i915_sys_placement; 84 } 85 86 static int i915_ttm_err_to_gem(int err) 87 { 88 /* Fastpath */ 89 if (likely(!err)) 90 return 0; 91 92 switch (err) { 93 case -EBUSY: 94 /* 95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to 96 * restart the operation, since we don't record the contending 97 * lock. We use -EAGAIN to restart. 98 */ 99 return -EAGAIN; 100 case -ENOSPC: 101 /* 102 * Memory type / region is full, and we can't evict. 103 * Except possibly system, that returns -ENOMEM; 104 */ 105 return -ENXIO; 106 default: 107 break; 108 } 109 110 return err; 111 } 112 113 static enum ttm_caching 114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj) 115 { 116 /* 117 * Objects only allowed in system get cached cpu-mappings, or when 118 * evicting lmem-only buffers to system for swapping. Other objects get 119 * WC mapping for now. Even if in system. 120 */ 121 if (obj->mm.n_placements <= 1) 122 return ttm_cached; 123 124 return ttm_write_combined; 125 } 126 127 static void 128 i915_ttm_place_from_region(const struct intel_memory_region *mr, 129 struct ttm_place *place, 130 resource_size_t offset, 131 resource_size_t size, 132 unsigned int flags) 133 { 134 memset(place, 0, sizeof(*place)); 135 place->mem_type = intel_region_to_ttm_type(mr); 136 137 if (mr->type == INTEL_MEMORY_SYSTEM) 138 return; 139 140 if (flags & I915_BO_ALLOC_CONTIGUOUS) 141 place->flags |= TTM_PL_FLAG_CONTIGUOUS; 142 if (offset != I915_BO_INVALID_OFFSET) { 143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn)); 144 place->fpfn = offset >> PAGE_SHIFT; 145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn)); 146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT); 147 } else if (mr->io_size && mr->io_size < mr->total) { 148 if (flags & I915_BO_ALLOC_GPU_ONLY) { 149 place->flags |= TTM_PL_FLAG_TOPDOWN; 150 } else { 151 place->fpfn = 0; 152 WARN_ON(overflows_type(mr->io_size >> PAGE_SHIFT, place->lpfn)); 153 place->lpfn = mr->io_size >> PAGE_SHIFT; 154 } 155 } 156 } 157 158 static void 159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj, 160 struct ttm_place *requested, 161 struct ttm_place *busy, 162 struct ttm_placement *placement) 163 { 164 unsigned int num_allowed = obj->mm.n_placements; 165 unsigned int flags = obj->flags; 166 unsigned int i; 167 168 placement->num_placement = 1; 169 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] : 170 obj->mm.region, requested, obj->bo_offset, 171 obj->base.size, flags); 172 173 /* Cache this on object? */ 174 placement->num_busy_placement = num_allowed; 175 for (i = 0; i < placement->num_busy_placement; ++i) 176 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, 177 obj->bo_offset, obj->base.size, flags); 178 179 if (num_allowed == 0) { 180 *busy = *requested; 181 placement->num_busy_placement = 1; 182 } 183 184 placement->placement = requested; 185 placement->busy_placement = busy; 186 } 187 188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev, 189 struct ttm_tt *ttm, 190 struct ttm_operation_ctx *ctx) 191 { 192 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 193 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM]; 194 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 195 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 196 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT; 197 struct file *filp = i915_tt->filp; 198 struct sgt_iter sgt_iter; 199 struct sg_table *st; 200 struct page *page; 201 unsigned long i; 202 int err; 203 204 if (!filp) { 205 struct address_space *mapping; 206 gfp_t mask; 207 208 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE); 209 if (IS_ERR(filp)) 210 return PTR_ERR(filp); 211 212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 213 214 mapping = filp->f_mapping; 215 mapping_set_gfp_mask(mapping, mask); 216 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 217 218 i915_tt->filp = filp; 219 } 220 221 st = &i915_tt->cached_rsgt.table; 222 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping, 223 max_segment); 224 if (err) 225 return err; 226 227 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 228 DMA_ATTR_SKIP_CPU_SYNC); 229 if (err) 230 goto err_free_st; 231 232 i = 0; 233 for_each_sgt_page(page, sgt_iter, st) 234 ttm->pages[i++] = page; 235 236 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED) 237 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 238 239 return 0; 240 241 err_free_st: 242 shmem_sg_free_table(st, filp->f_mapping, false, false); 243 244 return err; 245 } 246 247 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm) 248 { 249 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 250 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED; 251 struct sg_table *st = &i915_tt->cached_rsgt.table; 252 253 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping, 254 backup, backup); 255 } 256 257 static void i915_ttm_tt_release(struct kref *ref) 258 { 259 struct i915_ttm_tt *i915_tt = 260 container_of(ref, typeof(*i915_tt), cached_rsgt.kref); 261 struct sg_table *st = &i915_tt->cached_rsgt.table; 262 263 GEM_WARN_ON(st->sgl); 264 265 kfree(i915_tt); 266 } 267 268 static const struct i915_refct_sgt_ops tt_rsgt_ops = { 269 .release = i915_ttm_tt_release 270 }; 271 272 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo, 273 uint32_t page_flags) 274 { 275 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 276 bdev); 277 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 278 unsigned long ccs_pages = 0; 279 enum ttm_caching caching; 280 struct i915_ttm_tt *i915_tt; 281 int ret; 282 283 if (i915_ttm_is_ghost_object(bo)) 284 return NULL; 285 286 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL); 287 if (!i915_tt) 288 return NULL; 289 290 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource || 291 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt)) 292 page_flags |= TTM_TT_FLAG_ZERO_ALLOC; 293 294 caching = i915_ttm_select_tt_caching(obj); 295 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) { 296 page_flags |= TTM_TT_FLAG_EXTERNAL | 297 TTM_TT_FLAG_EXTERNAL_MAPPABLE; 298 i915_tt->is_shmem = true; 299 } 300 301 if (i915_gem_object_needs_ccs_pages(obj)) 302 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size, 303 NUM_BYTES_PER_CCS_BYTE), 304 PAGE_SIZE); 305 306 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages); 307 if (ret) 308 goto err_free; 309 310 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size, 311 &tt_rsgt_ops); 312 313 i915_tt->dev = obj->base.dev->dev; 314 315 return &i915_tt->ttm; 316 317 err_free: 318 kfree(i915_tt); 319 return NULL; 320 } 321 322 static int i915_ttm_tt_populate(struct ttm_device *bdev, 323 struct ttm_tt *ttm, 324 struct ttm_operation_ctx *ctx) 325 { 326 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 327 328 if (i915_tt->is_shmem) 329 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx); 330 331 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 332 } 333 334 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) 335 { 336 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 337 struct sg_table *st = &i915_tt->cached_rsgt.table; 338 339 if (st->sgl) 340 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 341 342 if (i915_tt->is_shmem) { 343 i915_ttm_tt_shmem_unpopulate(ttm); 344 } else { 345 sg_free_table(st); 346 ttm_pool_free(&bdev->pool, ttm); 347 } 348 } 349 350 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 351 { 352 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 353 354 if (i915_tt->filp) 355 fput(i915_tt->filp); 356 357 ttm_tt_fini(ttm); 358 i915_refct_sgt_put(&i915_tt->cached_rsgt); 359 } 360 361 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo, 362 const struct ttm_place *place) 363 { 364 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 365 366 if (i915_ttm_is_ghost_object(bo)) 367 return false; 368 369 /* 370 * EXTERNAL objects should never be swapped out by TTM, instead we need 371 * to handle that ourselves. TTM will already skip such objects for us, 372 * but we would like to avoid grabbing locks for no good reason. 373 */ 374 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 375 return false; 376 377 /* Will do for now. Our pinned objects are still on TTM's LRU lists */ 378 if (!i915_gem_object_evictable(obj)) 379 return false; 380 381 return ttm_bo_eviction_valuable(bo, place); 382 } 383 384 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo, 385 struct ttm_placement *placement) 386 { 387 *placement = i915_sys_placement; 388 } 389 390 /** 391 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information 392 * @obj: The GEM object 393 * This function frees any LMEM-related information that is cached on 394 * the object. For example the radix tree for fast page lookup and the 395 * cached refcounted sg-table 396 */ 397 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj) 398 { 399 struct radix_tree_iter iter; 400 void __rcu **slot; 401 402 if (!obj->ttm.cached_io_rsgt) 403 return; 404 405 rcu_read_lock(); 406 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0) 407 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index); 408 rcu_read_unlock(); 409 410 i915_refct_sgt_put(obj->ttm.cached_io_rsgt); 411 obj->ttm.cached_io_rsgt = NULL; 412 } 413 414 /** 415 * i915_ttm_purge - Clear an object of its memory 416 * @obj: The object 417 * 418 * This function is called to clear an object of it's memory when it is 419 * marked as not needed anymore. 420 * 421 * Return: 0 on success, negative error code on failure. 422 */ 423 int i915_ttm_purge(struct drm_i915_gem_object *obj) 424 { 425 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 426 struct i915_ttm_tt *i915_tt = 427 container_of(bo->ttm, typeof(*i915_tt), ttm); 428 struct ttm_operation_ctx ctx = { 429 .interruptible = true, 430 .no_wait_gpu = false, 431 }; 432 struct ttm_placement place = {}; 433 int ret; 434 435 if (obj->mm.madv == __I915_MADV_PURGED) 436 return 0; 437 438 ret = ttm_bo_validate(bo, &place, &ctx); 439 if (ret) 440 return ret; 441 442 if (bo->ttm && i915_tt->filp) { 443 /* 444 * The below fput(which eventually calls shmem_truncate) might 445 * be delayed by worker, so when directly called to purge the 446 * pages(like by the shrinker) we should try to be more 447 * aggressive and release the pages immediately. 448 */ 449 shmem_truncate_range(file_inode(i915_tt->filp), 450 0, (loff_t)-1); 451 fput(fetch_and_zero(&i915_tt->filp)); 452 } 453 454 obj->write_domain = 0; 455 obj->read_domains = 0; 456 i915_ttm_adjust_gem_after_move(obj); 457 i915_ttm_free_cached_io_rsgt(obj); 458 obj->mm.madv = __I915_MADV_PURGED; 459 460 return 0; 461 } 462 463 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 464 { 465 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 466 struct i915_ttm_tt *i915_tt = 467 container_of(bo->ttm, typeof(*i915_tt), ttm); 468 struct ttm_operation_ctx ctx = { 469 .interruptible = true, 470 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT, 471 }; 472 struct ttm_placement place = {}; 473 int ret; 474 475 if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource)) 476 return 0; 477 478 GEM_BUG_ON(!i915_tt->is_shmem); 479 480 if (!i915_tt->filp) 481 return 0; 482 483 ret = ttm_bo_wait_ctx(bo, &ctx); 484 if (ret) 485 return ret; 486 487 switch (obj->mm.madv) { 488 case I915_MADV_DONTNEED: 489 return i915_ttm_purge(obj); 490 case __I915_MADV_PURGED: 491 return 0; 492 } 493 494 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) 495 return 0; 496 497 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED; 498 ret = ttm_bo_validate(bo, &place, &ctx); 499 if (ret) { 500 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 501 return ret; 502 } 503 504 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 505 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping); 506 507 return 0; 508 } 509 510 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo) 511 { 512 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 513 514 /* 515 * This gets called twice by ttm, so long as we have a ttm resource or 516 * ttm_tt then we can still safely call this. Due to pipeline-gutting, 517 * we maybe have NULL bo->resource, but in that case we should always 518 * have a ttm alive (like if the pages are swapped out). 519 */ 520 if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) { 521 __i915_gem_object_pages_fini(obj); 522 i915_ttm_free_cached_io_rsgt(obj); 523 } 524 } 525 526 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm) 527 { 528 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 529 struct sg_table *st; 530 int ret; 531 532 if (i915_tt->cached_rsgt.table.sgl) 533 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 534 535 st = &i915_tt->cached_rsgt.table; 536 ret = sg_alloc_table_from_pages_segment(st, 537 ttm->pages, ttm->num_pages, 538 0, (unsigned long)ttm->num_pages << PAGE_SHIFT, 539 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL); 540 if (ret) { 541 st->sgl = NULL; 542 return ERR_PTR(ret); 543 } 544 545 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 546 if (ret) { 547 sg_free_table(st); 548 return ERR_PTR(ret); 549 } 550 551 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 552 } 553 554 /** 555 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the 556 * resource memory 557 * @obj: The GEM object used for sg-table caching 558 * @res: The struct ttm_resource for which an sg-table is requested. 559 * 560 * This function returns a refcounted sg-table representing the memory 561 * pointed to by @res. If @res is the object's current resource it may also 562 * cache the sg_table on the object or attempt to access an already cached 563 * sg-table. The refcounted sg-table needs to be put when no-longer in use. 564 * 565 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on 566 * failure. 567 */ 568 struct i915_refct_sgt * 569 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj, 570 struct ttm_resource *res) 571 { 572 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 573 u32 page_alignment; 574 575 if (!i915_ttm_gtt_binds_lmem(res)) 576 return i915_ttm_tt_get_st(bo->ttm); 577 578 page_alignment = bo->page_alignment << PAGE_SHIFT; 579 if (!page_alignment) 580 page_alignment = obj->mm.region->min_page_size; 581 582 /* 583 * If CPU mapping differs, we need to add the ttm_tt pages to 584 * the resulting st. Might make sense for GGTT. 585 */ 586 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res)); 587 if (bo->resource == res) { 588 if (!obj->ttm.cached_io_rsgt) { 589 struct i915_refct_sgt *rsgt; 590 591 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region, 592 res, 593 page_alignment); 594 if (IS_ERR(rsgt)) 595 return rsgt; 596 597 obj->ttm.cached_io_rsgt = rsgt; 598 } 599 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt); 600 } 601 602 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res, 603 page_alignment); 604 } 605 606 static int i915_ttm_truncate(struct drm_i915_gem_object *obj) 607 { 608 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 609 long err; 610 611 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED); 612 613 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 614 true, 15 * HZ); 615 if (err < 0) 616 return err; 617 if (err == 0) 618 return -EBUSY; 619 620 err = i915_ttm_move_notify(bo); 621 if (err) 622 return err; 623 624 return i915_ttm_purge(obj); 625 } 626 627 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo) 628 { 629 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 630 int ret; 631 632 if (i915_ttm_is_ghost_object(bo)) 633 return; 634 635 ret = i915_ttm_move_notify(bo); 636 GEM_WARN_ON(ret); 637 GEM_WARN_ON(obj->ttm.cached_io_rsgt); 638 if (!ret && obj->mm.madv != I915_MADV_WILLNEED) 639 i915_ttm_purge(obj); 640 } 641 642 /** 643 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU 644 * accessible. 645 * @res: The TTM resource to check. 646 * 647 * This is interesting on small-BAR systems where we may encounter lmem objects 648 * that can't be accessed via the CPU. 649 */ 650 bool i915_ttm_resource_mappable(struct ttm_resource *res) 651 { 652 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res); 653 654 if (!i915_ttm_cpu_maps_iomem(res)) 655 return true; 656 657 return bman_res->used_visible_size == PFN_UP(bman_res->base.size); 658 } 659 660 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 661 { 662 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo); 663 bool unknown_state; 664 665 if (i915_ttm_is_ghost_object(mem->bo)) 666 return -EINVAL; 667 668 if (!kref_get_unless_zero(&obj->base.refcount)) 669 return -EINVAL; 670 671 assert_object_held(obj); 672 673 unknown_state = i915_gem_object_has_unknown_state(obj); 674 i915_gem_object_put(obj); 675 if (unknown_state) 676 return -EINVAL; 677 678 if (!i915_ttm_cpu_maps_iomem(mem)) 679 return 0; 680 681 if (!i915_ttm_resource_mappable(mem)) 682 return -EINVAL; 683 684 mem->bus.caching = ttm_write_combined; 685 mem->bus.is_iomem = true; 686 687 return 0; 688 } 689 690 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 691 unsigned long page_offset) 692 { 693 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 694 struct scatterlist *sg; 695 unsigned long base; 696 unsigned int ofs; 697 698 GEM_BUG_ON(i915_ttm_is_ghost_object(bo)); 699 GEM_WARN_ON(bo->ttm); 700 701 base = obj->mm.region->iomap.base - obj->mm.region->region.start; 702 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs); 703 704 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs; 705 } 706 707 static int i915_ttm_access_memory(struct ttm_buffer_object *bo, 708 unsigned long offset, void *buf, 709 int len, int write) 710 { 711 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 712 resource_size_t iomap = obj->mm.region->iomap.base - 713 obj->mm.region->region.start; 714 unsigned long page = offset >> PAGE_SHIFT; 715 unsigned long bytes_left = len; 716 717 /* 718 * TODO: For now just let it fail if the resource is non-mappable, 719 * otherwise we need to perform the memcpy from the gpu here, without 720 * interfering with the object (like moving the entire thing). 721 */ 722 if (!i915_ttm_resource_mappable(bo->resource)) 723 return -EIO; 724 725 offset -= page << PAGE_SHIFT; 726 do { 727 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset); 728 void __iomem *ptr; 729 dma_addr_t daddr; 730 731 daddr = i915_gem_object_get_dma_address(obj, page); 732 ptr = ioremap_wc(iomap + daddr + offset, bytes); 733 if (!ptr) 734 return -EIO; 735 736 if (write) 737 memcpy_toio(ptr, buf, bytes); 738 else 739 memcpy_fromio(buf, ptr, bytes); 740 iounmap(ptr); 741 742 page++; 743 buf += bytes; 744 bytes_left -= bytes; 745 offset = 0; 746 } while (bytes_left); 747 748 return len; 749 } 750 751 /* 752 * All callbacks need to take care not to downcast a struct ttm_buffer_object 753 * without checking its subclass, since it might be a TTM ghost object. 754 */ 755 static struct ttm_device_funcs i915_ttm_bo_driver = { 756 .ttm_tt_create = i915_ttm_tt_create, 757 .ttm_tt_populate = i915_ttm_tt_populate, 758 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate, 759 .ttm_tt_destroy = i915_ttm_tt_destroy, 760 .eviction_valuable = i915_ttm_eviction_valuable, 761 .evict_flags = i915_ttm_evict_flags, 762 .move = i915_ttm_move, 763 .swap_notify = i915_ttm_swap_notify, 764 .delete_mem_notify = i915_ttm_delete_mem_notify, 765 .io_mem_reserve = i915_ttm_io_mem_reserve, 766 .io_mem_pfn = i915_ttm_io_mem_pfn, 767 .access_memory = i915_ttm_access_memory, 768 }; 769 770 /** 771 * i915_ttm_driver - Return a pointer to the TTM device funcs 772 * 773 * Return: Pointer to statically allocated TTM device funcs. 774 */ 775 struct ttm_device_funcs *i915_ttm_driver(void) 776 { 777 return &i915_ttm_bo_driver; 778 } 779 780 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj, 781 struct ttm_placement *placement) 782 { 783 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 784 struct ttm_operation_ctx ctx = { 785 .interruptible = true, 786 .no_wait_gpu = false, 787 }; 788 int real_num_busy; 789 int ret; 790 791 /* First try only the requested placement. No eviction. */ 792 real_num_busy = fetch_and_zero(&placement->num_busy_placement); 793 ret = ttm_bo_validate(bo, placement, &ctx); 794 if (ret) { 795 ret = i915_ttm_err_to_gem(ret); 796 /* 797 * Anything that wants to restart the operation gets to 798 * do that. 799 */ 800 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS || 801 ret == -EAGAIN) 802 return ret; 803 804 /* 805 * If the initial attempt fails, allow all accepted placements, 806 * evicting if necessary. 807 */ 808 placement->num_busy_placement = real_num_busy; 809 ret = ttm_bo_validate(bo, placement, &ctx); 810 if (ret) 811 return i915_ttm_err_to_gem(ret); 812 } 813 814 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) { 815 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx); 816 if (ret) 817 return ret; 818 819 i915_ttm_adjust_domains_after_move(obj); 820 i915_ttm_adjust_gem_after_move(obj); 821 } 822 823 if (!i915_gem_object_has_pages(obj)) { 824 struct i915_refct_sgt *rsgt = 825 i915_ttm_resource_get_st(obj, bo->resource); 826 827 if (IS_ERR(rsgt)) 828 return PTR_ERR(rsgt); 829 830 GEM_BUG_ON(obj->mm.rsgt); 831 obj->mm.rsgt = rsgt; 832 __i915_gem_object_set_pages(obj, &rsgt->table); 833 } 834 835 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages)); 836 i915_ttm_adjust_lru(obj); 837 return ret; 838 } 839 840 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj) 841 { 842 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS]; 843 struct ttm_placement placement; 844 845 /* restricted by sg_alloc_table */ 846 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int)) 847 return -E2BIG; 848 849 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS); 850 851 /* Move to the requested placement. */ 852 i915_ttm_placement_from_obj(obj, &requested, busy, &placement); 853 854 return __i915_ttm_get_pages(obj, &placement); 855 } 856 857 /** 858 * DOC: Migration vs eviction 859 * 860 * GEM migration may not be the same as TTM migration / eviction. If 861 * the TTM core decides to evict an object it may be evicted to a 862 * TTM memory type that is not in the object's allowable GEM regions, or 863 * in fact theoretically to a TTM memory type that doesn't correspond to 864 * a GEM memory region. In that case the object's GEM region is not 865 * updated, and the data is migrated back to the GEM region at 866 * get_pages time. TTM may however set up CPU ptes to the object even 867 * when it is evicted. 868 * Gem forced migration using the i915_ttm_migrate() op, is allowed even 869 * to regions that are not in the object's list of allowable placements. 870 */ 871 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj, 872 struct intel_memory_region *mr, 873 unsigned int flags) 874 { 875 struct ttm_place requested; 876 struct ttm_placement placement; 877 int ret; 878 879 i915_ttm_place_from_region(mr, &requested, obj->bo_offset, 880 obj->base.size, flags); 881 placement.num_placement = 1; 882 placement.num_busy_placement = 1; 883 placement.placement = &requested; 884 placement.busy_placement = &requested; 885 886 ret = __i915_ttm_get_pages(obj, &placement); 887 if (ret) 888 return ret; 889 890 /* 891 * Reinitialize the region bindings. This is primarily 892 * required for objects where the new region is not in 893 * its allowable placements. 894 */ 895 if (obj->mm.region != mr) { 896 i915_gem_object_release_memory_region(obj); 897 i915_gem_object_init_memory_region(obj, mr); 898 } 899 900 return 0; 901 } 902 903 static int i915_ttm_migrate(struct drm_i915_gem_object *obj, 904 struct intel_memory_region *mr, 905 unsigned int flags) 906 { 907 return __i915_ttm_migrate(obj, mr, flags); 908 } 909 910 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj, 911 struct sg_table *st) 912 { 913 /* 914 * We're currently not called from a shrinker, so put_pages() 915 * typically means the object is about to destroyed, or called 916 * from move_notify(). So just avoid doing much for now. 917 * If the object is not destroyed next, The TTM eviction logic 918 * and shrinkers will move it out if needed. 919 */ 920 921 if (obj->mm.rsgt) 922 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt)); 923 } 924 925 /** 926 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists. 927 * @obj: The object 928 */ 929 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj) 930 { 931 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 932 struct i915_ttm_tt *i915_tt = 933 container_of(bo->ttm, typeof(*i915_tt), ttm); 934 bool shrinkable = 935 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm); 936 937 /* 938 * Don't manipulate the TTM LRUs while in TTM bo destruction. 939 * We're called through i915_ttm_delete_mem_notify(). 940 */ 941 if (!kref_read(&bo->kref)) 942 return; 943 944 /* 945 * We skip managing the shrinker LRU in set_pages() and just manage 946 * everything here. This does at least solve the issue with having 947 * temporary shmem mappings(like with evicted lmem) not being visible to 948 * the shrinker. Only our shmem objects are shrinkable, everything else 949 * we keep as unshrinkable. 950 * 951 * To make sure everything plays nice we keep an extra shrink pin in TTM 952 * if the underlying pages are not currently shrinkable. Once we release 953 * our pin, like when the pages are moved to shmem, the pages will then 954 * be added to the shrinker LRU, assuming the caller isn't also holding 955 * a pin. 956 * 957 * TODO: consider maybe also bumping the shrinker list here when we have 958 * already unpinned it, which should give us something more like an LRU. 959 * 960 * TODO: There is a small window of opportunity for this function to 961 * get called from eviction after we've dropped the last GEM refcount, 962 * but before the TTM deleted flag is set on the object. Avoid 963 * adjusting the shrinker list in such cases, since the object is 964 * not available to the shrinker anyway due to its zero refcount. 965 * To fix this properly we should move to a TTM shrinker LRU list for 966 * these objects. 967 */ 968 if (kref_get_unless_zero(&obj->base.refcount)) { 969 if (shrinkable != obj->mm.ttm_shrinkable) { 970 if (shrinkable) { 971 if (obj->mm.madv == I915_MADV_WILLNEED) 972 __i915_gem_object_make_shrinkable(obj); 973 else 974 __i915_gem_object_make_purgeable(obj); 975 } else { 976 i915_gem_object_make_unshrinkable(obj); 977 } 978 979 obj->mm.ttm_shrinkable = shrinkable; 980 } 981 i915_gem_object_put(obj); 982 } 983 984 /* 985 * Put on the correct LRU list depending on the MADV status 986 */ 987 spin_lock(&bo->bdev->lru_lock); 988 if (shrinkable) { 989 /* Try to keep shmem_tt from being considered for shrinking. */ 990 bo->priority = TTM_MAX_BO_PRIORITY - 1; 991 } else if (obj->mm.madv != I915_MADV_WILLNEED) { 992 bo->priority = I915_TTM_PRIO_PURGE; 993 } else if (!i915_gem_object_has_pages(obj)) { 994 bo->priority = I915_TTM_PRIO_NO_PAGES; 995 } else { 996 struct ttm_resource_manager *man = 997 ttm_manager_type(bo->bdev, bo->resource->mem_type); 998 999 /* 1000 * If we need to place an LMEM resource which doesn't need CPU 1001 * access then we should try not to victimize mappable objects 1002 * first, since we likely end up stealing more of the mappable 1003 * portion. And likewise when we try to find space for a mappble 1004 * object, we know not to ever victimize objects that don't 1005 * occupy any mappable pages. 1006 */ 1007 if (i915_ttm_cpu_maps_iomem(bo->resource) && 1008 i915_ttm_buddy_man_visible_size(man) < man->size && 1009 !(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 1010 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS; 1011 else 1012 bo->priority = I915_TTM_PRIO_HAS_PAGES; 1013 } 1014 1015 ttm_bo_move_to_lru_tail(bo); 1016 spin_unlock(&bo->bdev->lru_lock); 1017 } 1018 1019 /* 1020 * TTM-backed gem object destruction requires some clarification. 1021 * Basically we have two possibilities here. We can either rely on the 1022 * i915 delayed destruction and put the TTM object when the object 1023 * is idle. This would be detected by TTM which would bypass the 1024 * TTM delayed destroy handling. The other approach is to put the TTM 1025 * object early and rely on the TTM destroyed handling, and then free 1026 * the leftover parts of the GEM object once TTM's destroyed list handling is 1027 * complete. For now, we rely on the latter for two reasons: 1028 * a) TTM can evict an object even when it's on the delayed destroy list, 1029 * which in theory allows for complete eviction. 1030 * b) There is work going on in TTM to allow freeing an object even when 1031 * it's not idle, and using the TTM destroyed list handling could help us 1032 * benefit from that. 1033 */ 1034 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj) 1035 { 1036 GEM_BUG_ON(!obj->ttm.created); 1037 1038 ttm_bo_put(i915_gem_to_ttm(obj)); 1039 } 1040 1041 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf) 1042 { 1043 struct vm_area_struct *area = vmf->vma; 1044 struct ttm_buffer_object *bo = area->vm_private_data; 1045 struct drm_device *dev = bo->base.dev; 1046 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1047 intel_wakeref_t wakeref = 0; 1048 vm_fault_t ret; 1049 int idx; 1050 1051 /* Sanity check that we allow writing into this object */ 1052 if (unlikely(i915_gem_object_is_readonly(obj) && 1053 area->vm_flags & VM_WRITE)) 1054 return VM_FAULT_SIGBUS; 1055 1056 ret = ttm_bo_vm_reserve(bo, vmf); 1057 if (ret) 1058 return ret; 1059 1060 if (obj->mm.madv != I915_MADV_WILLNEED) { 1061 dma_resv_unlock(bo->base.resv); 1062 return VM_FAULT_SIGBUS; 1063 } 1064 1065 /* 1066 * This must be swapped out with shmem ttm_tt (pipeline-gutting). 1067 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as 1068 * far as far doing a ttm_bo_move_null(), which should skip all the 1069 * other junk. 1070 */ 1071 if (!bo->resource) { 1072 struct ttm_operation_ctx ctx = { 1073 .interruptible = true, 1074 .no_wait_gpu = true, /* should be idle already */ 1075 }; 1076 int err; 1077 1078 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 1079 1080 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx); 1081 if (err) { 1082 dma_resv_unlock(bo->base.resv); 1083 return VM_FAULT_SIGBUS; 1084 } 1085 } else if (!i915_ttm_resource_mappable(bo->resource)) { 1086 int err = -ENODEV; 1087 int i; 1088 1089 for (i = 0; i < obj->mm.n_placements; i++) { 1090 struct intel_memory_region *mr = obj->mm.placements[i]; 1091 unsigned int flags; 1092 1093 if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM) 1094 continue; 1095 1096 flags = obj->flags; 1097 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1098 err = __i915_ttm_migrate(obj, mr, flags); 1099 if (!err) 1100 break; 1101 } 1102 1103 if (err) { 1104 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n", 1105 ERR_PTR(err)); 1106 dma_resv_unlock(bo->base.resv); 1107 ret = VM_FAULT_SIGBUS; 1108 goto out_rpm; 1109 } 1110 } 1111 1112 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1113 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1114 1115 if (drm_dev_enter(dev, &idx)) { 1116 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1117 TTM_BO_VM_NUM_PREFAULT); 1118 drm_dev_exit(idx); 1119 } else { 1120 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1121 } 1122 1123 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1124 goto out_rpm; 1125 1126 /* 1127 * ttm_bo_vm_reserve() already has dma_resv_lock. 1128 * userfault_count is protected by dma_resv lock and rpm wakeref. 1129 */ 1130 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1131 obj->userfault_count = 1; 1132 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1133 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1134 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1135 1136 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1137 } 1138 1139 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND) 1140 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1141 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1142 1143 i915_ttm_adjust_lru(obj); 1144 1145 dma_resv_unlock(bo->base.resv); 1146 1147 out_rpm: 1148 if (wakeref) 1149 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1150 1151 return ret; 1152 } 1153 1154 static int 1155 vm_access_ttm(struct vm_area_struct *area, unsigned long addr, 1156 void *buf, int len, int write) 1157 { 1158 struct drm_i915_gem_object *obj = 1159 i915_ttm_to_gem(area->vm_private_data); 1160 1161 if (i915_gem_object_is_readonly(obj) && write) 1162 return -EACCES; 1163 1164 return ttm_bo_vm_access(area, addr, buf, len, write); 1165 } 1166 1167 static void ttm_vm_open(struct vm_area_struct *vma) 1168 { 1169 struct drm_i915_gem_object *obj = 1170 i915_ttm_to_gem(vma->vm_private_data); 1171 1172 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1173 i915_gem_object_get(obj); 1174 } 1175 1176 static void ttm_vm_close(struct vm_area_struct *vma) 1177 { 1178 struct drm_i915_gem_object *obj = 1179 i915_ttm_to_gem(vma->vm_private_data); 1180 1181 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1182 i915_gem_object_put(obj); 1183 } 1184 1185 static const struct vm_operations_struct vm_ops_ttm = { 1186 .fault = vm_fault_ttm, 1187 .access = vm_access_ttm, 1188 .open = ttm_vm_open, 1189 .close = ttm_vm_close, 1190 }; 1191 1192 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj) 1193 { 1194 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */ 1195 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node)); 1196 1197 return drm_vma_node_offset_addr(&obj->base.vma_node); 1198 } 1199 1200 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj) 1201 { 1202 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 1203 intel_wakeref_t wakeref = 0; 1204 1205 assert_object_held_shared(obj); 1206 1207 if (i915_ttm_cpu_maps_iomem(bo->resource)) { 1208 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1209 1210 /* userfault_count is protected by obj lock and rpm wakeref. */ 1211 if (obj->userfault_count) { 1212 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1213 list_del(&obj->userfault_link); 1214 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1215 obj->userfault_count = 0; 1216 } 1217 } 1218 1219 GEM_WARN_ON(obj->userfault_count); 1220 1221 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj)); 1222 1223 if (wakeref) 1224 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1225 } 1226 1227 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = { 1228 .name = "i915_gem_object_ttm", 1229 .flags = I915_GEM_OBJECT_IS_SHRINKABLE | 1230 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST, 1231 1232 .get_pages = i915_ttm_get_pages, 1233 .put_pages = i915_ttm_put_pages, 1234 .truncate = i915_ttm_truncate, 1235 .shrink = i915_ttm_shrink, 1236 1237 .adjust_lru = i915_ttm_adjust_lru, 1238 .delayed_free = i915_ttm_delayed_free, 1239 .migrate = i915_ttm_migrate, 1240 1241 .mmap_offset = i915_ttm_mmap_offset, 1242 .unmap_virtual = i915_ttm_unmap_virtual, 1243 .mmap_ops = &vm_ops_ttm, 1244 }; 1245 1246 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo) 1247 { 1248 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1249 1250 i915_gem_object_release_memory_region(obj); 1251 mutex_destroy(&obj->ttm.get_io_page.lock); 1252 1253 if (obj->ttm.created) { 1254 /* 1255 * We freely manage the shrinker LRU outide of the mm.pages life 1256 * cycle. As a result when destroying the object we should be 1257 * extra paranoid and ensure we remove it from the LRU, before 1258 * we free the object. 1259 * 1260 * Touching the ttm_shrinkable outside of the object lock here 1261 * should be safe now that the last GEM object ref was dropped. 1262 */ 1263 if (obj->mm.ttm_shrinkable) 1264 i915_gem_object_make_unshrinkable(obj); 1265 1266 i915_ttm_backup_free(obj); 1267 1268 /* This releases all gem object bindings to the backend. */ 1269 __i915_gem_free_object(obj); 1270 1271 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 1272 } else { 1273 __i915_gem_object_fini(obj); 1274 } 1275 } 1276 1277 /* 1278 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object 1279 * @mem: The initial memory region for the object. 1280 * @obj: The gem object. 1281 * @size: Object size in bytes. 1282 * @flags: gem object flags. 1283 * 1284 * Return: 0 on success, negative error code on failure. 1285 */ 1286 int __i915_gem_ttm_object_init(struct intel_memory_region *mem, 1287 struct drm_i915_gem_object *obj, 1288 resource_size_t offset, 1289 resource_size_t size, 1290 resource_size_t page_size, 1291 unsigned int flags) 1292 { 1293 static struct lock_class_key lock_class; 1294 struct drm_i915_private *i915 = mem->i915; 1295 struct ttm_operation_ctx ctx = { 1296 .interruptible = true, 1297 .no_wait_gpu = false, 1298 }; 1299 enum ttm_bo_type bo_type; 1300 int ret; 1301 1302 drm_gem_private_object_init(&i915->drm, &obj->base, size); 1303 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags); 1304 1305 obj->bo_offset = offset; 1306 1307 /* Don't put on a region list until we're either locked or fully initialized. */ 1308 obj->mm.region = mem; 1309 INIT_LIST_HEAD(&obj->mm.region_link); 1310 1311 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN); 1312 mutex_init(&obj->ttm.get_io_page.lock); 1313 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device : 1314 ttm_bo_type_kernel; 1315 1316 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj); 1317 1318 /* Forcing the page size is kernel internal only */ 1319 GEM_BUG_ON(page_size && obj->mm.n_placements); 1320 1321 /* 1322 * Keep an extra shrink pin to prevent the object from being made 1323 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we 1324 * drop the pin. The TTM backend manages the shrinker LRU itself, 1325 * outside of the normal mm.pages life cycle. 1326 */ 1327 i915_gem_object_make_unshrinkable(obj); 1328 1329 /* 1330 * If this function fails, it will call the destructor, but 1331 * our caller still owns the object. So no freeing in the 1332 * destructor until obj->ttm.created is true. 1333 * Similarly, in delayed_destroy, we can't call ttm_bo_put() 1334 * until successful initialization. 1335 */ 1336 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type, 1337 &i915_sys_placement, page_size >> PAGE_SHIFT, 1338 &ctx, NULL, NULL, i915_ttm_bo_destroy); 1339 1340 /* 1341 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size 1342 * is too big to add vma. The direct function that returns -ENOSPC is 1343 * drm_mm_insert_node_in_range(). To handle the same error as other code 1344 * that returns -E2BIG when the size is too large, it converts -ENOSPC to 1345 * -E2BIG. 1346 */ 1347 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC) 1348 ret = -E2BIG; 1349 1350 if (ret) 1351 return i915_ttm_err_to_gem(ret); 1352 1353 obj->ttm.created = true; 1354 i915_gem_object_release_memory_region(obj); 1355 i915_gem_object_init_memory_region(obj, mem); 1356 i915_ttm_adjust_domains_after_move(obj); 1357 i915_ttm_adjust_gem_after_move(obj); 1358 i915_gem_object_unlock(obj); 1359 1360 return 0; 1361 } 1362 1363 static const struct intel_memory_region_ops ttm_system_region_ops = { 1364 .init_object = __i915_gem_ttm_object_init, 1365 .release = intel_region_ttm_fini, 1366 }; 1367 1368 struct intel_memory_region * 1369 i915_gem_ttm_system_setup(struct drm_i915_private *i915, 1370 u16 type, u16 instance) 1371 { 1372 struct intel_memory_region *mr; 1373 1374 mr = intel_memory_region_create(i915, 0, 1375 totalram_pages() << PAGE_SHIFT, 1376 PAGE_SIZE, 0, 0, 1377 type, instance, 1378 &ttm_system_region_ops); 1379 if (IS_ERR(mr)) 1380 return mr; 1381 1382 intel_memory_region_set_name(mr, "system-ttm"); 1383 return mr; 1384 } 1385