1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <linux/shmem_fs.h> 7 8 #include <drm/ttm/ttm_placement.h> 9 #include <drm/ttm/ttm_tt.h> 10 #include <drm/drm_buddy.h> 11 12 #include "i915_drv.h" 13 #include "i915_ttm_buddy_manager.h" 14 #include "intel_memory_region.h" 15 #include "intel_region_ttm.h" 16 17 #include "gem/i915_gem_mman.h" 18 #include "gem/i915_gem_object.h" 19 #include "gem/i915_gem_region.h" 20 #include "gem/i915_gem_ttm.h" 21 #include "gem/i915_gem_ttm_move.h" 22 #include "gem/i915_gem_ttm_pm.h" 23 #include "gt/intel_gpu_commands.h" 24 25 #define I915_TTM_PRIO_PURGE 0 26 #define I915_TTM_PRIO_NO_PAGES 1 27 #define I915_TTM_PRIO_HAS_PAGES 2 28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3 29 30 /* 31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs 32 */ 33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN 34 35 /** 36 * struct i915_ttm_tt - TTM page vector with additional private information 37 * @ttm: The base TTM page vector. 38 * @dev: The struct device used for dma mapping and unmapping. 39 * @cached_rsgt: The cached scatter-gather table. 40 * @is_shmem: Set if using shmem. 41 * @filp: The shmem file, if using shmem backend. 42 * 43 * Note that DMA may be going on right up to the point where the page- 44 * vector is unpopulated in delayed destroy. Hence keep the 45 * scatter-gather table mapped and cached up to that point. This is 46 * different from the cached gem object io scatter-gather table which 47 * doesn't have an associated dma mapping. 48 */ 49 struct i915_ttm_tt { 50 struct ttm_tt ttm; 51 struct device *dev; 52 struct i915_refct_sgt cached_rsgt; 53 54 bool is_shmem; 55 struct file *filp; 56 }; 57 58 static const struct ttm_place sys_placement_flags = { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = I915_PL_SYSTEM, 62 .flags = 0, 63 }; 64 65 static struct ttm_placement i915_sys_placement = { 66 .num_placement = 1, 67 .placement = &sys_placement_flags, 68 .num_busy_placement = 1, 69 .busy_placement = &sys_placement_flags, 70 }; 71 72 /** 73 * i915_ttm_sys_placement - Return the struct ttm_placement to be 74 * used for an object in system memory. 75 * 76 * Rather than making the struct extern, use this 77 * function. 78 * 79 * Return: A pointer to a static variable for sys placement. 80 */ 81 struct ttm_placement *i915_ttm_sys_placement(void) 82 { 83 return &i915_sys_placement; 84 } 85 86 static int i915_ttm_err_to_gem(int err) 87 { 88 /* Fastpath */ 89 if (likely(!err)) 90 return 0; 91 92 switch (err) { 93 case -EBUSY: 94 /* 95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to 96 * restart the operation, since we don't record the contending 97 * lock. We use -EAGAIN to restart. 98 */ 99 return -EAGAIN; 100 case -ENOSPC: 101 /* 102 * Memory type / region is full, and we can't evict. 103 * Except possibly system, that returns -ENOMEM; 104 */ 105 return -ENXIO; 106 default: 107 break; 108 } 109 110 return err; 111 } 112 113 static enum ttm_caching 114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj) 115 { 116 /* 117 * Objects only allowed in system get cached cpu-mappings, or when 118 * evicting lmem-only buffers to system for swapping. Other objects get 119 * WC mapping for now. Even if in system. 120 */ 121 if (obj->mm.n_placements <= 1) 122 return ttm_cached; 123 124 return ttm_write_combined; 125 } 126 127 static void 128 i915_ttm_place_from_region(const struct intel_memory_region *mr, 129 struct ttm_place *place, 130 resource_size_t offset, 131 resource_size_t size, 132 unsigned int flags) 133 { 134 memset(place, 0, sizeof(*place)); 135 place->mem_type = intel_region_to_ttm_type(mr); 136 137 if (mr->type == INTEL_MEMORY_SYSTEM) 138 return; 139 140 if (flags & I915_BO_ALLOC_CONTIGUOUS) 141 place->flags |= TTM_PL_FLAG_CONTIGUOUS; 142 if (offset != I915_BO_INVALID_OFFSET) { 143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn)); 144 place->fpfn = offset >> PAGE_SHIFT; 145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn)); 146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT); 147 } else if (mr->io_size && mr->io_size < mr->total) { 148 if (flags & I915_BO_ALLOC_GPU_ONLY) { 149 place->flags |= TTM_PL_FLAG_TOPDOWN; 150 } else { 151 place->fpfn = 0; 152 WARN_ON(overflows_type(mr->io_size >> PAGE_SHIFT, place->lpfn)); 153 place->lpfn = mr->io_size >> PAGE_SHIFT; 154 } 155 } 156 } 157 158 static void 159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj, 160 struct ttm_place *requested, 161 struct ttm_place *busy, 162 struct ttm_placement *placement) 163 { 164 unsigned int num_allowed = obj->mm.n_placements; 165 unsigned int flags = obj->flags; 166 unsigned int i; 167 168 placement->num_placement = 1; 169 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] : 170 obj->mm.region, requested, obj->bo_offset, 171 obj->base.size, flags); 172 173 /* Cache this on object? */ 174 placement->num_busy_placement = num_allowed; 175 for (i = 0; i < placement->num_busy_placement; ++i) 176 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, 177 obj->bo_offset, obj->base.size, flags); 178 179 if (num_allowed == 0) { 180 *busy = *requested; 181 placement->num_busy_placement = 1; 182 } 183 184 placement->placement = requested; 185 placement->busy_placement = busy; 186 } 187 188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev, 189 struct ttm_tt *ttm, 190 struct ttm_operation_ctx *ctx) 191 { 192 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 193 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM]; 194 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 195 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 196 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT; 197 struct file *filp = i915_tt->filp; 198 struct sgt_iter sgt_iter; 199 struct sg_table *st; 200 struct page *page; 201 unsigned long i; 202 int err; 203 204 if (!filp) { 205 struct address_space *mapping; 206 gfp_t mask; 207 208 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE); 209 if (IS_ERR(filp)) 210 return PTR_ERR(filp); 211 212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 213 214 mapping = filp->f_mapping; 215 mapping_set_gfp_mask(mapping, mask); 216 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 217 218 i915_tt->filp = filp; 219 } 220 221 st = &i915_tt->cached_rsgt.table; 222 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping, 223 max_segment); 224 if (err) 225 return err; 226 227 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 228 DMA_ATTR_SKIP_CPU_SYNC); 229 if (err) 230 goto err_free_st; 231 232 i = 0; 233 for_each_sgt_page(page, sgt_iter, st) 234 ttm->pages[i++] = page; 235 236 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED) 237 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 238 239 return 0; 240 241 err_free_st: 242 shmem_sg_free_table(st, filp->f_mapping, false, false); 243 244 return err; 245 } 246 247 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm) 248 { 249 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 250 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED; 251 struct sg_table *st = &i915_tt->cached_rsgt.table; 252 253 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping, 254 backup, backup); 255 } 256 257 static void i915_ttm_tt_release(struct kref *ref) 258 { 259 struct i915_ttm_tt *i915_tt = 260 container_of(ref, typeof(*i915_tt), cached_rsgt.kref); 261 struct sg_table *st = &i915_tt->cached_rsgt.table; 262 263 GEM_WARN_ON(st->sgl); 264 265 kfree(i915_tt); 266 } 267 268 static const struct i915_refct_sgt_ops tt_rsgt_ops = { 269 .release = i915_ttm_tt_release 270 }; 271 272 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo, 273 uint32_t page_flags) 274 { 275 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 276 bdev); 277 struct ttm_resource_manager *man = 278 ttm_manager_type(bo->bdev, bo->resource->mem_type); 279 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 280 unsigned long ccs_pages = 0; 281 enum ttm_caching caching; 282 struct i915_ttm_tt *i915_tt; 283 int ret; 284 285 if (i915_ttm_is_ghost_object(bo)) 286 return NULL; 287 288 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL); 289 if (!i915_tt) 290 return NULL; 291 292 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && 293 man->use_tt) 294 page_flags |= TTM_TT_FLAG_ZERO_ALLOC; 295 296 caching = i915_ttm_select_tt_caching(obj); 297 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) { 298 page_flags |= TTM_TT_FLAG_EXTERNAL | 299 TTM_TT_FLAG_EXTERNAL_MAPPABLE; 300 i915_tt->is_shmem = true; 301 } 302 303 if (i915_gem_object_needs_ccs_pages(obj)) 304 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size, 305 NUM_BYTES_PER_CCS_BYTE), 306 PAGE_SIZE); 307 308 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages); 309 if (ret) 310 goto err_free; 311 312 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size, 313 &tt_rsgt_ops); 314 315 i915_tt->dev = obj->base.dev->dev; 316 317 return &i915_tt->ttm; 318 319 err_free: 320 kfree(i915_tt); 321 return NULL; 322 } 323 324 static int i915_ttm_tt_populate(struct ttm_device *bdev, 325 struct ttm_tt *ttm, 326 struct ttm_operation_ctx *ctx) 327 { 328 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 329 330 if (i915_tt->is_shmem) 331 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx); 332 333 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 334 } 335 336 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) 337 { 338 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 339 struct sg_table *st = &i915_tt->cached_rsgt.table; 340 341 if (st->sgl) 342 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 343 344 if (i915_tt->is_shmem) { 345 i915_ttm_tt_shmem_unpopulate(ttm); 346 } else { 347 sg_free_table(st); 348 ttm_pool_free(&bdev->pool, ttm); 349 } 350 } 351 352 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 353 { 354 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 355 356 if (i915_tt->filp) 357 fput(i915_tt->filp); 358 359 ttm_tt_fini(ttm); 360 i915_refct_sgt_put(&i915_tt->cached_rsgt); 361 } 362 363 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo, 364 const struct ttm_place *place) 365 { 366 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 367 368 if (i915_ttm_is_ghost_object(bo)) 369 return false; 370 371 /* 372 * EXTERNAL objects should never be swapped out by TTM, instead we need 373 * to handle that ourselves. TTM will already skip such objects for us, 374 * but we would like to avoid grabbing locks for no good reason. 375 */ 376 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 377 return false; 378 379 /* Will do for now. Our pinned objects are still on TTM's LRU lists */ 380 if (!i915_gem_object_evictable(obj)) 381 return false; 382 383 return ttm_bo_eviction_valuable(bo, place); 384 } 385 386 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo, 387 struct ttm_placement *placement) 388 { 389 *placement = i915_sys_placement; 390 } 391 392 /** 393 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information 394 * @obj: The GEM object 395 * This function frees any LMEM-related information that is cached on 396 * the object. For example the radix tree for fast page lookup and the 397 * cached refcounted sg-table 398 */ 399 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj) 400 { 401 struct radix_tree_iter iter; 402 void __rcu **slot; 403 404 if (!obj->ttm.cached_io_rsgt) 405 return; 406 407 rcu_read_lock(); 408 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0) 409 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index); 410 rcu_read_unlock(); 411 412 i915_refct_sgt_put(obj->ttm.cached_io_rsgt); 413 obj->ttm.cached_io_rsgt = NULL; 414 } 415 416 /** 417 * i915_ttm_purge - Clear an object of its memory 418 * @obj: The object 419 * 420 * This function is called to clear an object of it's memory when it is 421 * marked as not needed anymore. 422 * 423 * Return: 0 on success, negative error code on failure. 424 */ 425 int i915_ttm_purge(struct drm_i915_gem_object *obj) 426 { 427 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 428 struct i915_ttm_tt *i915_tt = 429 container_of(bo->ttm, typeof(*i915_tt), ttm); 430 struct ttm_operation_ctx ctx = { 431 .interruptible = true, 432 .no_wait_gpu = false, 433 }; 434 struct ttm_placement place = {}; 435 int ret; 436 437 if (obj->mm.madv == __I915_MADV_PURGED) 438 return 0; 439 440 ret = ttm_bo_validate(bo, &place, &ctx); 441 if (ret) 442 return ret; 443 444 if (bo->ttm && i915_tt->filp) { 445 /* 446 * The below fput(which eventually calls shmem_truncate) might 447 * be delayed by worker, so when directly called to purge the 448 * pages(like by the shrinker) we should try to be more 449 * aggressive and release the pages immediately. 450 */ 451 shmem_truncate_range(file_inode(i915_tt->filp), 452 0, (loff_t)-1); 453 fput(fetch_and_zero(&i915_tt->filp)); 454 } 455 456 obj->write_domain = 0; 457 obj->read_domains = 0; 458 i915_ttm_adjust_gem_after_move(obj); 459 i915_ttm_free_cached_io_rsgt(obj); 460 obj->mm.madv = __I915_MADV_PURGED; 461 462 return 0; 463 } 464 465 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 466 { 467 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 468 struct i915_ttm_tt *i915_tt = 469 container_of(bo->ttm, typeof(*i915_tt), ttm); 470 struct ttm_operation_ctx ctx = { 471 .interruptible = true, 472 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT, 473 }; 474 struct ttm_placement place = {}; 475 int ret; 476 477 if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM) 478 return 0; 479 480 GEM_BUG_ON(!i915_tt->is_shmem); 481 482 if (!i915_tt->filp) 483 return 0; 484 485 ret = ttm_bo_wait_ctx(bo, &ctx); 486 if (ret) 487 return ret; 488 489 switch (obj->mm.madv) { 490 case I915_MADV_DONTNEED: 491 return i915_ttm_purge(obj); 492 case __I915_MADV_PURGED: 493 return 0; 494 } 495 496 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) 497 return 0; 498 499 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED; 500 ret = ttm_bo_validate(bo, &place, &ctx); 501 if (ret) { 502 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 503 return ret; 504 } 505 506 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 507 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping); 508 509 return 0; 510 } 511 512 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo) 513 { 514 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 515 516 if (bo->resource && !i915_ttm_is_ghost_object(bo)) { 517 __i915_gem_object_pages_fini(obj); 518 i915_ttm_free_cached_io_rsgt(obj); 519 } 520 } 521 522 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm) 523 { 524 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 525 struct sg_table *st; 526 int ret; 527 528 if (i915_tt->cached_rsgt.table.sgl) 529 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 530 531 st = &i915_tt->cached_rsgt.table; 532 ret = sg_alloc_table_from_pages_segment(st, 533 ttm->pages, ttm->num_pages, 534 0, (unsigned long)ttm->num_pages << PAGE_SHIFT, 535 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL); 536 if (ret) { 537 st->sgl = NULL; 538 return ERR_PTR(ret); 539 } 540 541 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 542 if (ret) { 543 sg_free_table(st); 544 return ERR_PTR(ret); 545 } 546 547 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 548 } 549 550 /** 551 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the 552 * resource memory 553 * @obj: The GEM object used for sg-table caching 554 * @res: The struct ttm_resource for which an sg-table is requested. 555 * 556 * This function returns a refcounted sg-table representing the memory 557 * pointed to by @res. If @res is the object's current resource it may also 558 * cache the sg_table on the object or attempt to access an already cached 559 * sg-table. The refcounted sg-table needs to be put when no-longer in use. 560 * 561 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on 562 * failure. 563 */ 564 struct i915_refct_sgt * 565 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj, 566 struct ttm_resource *res) 567 { 568 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 569 u32 page_alignment; 570 571 if (!i915_ttm_gtt_binds_lmem(res)) 572 return i915_ttm_tt_get_st(bo->ttm); 573 574 page_alignment = bo->page_alignment << PAGE_SHIFT; 575 if (!page_alignment) 576 page_alignment = obj->mm.region->min_page_size; 577 578 /* 579 * If CPU mapping differs, we need to add the ttm_tt pages to 580 * the resulting st. Might make sense for GGTT. 581 */ 582 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res)); 583 if (bo->resource == res) { 584 if (!obj->ttm.cached_io_rsgt) { 585 struct i915_refct_sgt *rsgt; 586 587 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region, 588 res, 589 page_alignment); 590 if (IS_ERR(rsgt)) 591 return rsgt; 592 593 obj->ttm.cached_io_rsgt = rsgt; 594 } 595 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt); 596 } 597 598 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res, 599 page_alignment); 600 } 601 602 static int i915_ttm_truncate(struct drm_i915_gem_object *obj) 603 { 604 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 605 long err; 606 607 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED); 608 609 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 610 true, 15 * HZ); 611 if (err < 0) 612 return err; 613 if (err == 0) 614 return -EBUSY; 615 616 err = i915_ttm_move_notify(bo); 617 if (err) 618 return err; 619 620 return i915_ttm_purge(obj); 621 } 622 623 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo) 624 { 625 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 626 int ret; 627 628 if (i915_ttm_is_ghost_object(bo)) 629 return; 630 631 ret = i915_ttm_move_notify(bo); 632 GEM_WARN_ON(ret); 633 GEM_WARN_ON(obj->ttm.cached_io_rsgt); 634 if (!ret && obj->mm.madv != I915_MADV_WILLNEED) 635 i915_ttm_purge(obj); 636 } 637 638 /** 639 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU 640 * accessible. 641 * @res: The TTM resource to check. 642 * 643 * This is interesting on small-BAR systems where we may encounter lmem objects 644 * that can't be accessed via the CPU. 645 */ 646 bool i915_ttm_resource_mappable(struct ttm_resource *res) 647 { 648 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res); 649 650 if (!i915_ttm_cpu_maps_iomem(res)) 651 return true; 652 653 return bman_res->used_visible_size == PFN_UP(bman_res->base.size); 654 } 655 656 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 657 { 658 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo); 659 bool unknown_state; 660 661 if (i915_ttm_is_ghost_object(mem->bo)) 662 return -EINVAL; 663 664 if (!kref_get_unless_zero(&obj->base.refcount)) 665 return -EINVAL; 666 667 assert_object_held(obj); 668 669 unknown_state = i915_gem_object_has_unknown_state(obj); 670 i915_gem_object_put(obj); 671 if (unknown_state) 672 return -EINVAL; 673 674 if (!i915_ttm_cpu_maps_iomem(mem)) 675 return 0; 676 677 if (!i915_ttm_resource_mappable(mem)) 678 return -EINVAL; 679 680 mem->bus.caching = ttm_write_combined; 681 mem->bus.is_iomem = true; 682 683 return 0; 684 } 685 686 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 687 unsigned long page_offset) 688 { 689 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 690 struct scatterlist *sg; 691 unsigned long base; 692 unsigned int ofs; 693 694 GEM_BUG_ON(i915_ttm_is_ghost_object(bo)); 695 GEM_WARN_ON(bo->ttm); 696 697 base = obj->mm.region->iomap.base - obj->mm.region->region.start; 698 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs); 699 700 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs; 701 } 702 703 static int i915_ttm_access_memory(struct ttm_buffer_object *bo, 704 unsigned long offset, void *buf, 705 int len, int write) 706 { 707 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 708 resource_size_t iomap = obj->mm.region->iomap.base - 709 obj->mm.region->region.start; 710 unsigned long page = offset >> PAGE_SHIFT; 711 unsigned long bytes_left = len; 712 713 /* 714 * TODO: For now just let it fail if the resource is non-mappable, 715 * otherwise we need to perform the memcpy from the gpu here, without 716 * interfering with the object (like moving the entire thing). 717 */ 718 if (!i915_ttm_resource_mappable(bo->resource)) 719 return -EIO; 720 721 offset -= page << PAGE_SHIFT; 722 do { 723 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset); 724 void __iomem *ptr; 725 dma_addr_t daddr; 726 727 daddr = i915_gem_object_get_dma_address(obj, page); 728 ptr = ioremap_wc(iomap + daddr + offset, bytes); 729 if (!ptr) 730 return -EIO; 731 732 if (write) 733 memcpy_toio(ptr, buf, bytes); 734 else 735 memcpy_fromio(buf, ptr, bytes); 736 iounmap(ptr); 737 738 page++; 739 buf += bytes; 740 bytes_left -= bytes; 741 offset = 0; 742 } while (bytes_left); 743 744 return len; 745 } 746 747 /* 748 * All callbacks need to take care not to downcast a struct ttm_buffer_object 749 * without checking its subclass, since it might be a TTM ghost object. 750 */ 751 static struct ttm_device_funcs i915_ttm_bo_driver = { 752 .ttm_tt_create = i915_ttm_tt_create, 753 .ttm_tt_populate = i915_ttm_tt_populate, 754 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate, 755 .ttm_tt_destroy = i915_ttm_tt_destroy, 756 .eviction_valuable = i915_ttm_eviction_valuable, 757 .evict_flags = i915_ttm_evict_flags, 758 .move = i915_ttm_move, 759 .swap_notify = i915_ttm_swap_notify, 760 .delete_mem_notify = i915_ttm_delete_mem_notify, 761 .io_mem_reserve = i915_ttm_io_mem_reserve, 762 .io_mem_pfn = i915_ttm_io_mem_pfn, 763 .access_memory = i915_ttm_access_memory, 764 }; 765 766 /** 767 * i915_ttm_driver - Return a pointer to the TTM device funcs 768 * 769 * Return: Pointer to statically allocated TTM device funcs. 770 */ 771 struct ttm_device_funcs *i915_ttm_driver(void) 772 { 773 return &i915_ttm_bo_driver; 774 } 775 776 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj, 777 struct ttm_placement *placement) 778 { 779 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 780 struct ttm_operation_ctx ctx = { 781 .interruptible = true, 782 .no_wait_gpu = false, 783 }; 784 int real_num_busy; 785 int ret; 786 787 /* First try only the requested placement. No eviction. */ 788 real_num_busy = fetch_and_zero(&placement->num_busy_placement); 789 ret = ttm_bo_validate(bo, placement, &ctx); 790 if (ret) { 791 ret = i915_ttm_err_to_gem(ret); 792 /* 793 * Anything that wants to restart the operation gets to 794 * do that. 795 */ 796 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS || 797 ret == -EAGAIN) 798 return ret; 799 800 /* 801 * If the initial attempt fails, allow all accepted placements, 802 * evicting if necessary. 803 */ 804 placement->num_busy_placement = real_num_busy; 805 ret = ttm_bo_validate(bo, placement, &ctx); 806 if (ret) 807 return i915_ttm_err_to_gem(ret); 808 } 809 810 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) { 811 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx); 812 if (ret) 813 return ret; 814 815 i915_ttm_adjust_domains_after_move(obj); 816 i915_ttm_adjust_gem_after_move(obj); 817 } 818 819 if (!i915_gem_object_has_pages(obj)) { 820 struct i915_refct_sgt *rsgt = 821 i915_ttm_resource_get_st(obj, bo->resource); 822 823 if (IS_ERR(rsgt)) 824 return PTR_ERR(rsgt); 825 826 GEM_BUG_ON(obj->mm.rsgt); 827 obj->mm.rsgt = rsgt; 828 __i915_gem_object_set_pages(obj, &rsgt->table); 829 } 830 831 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages)); 832 i915_ttm_adjust_lru(obj); 833 return ret; 834 } 835 836 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj) 837 { 838 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS]; 839 struct ttm_placement placement; 840 841 /* restricted by sg_alloc_table */ 842 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int)) 843 return -E2BIG; 844 845 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS); 846 847 /* Move to the requested placement. */ 848 i915_ttm_placement_from_obj(obj, &requested, busy, &placement); 849 850 return __i915_ttm_get_pages(obj, &placement); 851 } 852 853 /** 854 * DOC: Migration vs eviction 855 * 856 * GEM migration may not be the same as TTM migration / eviction. If 857 * the TTM core decides to evict an object it may be evicted to a 858 * TTM memory type that is not in the object's allowable GEM regions, or 859 * in fact theoretically to a TTM memory type that doesn't correspond to 860 * a GEM memory region. In that case the object's GEM region is not 861 * updated, and the data is migrated back to the GEM region at 862 * get_pages time. TTM may however set up CPU ptes to the object even 863 * when it is evicted. 864 * Gem forced migration using the i915_ttm_migrate() op, is allowed even 865 * to regions that are not in the object's list of allowable placements. 866 */ 867 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj, 868 struct intel_memory_region *mr, 869 unsigned int flags) 870 { 871 struct ttm_place requested; 872 struct ttm_placement placement; 873 int ret; 874 875 i915_ttm_place_from_region(mr, &requested, obj->bo_offset, 876 obj->base.size, flags); 877 placement.num_placement = 1; 878 placement.num_busy_placement = 1; 879 placement.placement = &requested; 880 placement.busy_placement = &requested; 881 882 ret = __i915_ttm_get_pages(obj, &placement); 883 if (ret) 884 return ret; 885 886 /* 887 * Reinitialize the region bindings. This is primarily 888 * required for objects where the new region is not in 889 * its allowable placements. 890 */ 891 if (obj->mm.region != mr) { 892 i915_gem_object_release_memory_region(obj); 893 i915_gem_object_init_memory_region(obj, mr); 894 } 895 896 return 0; 897 } 898 899 static int i915_ttm_migrate(struct drm_i915_gem_object *obj, 900 struct intel_memory_region *mr, 901 unsigned int flags) 902 { 903 return __i915_ttm_migrate(obj, mr, flags); 904 } 905 906 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj, 907 struct sg_table *st) 908 { 909 /* 910 * We're currently not called from a shrinker, so put_pages() 911 * typically means the object is about to destroyed, or called 912 * from move_notify(). So just avoid doing much for now. 913 * If the object is not destroyed next, The TTM eviction logic 914 * and shrinkers will move it out if needed. 915 */ 916 917 if (obj->mm.rsgt) 918 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt)); 919 } 920 921 /** 922 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists. 923 * @obj: The object 924 */ 925 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj) 926 { 927 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 928 struct i915_ttm_tt *i915_tt = 929 container_of(bo->ttm, typeof(*i915_tt), ttm); 930 bool shrinkable = 931 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm); 932 933 /* 934 * Don't manipulate the TTM LRUs while in TTM bo destruction. 935 * We're called through i915_ttm_delete_mem_notify(). 936 */ 937 if (!kref_read(&bo->kref)) 938 return; 939 940 /* 941 * We skip managing the shrinker LRU in set_pages() and just manage 942 * everything here. This does at least solve the issue with having 943 * temporary shmem mappings(like with evicted lmem) not being visible to 944 * the shrinker. Only our shmem objects are shrinkable, everything else 945 * we keep as unshrinkable. 946 * 947 * To make sure everything plays nice we keep an extra shrink pin in TTM 948 * if the underlying pages are not currently shrinkable. Once we release 949 * our pin, like when the pages are moved to shmem, the pages will then 950 * be added to the shrinker LRU, assuming the caller isn't also holding 951 * a pin. 952 * 953 * TODO: consider maybe also bumping the shrinker list here when we have 954 * already unpinned it, which should give us something more like an LRU. 955 * 956 * TODO: There is a small window of opportunity for this function to 957 * get called from eviction after we've dropped the last GEM refcount, 958 * but before the TTM deleted flag is set on the object. Avoid 959 * adjusting the shrinker list in such cases, since the object is 960 * not available to the shrinker anyway due to its zero refcount. 961 * To fix this properly we should move to a TTM shrinker LRU list for 962 * these objects. 963 */ 964 if (kref_get_unless_zero(&obj->base.refcount)) { 965 if (shrinkable != obj->mm.ttm_shrinkable) { 966 if (shrinkable) { 967 if (obj->mm.madv == I915_MADV_WILLNEED) 968 __i915_gem_object_make_shrinkable(obj); 969 else 970 __i915_gem_object_make_purgeable(obj); 971 } else { 972 i915_gem_object_make_unshrinkable(obj); 973 } 974 975 obj->mm.ttm_shrinkable = shrinkable; 976 } 977 i915_gem_object_put(obj); 978 } 979 980 /* 981 * Put on the correct LRU list depending on the MADV status 982 */ 983 spin_lock(&bo->bdev->lru_lock); 984 if (shrinkable) { 985 /* Try to keep shmem_tt from being considered for shrinking. */ 986 bo->priority = TTM_MAX_BO_PRIORITY - 1; 987 } else if (obj->mm.madv != I915_MADV_WILLNEED) { 988 bo->priority = I915_TTM_PRIO_PURGE; 989 } else if (!i915_gem_object_has_pages(obj)) { 990 bo->priority = I915_TTM_PRIO_NO_PAGES; 991 } else { 992 struct ttm_resource_manager *man = 993 ttm_manager_type(bo->bdev, bo->resource->mem_type); 994 995 /* 996 * If we need to place an LMEM resource which doesn't need CPU 997 * access then we should try not to victimize mappable objects 998 * first, since we likely end up stealing more of the mappable 999 * portion. And likewise when we try to find space for a mappble 1000 * object, we know not to ever victimize objects that don't 1001 * occupy any mappable pages. 1002 */ 1003 if (i915_ttm_cpu_maps_iomem(bo->resource) && 1004 i915_ttm_buddy_man_visible_size(man) < man->size && 1005 !(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 1006 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS; 1007 else 1008 bo->priority = I915_TTM_PRIO_HAS_PAGES; 1009 } 1010 1011 ttm_bo_move_to_lru_tail(bo); 1012 spin_unlock(&bo->bdev->lru_lock); 1013 } 1014 1015 /* 1016 * TTM-backed gem object destruction requires some clarification. 1017 * Basically we have two possibilities here. We can either rely on the 1018 * i915 delayed destruction and put the TTM object when the object 1019 * is idle. This would be detected by TTM which would bypass the 1020 * TTM delayed destroy handling. The other approach is to put the TTM 1021 * object early and rely on the TTM destroyed handling, and then free 1022 * the leftover parts of the GEM object once TTM's destroyed list handling is 1023 * complete. For now, we rely on the latter for two reasons: 1024 * a) TTM can evict an object even when it's on the delayed destroy list, 1025 * which in theory allows for complete eviction. 1026 * b) There is work going on in TTM to allow freeing an object even when 1027 * it's not idle, and using the TTM destroyed list handling could help us 1028 * benefit from that. 1029 */ 1030 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj) 1031 { 1032 GEM_BUG_ON(!obj->ttm.created); 1033 1034 ttm_bo_put(i915_gem_to_ttm(obj)); 1035 } 1036 1037 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf) 1038 { 1039 struct vm_area_struct *area = vmf->vma; 1040 struct ttm_buffer_object *bo = area->vm_private_data; 1041 struct drm_device *dev = bo->base.dev; 1042 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1043 intel_wakeref_t wakeref = 0; 1044 vm_fault_t ret; 1045 int idx; 1046 1047 /* Sanity check that we allow writing into this object */ 1048 if (unlikely(i915_gem_object_is_readonly(obj) && 1049 area->vm_flags & VM_WRITE)) 1050 return VM_FAULT_SIGBUS; 1051 1052 ret = ttm_bo_vm_reserve(bo, vmf); 1053 if (ret) 1054 return ret; 1055 1056 if (obj->mm.madv != I915_MADV_WILLNEED) { 1057 dma_resv_unlock(bo->base.resv); 1058 return VM_FAULT_SIGBUS; 1059 } 1060 1061 if (!i915_ttm_resource_mappable(bo->resource)) { 1062 int err = -ENODEV; 1063 int i; 1064 1065 for (i = 0; i < obj->mm.n_placements; i++) { 1066 struct intel_memory_region *mr = obj->mm.placements[i]; 1067 unsigned int flags; 1068 1069 if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM) 1070 continue; 1071 1072 flags = obj->flags; 1073 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1074 err = __i915_ttm_migrate(obj, mr, flags); 1075 if (!err) 1076 break; 1077 } 1078 1079 if (err) { 1080 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n", 1081 ERR_PTR(err)); 1082 dma_resv_unlock(bo->base.resv); 1083 ret = VM_FAULT_SIGBUS; 1084 goto out_rpm; 1085 } 1086 } 1087 1088 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1089 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1090 1091 if (drm_dev_enter(dev, &idx)) { 1092 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1093 TTM_BO_VM_NUM_PREFAULT); 1094 drm_dev_exit(idx); 1095 } else { 1096 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1097 } 1098 1099 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1100 goto out_rpm; 1101 1102 /* 1103 * ttm_bo_vm_reserve() already has dma_resv_lock. 1104 * userfault_count is protected by dma_resv lock and rpm wakeref. 1105 */ 1106 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1107 obj->userfault_count = 1; 1108 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1109 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1110 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1111 1112 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1113 } 1114 1115 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND) 1116 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1117 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1118 1119 i915_ttm_adjust_lru(obj); 1120 1121 dma_resv_unlock(bo->base.resv); 1122 1123 out_rpm: 1124 if (wakeref) 1125 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1126 1127 return ret; 1128 } 1129 1130 static int 1131 vm_access_ttm(struct vm_area_struct *area, unsigned long addr, 1132 void *buf, int len, int write) 1133 { 1134 struct drm_i915_gem_object *obj = 1135 i915_ttm_to_gem(area->vm_private_data); 1136 1137 if (i915_gem_object_is_readonly(obj) && write) 1138 return -EACCES; 1139 1140 return ttm_bo_vm_access(area, addr, buf, len, write); 1141 } 1142 1143 static void ttm_vm_open(struct vm_area_struct *vma) 1144 { 1145 struct drm_i915_gem_object *obj = 1146 i915_ttm_to_gem(vma->vm_private_data); 1147 1148 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1149 i915_gem_object_get(obj); 1150 } 1151 1152 static void ttm_vm_close(struct vm_area_struct *vma) 1153 { 1154 struct drm_i915_gem_object *obj = 1155 i915_ttm_to_gem(vma->vm_private_data); 1156 1157 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1158 i915_gem_object_put(obj); 1159 } 1160 1161 static const struct vm_operations_struct vm_ops_ttm = { 1162 .fault = vm_fault_ttm, 1163 .access = vm_access_ttm, 1164 .open = ttm_vm_open, 1165 .close = ttm_vm_close, 1166 }; 1167 1168 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj) 1169 { 1170 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */ 1171 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node)); 1172 1173 return drm_vma_node_offset_addr(&obj->base.vma_node); 1174 } 1175 1176 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj) 1177 { 1178 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 1179 intel_wakeref_t wakeref = 0; 1180 1181 assert_object_held_shared(obj); 1182 1183 if (i915_ttm_cpu_maps_iomem(bo->resource)) { 1184 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1185 1186 /* userfault_count is protected by obj lock and rpm wakeref. */ 1187 if (obj->userfault_count) { 1188 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1189 list_del(&obj->userfault_link); 1190 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1191 obj->userfault_count = 0; 1192 } 1193 } 1194 1195 GEM_WARN_ON(obj->userfault_count); 1196 1197 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj)); 1198 1199 if (wakeref) 1200 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1201 } 1202 1203 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = { 1204 .name = "i915_gem_object_ttm", 1205 .flags = I915_GEM_OBJECT_IS_SHRINKABLE | 1206 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST, 1207 1208 .get_pages = i915_ttm_get_pages, 1209 .put_pages = i915_ttm_put_pages, 1210 .truncate = i915_ttm_truncate, 1211 .shrink = i915_ttm_shrink, 1212 1213 .adjust_lru = i915_ttm_adjust_lru, 1214 .delayed_free = i915_ttm_delayed_free, 1215 .migrate = i915_ttm_migrate, 1216 1217 .mmap_offset = i915_ttm_mmap_offset, 1218 .unmap_virtual = i915_ttm_unmap_virtual, 1219 .mmap_ops = &vm_ops_ttm, 1220 }; 1221 1222 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo) 1223 { 1224 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1225 1226 i915_gem_object_release_memory_region(obj); 1227 mutex_destroy(&obj->ttm.get_io_page.lock); 1228 1229 if (obj->ttm.created) { 1230 /* 1231 * We freely manage the shrinker LRU outide of the mm.pages life 1232 * cycle. As a result when destroying the object we should be 1233 * extra paranoid and ensure we remove it from the LRU, before 1234 * we free the object. 1235 * 1236 * Touching the ttm_shrinkable outside of the object lock here 1237 * should be safe now that the last GEM object ref was dropped. 1238 */ 1239 if (obj->mm.ttm_shrinkable) 1240 i915_gem_object_make_unshrinkable(obj); 1241 1242 i915_ttm_backup_free(obj); 1243 1244 /* This releases all gem object bindings to the backend. */ 1245 __i915_gem_free_object(obj); 1246 1247 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 1248 } else { 1249 __i915_gem_object_fini(obj); 1250 } 1251 } 1252 1253 /** 1254 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object 1255 * @mem: The initial memory region for the object. 1256 * @obj: The gem object. 1257 * @size: Object size in bytes. 1258 * @flags: gem object flags. 1259 * 1260 * Return: 0 on success, negative error code on failure. 1261 */ 1262 int __i915_gem_ttm_object_init(struct intel_memory_region *mem, 1263 struct drm_i915_gem_object *obj, 1264 resource_size_t offset, 1265 resource_size_t size, 1266 resource_size_t page_size, 1267 unsigned int flags) 1268 { 1269 static struct lock_class_key lock_class; 1270 struct drm_i915_private *i915 = mem->i915; 1271 struct ttm_operation_ctx ctx = { 1272 .interruptible = true, 1273 .no_wait_gpu = false, 1274 }; 1275 enum ttm_bo_type bo_type; 1276 int ret; 1277 1278 drm_gem_private_object_init(&i915->drm, &obj->base, size); 1279 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags); 1280 1281 obj->bo_offset = offset; 1282 1283 /* Don't put on a region list until we're either locked or fully initialized. */ 1284 obj->mm.region = mem; 1285 INIT_LIST_HEAD(&obj->mm.region_link); 1286 1287 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN); 1288 mutex_init(&obj->ttm.get_io_page.lock); 1289 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device : 1290 ttm_bo_type_kernel; 1291 1292 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj); 1293 1294 /* Forcing the page size is kernel internal only */ 1295 GEM_BUG_ON(page_size && obj->mm.n_placements); 1296 1297 /* 1298 * Keep an extra shrink pin to prevent the object from being made 1299 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we 1300 * drop the pin. The TTM backend manages the shrinker LRU itself, 1301 * outside of the normal mm.pages life cycle. 1302 */ 1303 i915_gem_object_make_unshrinkable(obj); 1304 1305 /* 1306 * If this function fails, it will call the destructor, but 1307 * our caller still owns the object. So no freeing in the 1308 * destructor until obj->ttm.created is true. 1309 * Similarly, in delayed_destroy, we can't call ttm_bo_put() 1310 * until successful initialization. 1311 */ 1312 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type, 1313 &i915_sys_placement, page_size >> PAGE_SHIFT, 1314 &ctx, NULL, NULL, i915_ttm_bo_destroy); 1315 1316 /* 1317 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size 1318 * is too big to add vma. The direct function that returns -ENOSPC is 1319 * drm_mm_insert_node_in_range(). To handle the same error as other code 1320 * that returns -E2BIG when the size is too large, it converts -ENOSPC to 1321 * -E2BIG. 1322 */ 1323 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC) 1324 ret = -E2BIG; 1325 1326 if (ret) 1327 return i915_ttm_err_to_gem(ret); 1328 1329 obj->ttm.created = true; 1330 i915_gem_object_release_memory_region(obj); 1331 i915_gem_object_init_memory_region(obj, mem); 1332 i915_ttm_adjust_domains_after_move(obj); 1333 i915_ttm_adjust_gem_after_move(obj); 1334 i915_gem_object_unlock(obj); 1335 1336 return 0; 1337 } 1338 1339 static const struct intel_memory_region_ops ttm_system_region_ops = { 1340 .init_object = __i915_gem_ttm_object_init, 1341 .release = intel_region_ttm_fini, 1342 }; 1343 1344 struct intel_memory_region * 1345 i915_gem_ttm_system_setup(struct drm_i915_private *i915, 1346 u16 type, u16 instance) 1347 { 1348 struct intel_memory_region *mr; 1349 1350 mr = intel_memory_region_create(i915, 0, 1351 totalram_pages() << PAGE_SHIFT, 1352 PAGE_SIZE, 0, 0, 1353 type, instance, 1354 &ttm_system_region_ops); 1355 if (IS_ERR(mr)) 1356 return mr; 1357 1358 intel_memory_region_set_name(mr, "system-ttm"); 1359 return mr; 1360 } 1361