1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include <linux/shmem_fs.h>
7 
8 #include <drm/ttm/ttm_bo_driver.h>
9 #include <drm/ttm/ttm_placement.h>
10 #include <drm/drm_buddy.h>
11 
12 #include "i915_drv.h"
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
16 
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
23 #include "gt/intel_gpu_commands.h"
24 
25 #define I915_TTM_PRIO_PURGE     0
26 #define I915_TTM_PRIO_NO_PAGES  1
27 #define I915_TTM_PRIO_HAS_PAGES 2
28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29 
30 /*
31  * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32  */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34 
35 /**
36  * struct i915_ttm_tt - TTM page vector with additional private information
37  * @ttm: The base TTM page vector.
38  * @dev: The struct device used for dma mapping and unmapping.
39  * @cached_rsgt: The cached scatter-gather table.
40  * @is_shmem: Set if using shmem.
41  * @filp: The shmem file, if using shmem backend.
42  *
43  * Note that DMA may be going on right up to the point where the page-
44  * vector is unpopulated in delayed destroy. Hence keep the
45  * scatter-gather table mapped and cached up to that point. This is
46  * different from the cached gem object io scatter-gather table which
47  * doesn't have an associated dma mapping.
48  */
49 struct i915_ttm_tt {
50 	struct ttm_tt ttm;
51 	struct device *dev;
52 	struct i915_refct_sgt cached_rsgt;
53 
54 	bool is_shmem;
55 	struct file *filp;
56 };
57 
58 static const struct ttm_place sys_placement_flags = {
59 	.fpfn = 0,
60 	.lpfn = 0,
61 	.mem_type = I915_PL_SYSTEM,
62 	.flags = 0,
63 };
64 
65 static struct ttm_placement i915_sys_placement = {
66 	.num_placement = 1,
67 	.placement = &sys_placement_flags,
68 	.num_busy_placement = 1,
69 	.busy_placement = &sys_placement_flags,
70 };
71 
72 /**
73  * i915_ttm_sys_placement - Return the struct ttm_placement to be
74  * used for an object in system memory.
75  *
76  * Rather than making the struct extern, use this
77  * function.
78  *
79  * Return: A pointer to a static variable for sys placement.
80  */
81 struct ttm_placement *i915_ttm_sys_placement(void)
82 {
83 	return &i915_sys_placement;
84 }
85 
86 static int i915_ttm_err_to_gem(int err)
87 {
88 	/* Fastpath */
89 	if (likely(!err))
90 		return 0;
91 
92 	switch (err) {
93 	case -EBUSY:
94 		/*
95 		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
96 		 * restart the operation, since we don't record the contending
97 		 * lock. We use -EAGAIN to restart.
98 		 */
99 		return -EAGAIN;
100 	case -ENOSPC:
101 		/*
102 		 * Memory type / region is full, and we can't evict.
103 		 * Except possibly system, that returns -ENOMEM;
104 		 */
105 		return -ENXIO;
106 	default:
107 		break;
108 	}
109 
110 	return err;
111 }
112 
113 static enum ttm_caching
114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
115 {
116 	/*
117 	 * Objects only allowed in system get cached cpu-mappings, or when
118 	 * evicting lmem-only buffers to system for swapping. Other objects get
119 	 * WC mapping for now. Even if in system.
120 	 */
121 	if (obj->mm.n_placements <= 1)
122 		return ttm_cached;
123 
124 	return ttm_write_combined;
125 }
126 
127 static void
128 i915_ttm_place_from_region(const struct intel_memory_region *mr,
129 			   struct ttm_place *place,
130 			   resource_size_t offset,
131 			   resource_size_t size,
132 			   unsigned int flags)
133 {
134 	memset(place, 0, sizeof(*place));
135 	place->mem_type = intel_region_to_ttm_type(mr);
136 
137 	if (mr->type == INTEL_MEMORY_SYSTEM)
138 		return;
139 
140 	if (flags & I915_BO_ALLOC_CONTIGUOUS)
141 		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
142 	if (offset != I915_BO_INVALID_OFFSET) {
143 		place->fpfn = offset >> PAGE_SHIFT;
144 		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
145 	} else if (mr->io_size && mr->io_size < mr->total) {
146 		if (flags & I915_BO_ALLOC_GPU_ONLY) {
147 			place->flags |= TTM_PL_FLAG_TOPDOWN;
148 		} else {
149 			place->fpfn = 0;
150 			place->lpfn = mr->io_size >> PAGE_SHIFT;
151 		}
152 	}
153 }
154 
155 static void
156 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
157 			    struct ttm_place *requested,
158 			    struct ttm_place *busy,
159 			    struct ttm_placement *placement)
160 {
161 	unsigned int num_allowed = obj->mm.n_placements;
162 	unsigned int flags = obj->flags;
163 	unsigned int i;
164 
165 	placement->num_placement = 1;
166 	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
167 				   obj->mm.region, requested, obj->bo_offset,
168 				   obj->base.size, flags);
169 
170 	/* Cache this on object? */
171 	placement->num_busy_placement = num_allowed;
172 	for (i = 0; i < placement->num_busy_placement; ++i)
173 		i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
174 					   obj->bo_offset, obj->base.size, flags);
175 
176 	if (num_allowed == 0) {
177 		*busy = *requested;
178 		placement->num_busy_placement = 1;
179 	}
180 
181 	placement->placement = requested;
182 	placement->busy_placement = busy;
183 }
184 
185 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
186 				      struct ttm_tt *ttm,
187 				      struct ttm_operation_ctx *ctx)
188 {
189 	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
190 	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
191 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
192 	const unsigned int max_segment = i915_sg_segment_size();
193 	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
194 	struct file *filp = i915_tt->filp;
195 	struct sgt_iter sgt_iter;
196 	struct sg_table *st;
197 	struct page *page;
198 	unsigned long i;
199 	int err;
200 
201 	if (!filp) {
202 		struct address_space *mapping;
203 		gfp_t mask;
204 
205 		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
206 		if (IS_ERR(filp))
207 			return PTR_ERR(filp);
208 
209 		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
210 
211 		mapping = filp->f_mapping;
212 		mapping_set_gfp_mask(mapping, mask);
213 		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
214 
215 		i915_tt->filp = filp;
216 	}
217 
218 	st = &i915_tt->cached_rsgt.table;
219 	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
220 				   max_segment);
221 	if (err)
222 		return err;
223 
224 	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
225 			      DMA_ATTR_SKIP_CPU_SYNC);
226 	if (err)
227 		goto err_free_st;
228 
229 	i = 0;
230 	for_each_sgt_page(page, sgt_iter, st)
231 		ttm->pages[i++] = page;
232 
233 	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
234 		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
235 
236 	return 0;
237 
238 err_free_st:
239 	shmem_sg_free_table(st, filp->f_mapping, false, false);
240 
241 	return err;
242 }
243 
244 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
245 {
246 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
247 	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
248 	struct sg_table *st = &i915_tt->cached_rsgt.table;
249 
250 	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
251 			    backup, backup);
252 }
253 
254 static void i915_ttm_tt_release(struct kref *ref)
255 {
256 	struct i915_ttm_tt *i915_tt =
257 		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
258 	struct sg_table *st = &i915_tt->cached_rsgt.table;
259 
260 	GEM_WARN_ON(st->sgl);
261 
262 	kfree(i915_tt);
263 }
264 
265 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
266 	.release = i915_ttm_tt_release
267 };
268 
269 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
270 					 uint32_t page_flags)
271 {
272 	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
273 						     bdev);
274 	struct ttm_resource_manager *man =
275 		ttm_manager_type(bo->bdev, bo->resource->mem_type);
276 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
277 	unsigned long ccs_pages = 0;
278 	enum ttm_caching caching;
279 	struct i915_ttm_tt *i915_tt;
280 	int ret;
281 
282 	if (!obj)
283 		return NULL;
284 
285 	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
286 	if (!i915_tt)
287 		return NULL;
288 
289 	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
290 	    man->use_tt)
291 		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
292 
293 	caching = i915_ttm_select_tt_caching(obj);
294 	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
295 		page_flags |= TTM_TT_FLAG_EXTERNAL |
296 			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
297 		i915_tt->is_shmem = true;
298 	}
299 
300 	if (i915_gem_object_needs_ccs_pages(obj))
301 		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
302 						      NUM_BYTES_PER_CCS_BYTE),
303 					 PAGE_SIZE);
304 
305 	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
306 	if (ret)
307 		goto err_free;
308 
309 	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
310 			      &tt_rsgt_ops);
311 
312 	i915_tt->dev = obj->base.dev->dev;
313 
314 	return &i915_tt->ttm;
315 
316 err_free:
317 	kfree(i915_tt);
318 	return NULL;
319 }
320 
321 static int i915_ttm_tt_populate(struct ttm_device *bdev,
322 				struct ttm_tt *ttm,
323 				struct ttm_operation_ctx *ctx)
324 {
325 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
326 
327 	if (i915_tt->is_shmem)
328 		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
329 
330 	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
331 }
332 
333 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
334 {
335 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
336 	struct sg_table *st = &i915_tt->cached_rsgt.table;
337 
338 	if (st->sgl)
339 		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
340 
341 	if (i915_tt->is_shmem) {
342 		i915_ttm_tt_shmem_unpopulate(ttm);
343 	} else {
344 		sg_free_table(st);
345 		ttm_pool_free(&bdev->pool, ttm);
346 	}
347 }
348 
349 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
350 {
351 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
352 
353 	if (i915_tt->filp)
354 		fput(i915_tt->filp);
355 
356 	ttm_tt_fini(ttm);
357 	i915_refct_sgt_put(&i915_tt->cached_rsgt);
358 }
359 
360 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
361 				       const struct ttm_place *place)
362 {
363 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
364 	struct ttm_resource *res = bo->resource;
365 
366 	if (!obj)
367 		return false;
368 
369 	/*
370 	 * EXTERNAL objects should never be swapped out by TTM, instead we need
371 	 * to handle that ourselves. TTM will already skip such objects for us,
372 	 * but we would like to avoid grabbing locks for no good reason.
373 	 */
374 	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
375 		return false;
376 
377 	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
378 	if (!i915_gem_object_evictable(obj))
379 		return false;
380 
381 	switch (res->mem_type) {
382 	case I915_PL_LMEM0: {
383 		struct ttm_resource_manager *man =
384 			ttm_manager_type(bo->bdev, res->mem_type);
385 		struct i915_ttm_buddy_resource *bman_res =
386 			to_ttm_buddy_resource(res);
387 		struct drm_buddy *mm = bman_res->mm;
388 		struct drm_buddy_block *block;
389 
390 		if (!place->fpfn && !place->lpfn)
391 			return true;
392 
393 		GEM_BUG_ON(!place->lpfn);
394 
395 		/*
396 		 * If we just want something mappable then we can quickly check
397 		 * if the current victim resource is using any of the CPU
398 		 * visible portion.
399 		 */
400 		if (!place->fpfn &&
401 		    place->lpfn == i915_ttm_buddy_man_visible_size(man))
402 			return bman_res->used_visible_size > 0;
403 
404 		/* Real range allocation */
405 		list_for_each_entry(block, &bman_res->blocks, link) {
406 			unsigned long fpfn =
407 				drm_buddy_block_offset(block) >> PAGE_SHIFT;
408 			unsigned long lpfn = fpfn +
409 				(drm_buddy_block_size(mm, block) >> PAGE_SHIFT);
410 
411 			if (place->fpfn < lpfn && place->lpfn > fpfn)
412 				return true;
413 		}
414 		return false;
415 	} default:
416 		break;
417 	}
418 
419 	return true;
420 }
421 
422 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
423 				 struct ttm_placement *placement)
424 {
425 	*placement = i915_sys_placement;
426 }
427 
428 /**
429  * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
430  * @obj: The GEM object
431  * This function frees any LMEM-related information that is cached on
432  * the object. For example the radix tree for fast page lookup and the
433  * cached refcounted sg-table
434  */
435 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
436 {
437 	struct radix_tree_iter iter;
438 	void __rcu **slot;
439 
440 	if (!obj->ttm.cached_io_rsgt)
441 		return;
442 
443 	rcu_read_lock();
444 	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
445 		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
446 	rcu_read_unlock();
447 
448 	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
449 	obj->ttm.cached_io_rsgt = NULL;
450 }
451 
452 /**
453  * i915_ttm_purge - Clear an object of its memory
454  * @obj: The object
455  *
456  * This function is called to clear an object of it's memory when it is
457  * marked as not needed anymore.
458  *
459  * Return: 0 on success, negative error code on failure.
460  */
461 int i915_ttm_purge(struct drm_i915_gem_object *obj)
462 {
463 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
464 	struct i915_ttm_tt *i915_tt =
465 		container_of(bo->ttm, typeof(*i915_tt), ttm);
466 	struct ttm_operation_ctx ctx = {
467 		.interruptible = true,
468 		.no_wait_gpu = false,
469 	};
470 	struct ttm_placement place = {};
471 	int ret;
472 
473 	if (obj->mm.madv == __I915_MADV_PURGED)
474 		return 0;
475 
476 	ret = ttm_bo_validate(bo, &place, &ctx);
477 	if (ret)
478 		return ret;
479 
480 	if (bo->ttm && i915_tt->filp) {
481 		/*
482 		 * The below fput(which eventually calls shmem_truncate) might
483 		 * be delayed by worker, so when directly called to purge the
484 		 * pages(like by the shrinker) we should try to be more
485 		 * aggressive and release the pages immediately.
486 		 */
487 		shmem_truncate_range(file_inode(i915_tt->filp),
488 				     0, (loff_t)-1);
489 		fput(fetch_and_zero(&i915_tt->filp));
490 	}
491 
492 	obj->write_domain = 0;
493 	obj->read_domains = 0;
494 	i915_ttm_adjust_gem_after_move(obj);
495 	i915_ttm_free_cached_io_rsgt(obj);
496 	obj->mm.madv = __I915_MADV_PURGED;
497 
498 	return 0;
499 }
500 
501 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
502 {
503 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
504 	struct i915_ttm_tt *i915_tt =
505 		container_of(bo->ttm, typeof(*i915_tt), ttm);
506 	struct ttm_operation_ctx ctx = {
507 		.interruptible = true,
508 		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
509 	};
510 	struct ttm_placement place = {};
511 	int ret;
512 
513 	if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM)
514 		return 0;
515 
516 	GEM_BUG_ON(!i915_tt->is_shmem);
517 
518 	if (!i915_tt->filp)
519 		return 0;
520 
521 	ret = ttm_bo_wait_ctx(bo, &ctx);
522 	if (ret)
523 		return ret;
524 
525 	switch (obj->mm.madv) {
526 	case I915_MADV_DONTNEED:
527 		return i915_ttm_purge(obj);
528 	case __I915_MADV_PURGED:
529 		return 0;
530 	}
531 
532 	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
533 		return 0;
534 
535 	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
536 	ret = ttm_bo_validate(bo, &place, &ctx);
537 	if (ret) {
538 		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
539 		return ret;
540 	}
541 
542 	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
543 		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
544 
545 	return 0;
546 }
547 
548 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
549 {
550 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
551 
552 	if (likely(obj)) {
553 		__i915_gem_object_pages_fini(obj);
554 		i915_ttm_free_cached_io_rsgt(obj);
555 	}
556 }
557 
558 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
559 {
560 	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
561 	struct sg_table *st;
562 	int ret;
563 
564 	if (i915_tt->cached_rsgt.table.sgl)
565 		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
566 
567 	st = &i915_tt->cached_rsgt.table;
568 	ret = sg_alloc_table_from_pages_segment(st,
569 			ttm->pages, ttm->num_pages,
570 			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
571 			i915_sg_segment_size(), GFP_KERNEL);
572 	if (ret) {
573 		st->sgl = NULL;
574 		return ERR_PTR(ret);
575 	}
576 
577 	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
578 	if (ret) {
579 		sg_free_table(st);
580 		return ERR_PTR(ret);
581 	}
582 
583 	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
584 }
585 
586 /**
587  * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
588  * resource memory
589  * @obj: The GEM object used for sg-table caching
590  * @res: The struct ttm_resource for which an sg-table is requested.
591  *
592  * This function returns a refcounted sg-table representing the memory
593  * pointed to by @res. If @res is the object's current resource it may also
594  * cache the sg_table on the object or attempt to access an already cached
595  * sg-table. The refcounted sg-table needs to be put when no-longer in use.
596  *
597  * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
598  * failure.
599  */
600 struct i915_refct_sgt *
601 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
602 			 struct ttm_resource *res)
603 {
604 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
605 	u32 page_alignment;
606 
607 	if (!i915_ttm_gtt_binds_lmem(res))
608 		return i915_ttm_tt_get_st(bo->ttm);
609 
610 	page_alignment = bo->page_alignment << PAGE_SHIFT;
611 	if (!page_alignment)
612 		page_alignment = obj->mm.region->min_page_size;
613 
614 	/*
615 	 * If CPU mapping differs, we need to add the ttm_tt pages to
616 	 * the resulting st. Might make sense for GGTT.
617 	 */
618 	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
619 	if (bo->resource == res) {
620 		if (!obj->ttm.cached_io_rsgt) {
621 			struct i915_refct_sgt *rsgt;
622 
623 			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
624 								 res,
625 								 page_alignment);
626 			if (IS_ERR(rsgt))
627 				return rsgt;
628 
629 			obj->ttm.cached_io_rsgt = rsgt;
630 		}
631 		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
632 	}
633 
634 	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
635 						 page_alignment);
636 }
637 
638 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
639 {
640 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
641 	int err;
642 
643 	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
644 
645 	err = i915_ttm_move_notify(bo);
646 	if (err)
647 		return err;
648 
649 	return i915_ttm_purge(obj);
650 }
651 
652 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
653 {
654 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
655 	int ret;
656 
657 	if (!obj)
658 		return;
659 
660 	ret = i915_ttm_move_notify(bo);
661 	GEM_WARN_ON(ret);
662 	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
663 	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
664 		i915_ttm_purge(obj);
665 }
666 
667 /**
668  * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
669  * accessible.
670  * @res: The TTM resource to check.
671  *
672  * This is interesting on small-BAR systems where we may encounter lmem objects
673  * that can't be accessed via the CPU.
674  */
675 bool i915_ttm_resource_mappable(struct ttm_resource *res)
676 {
677 	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
678 
679 	if (!i915_ttm_cpu_maps_iomem(res))
680 		return true;
681 
682 	return bman_res->used_visible_size == bman_res->base.num_pages;
683 }
684 
685 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
686 {
687 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
688 	bool unknown_state;
689 
690 	if (!obj)
691 		return -EINVAL;
692 
693 	if (!kref_get_unless_zero(&obj->base.refcount))
694 		return -EINVAL;
695 
696 	assert_object_held(obj);
697 
698 	unknown_state = i915_gem_object_has_unknown_state(obj);
699 	i915_gem_object_put(obj);
700 	if (unknown_state)
701 		return -EINVAL;
702 
703 	if (!i915_ttm_cpu_maps_iomem(mem))
704 		return 0;
705 
706 	if (!i915_ttm_resource_mappable(mem))
707 		return -EINVAL;
708 
709 	mem->bus.caching = ttm_write_combined;
710 	mem->bus.is_iomem = true;
711 
712 	return 0;
713 }
714 
715 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
716 					 unsigned long page_offset)
717 {
718 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
719 	struct scatterlist *sg;
720 	unsigned long base;
721 	unsigned int ofs;
722 
723 	GEM_BUG_ON(!obj);
724 	GEM_WARN_ON(bo->ttm);
725 
726 	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
727 	sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
728 
729 	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
730 }
731 
732 /*
733  * All callbacks need to take care not to downcast a struct ttm_buffer_object
734  * without checking its subclass, since it might be a TTM ghost object.
735  */
736 static struct ttm_device_funcs i915_ttm_bo_driver = {
737 	.ttm_tt_create = i915_ttm_tt_create,
738 	.ttm_tt_populate = i915_ttm_tt_populate,
739 	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
740 	.ttm_tt_destroy = i915_ttm_tt_destroy,
741 	.eviction_valuable = i915_ttm_eviction_valuable,
742 	.evict_flags = i915_ttm_evict_flags,
743 	.move = i915_ttm_move,
744 	.swap_notify = i915_ttm_swap_notify,
745 	.delete_mem_notify = i915_ttm_delete_mem_notify,
746 	.io_mem_reserve = i915_ttm_io_mem_reserve,
747 	.io_mem_pfn = i915_ttm_io_mem_pfn,
748 };
749 
750 /**
751  * i915_ttm_driver - Return a pointer to the TTM device funcs
752  *
753  * Return: Pointer to statically allocated TTM device funcs.
754  */
755 struct ttm_device_funcs *i915_ttm_driver(void)
756 {
757 	return &i915_ttm_bo_driver;
758 }
759 
760 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
761 				struct ttm_placement *placement)
762 {
763 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
764 	struct ttm_operation_ctx ctx = {
765 		.interruptible = true,
766 		.no_wait_gpu = false,
767 	};
768 	int real_num_busy;
769 	int ret;
770 
771 	/* First try only the requested placement. No eviction. */
772 	real_num_busy = fetch_and_zero(&placement->num_busy_placement);
773 	ret = ttm_bo_validate(bo, placement, &ctx);
774 	if (ret) {
775 		ret = i915_ttm_err_to_gem(ret);
776 		/*
777 		 * Anything that wants to restart the operation gets to
778 		 * do that.
779 		 */
780 		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
781 		    ret == -EAGAIN)
782 			return ret;
783 
784 		/*
785 		 * If the initial attempt fails, allow all accepted placements,
786 		 * evicting if necessary.
787 		 */
788 		placement->num_busy_placement = real_num_busy;
789 		ret = ttm_bo_validate(bo, placement, &ctx);
790 		if (ret)
791 			return i915_ttm_err_to_gem(ret);
792 	}
793 
794 	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
795 		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
796 		if (ret)
797 			return ret;
798 
799 		i915_ttm_adjust_domains_after_move(obj);
800 		i915_ttm_adjust_gem_after_move(obj);
801 	}
802 
803 	if (!i915_gem_object_has_pages(obj)) {
804 		struct i915_refct_sgt *rsgt =
805 			i915_ttm_resource_get_st(obj, bo->resource);
806 
807 		if (IS_ERR(rsgt))
808 			return PTR_ERR(rsgt);
809 
810 		GEM_BUG_ON(obj->mm.rsgt);
811 		obj->mm.rsgt = rsgt;
812 		__i915_gem_object_set_pages(obj, &rsgt->table,
813 					    i915_sg_dma_sizes(rsgt->table.sgl));
814 	}
815 
816 	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
817 	i915_ttm_adjust_lru(obj);
818 	return ret;
819 }
820 
821 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
822 {
823 	struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
824 	struct ttm_placement placement;
825 
826 	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
827 
828 	/* Move to the requested placement. */
829 	i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
830 
831 	return __i915_ttm_get_pages(obj, &placement);
832 }
833 
834 /**
835  * DOC: Migration vs eviction
836  *
837  * GEM migration may not be the same as TTM migration / eviction. If
838  * the TTM core decides to evict an object it may be evicted to a
839  * TTM memory type that is not in the object's allowable GEM regions, or
840  * in fact theoretically to a TTM memory type that doesn't correspond to
841  * a GEM memory region. In that case the object's GEM region is not
842  * updated, and the data is migrated back to the GEM region at
843  * get_pages time. TTM may however set up CPU ptes to the object even
844  * when it is evicted.
845  * Gem forced migration using the i915_ttm_migrate() op, is allowed even
846  * to regions that are not in the object's list of allowable placements.
847  */
848 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
849 			      struct intel_memory_region *mr,
850 			      unsigned int flags)
851 {
852 	struct ttm_place requested;
853 	struct ttm_placement placement;
854 	int ret;
855 
856 	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
857 				   obj->base.size, flags);
858 	placement.num_placement = 1;
859 	placement.num_busy_placement = 1;
860 	placement.placement = &requested;
861 	placement.busy_placement = &requested;
862 
863 	ret = __i915_ttm_get_pages(obj, &placement);
864 	if (ret)
865 		return ret;
866 
867 	/*
868 	 * Reinitialize the region bindings. This is primarily
869 	 * required for objects where the new region is not in
870 	 * its allowable placements.
871 	 */
872 	if (obj->mm.region != mr) {
873 		i915_gem_object_release_memory_region(obj);
874 		i915_gem_object_init_memory_region(obj, mr);
875 	}
876 
877 	return 0;
878 }
879 
880 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
881 			    struct intel_memory_region *mr)
882 {
883 	return __i915_ttm_migrate(obj, mr, obj->flags);
884 }
885 
886 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
887 			       struct sg_table *st)
888 {
889 	/*
890 	 * We're currently not called from a shrinker, so put_pages()
891 	 * typically means the object is about to destroyed, or called
892 	 * from move_notify(). So just avoid doing much for now.
893 	 * If the object is not destroyed next, The TTM eviction logic
894 	 * and shrinkers will move it out if needed.
895 	 */
896 
897 	if (obj->mm.rsgt)
898 		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
899 }
900 
901 /**
902  * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
903  * @obj: The object
904  */
905 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
906 {
907 	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
908 	struct i915_ttm_tt *i915_tt =
909 		container_of(bo->ttm, typeof(*i915_tt), ttm);
910 	bool shrinkable =
911 		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
912 
913 	/*
914 	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
915 	 * We're called through i915_ttm_delete_mem_notify().
916 	 */
917 	if (!kref_read(&bo->kref))
918 		return;
919 
920 	/*
921 	 * We skip managing the shrinker LRU in set_pages() and just manage
922 	 * everything here. This does at least solve the issue with having
923 	 * temporary shmem mappings(like with evicted lmem) not being visible to
924 	 * the shrinker. Only our shmem objects are shrinkable, everything else
925 	 * we keep as unshrinkable.
926 	 *
927 	 * To make sure everything plays nice we keep an extra shrink pin in TTM
928 	 * if the underlying pages are not currently shrinkable. Once we release
929 	 * our pin, like when the pages are moved to shmem, the pages will then
930 	 * be added to the shrinker LRU, assuming the caller isn't also holding
931 	 * a pin.
932 	 *
933 	 * TODO: consider maybe also bumping the shrinker list here when we have
934 	 * already unpinned it, which should give us something more like an LRU.
935 	 *
936 	 * TODO: There is a small window of opportunity for this function to
937 	 * get called from eviction after we've dropped the last GEM refcount,
938 	 * but before the TTM deleted flag is set on the object. Avoid
939 	 * adjusting the shrinker list in such cases, since the object is
940 	 * not available to the shrinker anyway due to its zero refcount.
941 	 * To fix this properly we should move to a TTM shrinker LRU list for
942 	 * these objects.
943 	 */
944 	if (kref_get_unless_zero(&obj->base.refcount)) {
945 		if (shrinkable != obj->mm.ttm_shrinkable) {
946 			if (shrinkable) {
947 				if (obj->mm.madv == I915_MADV_WILLNEED)
948 					__i915_gem_object_make_shrinkable(obj);
949 				else
950 					__i915_gem_object_make_purgeable(obj);
951 			} else {
952 				i915_gem_object_make_unshrinkable(obj);
953 			}
954 
955 			obj->mm.ttm_shrinkable = shrinkable;
956 		}
957 		i915_gem_object_put(obj);
958 	}
959 
960 	/*
961 	 * Put on the correct LRU list depending on the MADV status
962 	 */
963 	spin_lock(&bo->bdev->lru_lock);
964 	if (shrinkable) {
965 		/* Try to keep shmem_tt from being considered for shrinking. */
966 		bo->priority = TTM_MAX_BO_PRIORITY - 1;
967 	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
968 		bo->priority = I915_TTM_PRIO_PURGE;
969 	} else if (!i915_gem_object_has_pages(obj)) {
970 		bo->priority = I915_TTM_PRIO_NO_PAGES;
971 	} else {
972 		struct ttm_resource_manager *man =
973 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
974 
975 		/*
976 		 * If we need to place an LMEM resource which doesn't need CPU
977 		 * access then we should try not to victimize mappable objects
978 		 * first, since we likely end up stealing more of the mappable
979 		 * portion. And likewise when we try to find space for a mappble
980 		 * object, we know not to ever victimize objects that don't
981 		 * occupy any mappable pages.
982 		 */
983 		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
984 		    i915_ttm_buddy_man_visible_size(man) < man->size &&
985 		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
986 			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
987 		else
988 			bo->priority = I915_TTM_PRIO_HAS_PAGES;
989 	}
990 
991 	ttm_bo_move_to_lru_tail(bo);
992 	spin_unlock(&bo->bdev->lru_lock);
993 }
994 
995 /*
996  * TTM-backed gem object destruction requires some clarification.
997  * Basically we have two possibilities here. We can either rely on the
998  * i915 delayed destruction and put the TTM object when the object
999  * is idle. This would be detected by TTM which would bypass the
1000  * TTM delayed destroy handling. The other approach is to put the TTM
1001  * object early and rely on the TTM destroyed handling, and then free
1002  * the leftover parts of the GEM object once TTM's destroyed list handling is
1003  * complete. For now, we rely on the latter for two reasons:
1004  * a) TTM can evict an object even when it's on the delayed destroy list,
1005  * which in theory allows for complete eviction.
1006  * b) There is work going on in TTM to allow freeing an object even when
1007  * it's not idle, and using the TTM destroyed list handling could help us
1008  * benefit from that.
1009  */
1010 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1011 {
1012 	GEM_BUG_ON(!obj->ttm.created);
1013 
1014 	ttm_bo_put(i915_gem_to_ttm(obj));
1015 }
1016 
1017 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1018 {
1019 	struct vm_area_struct *area = vmf->vma;
1020 	struct ttm_buffer_object *bo = area->vm_private_data;
1021 	struct drm_device *dev = bo->base.dev;
1022 	struct drm_i915_gem_object *obj;
1023 	vm_fault_t ret;
1024 	int idx;
1025 
1026 	obj = i915_ttm_to_gem(bo);
1027 	if (!obj)
1028 		return VM_FAULT_SIGBUS;
1029 
1030 	/* Sanity check that we allow writing into this object */
1031 	if (unlikely(i915_gem_object_is_readonly(obj) &&
1032 		     area->vm_flags & VM_WRITE))
1033 		return VM_FAULT_SIGBUS;
1034 
1035 	ret = ttm_bo_vm_reserve(bo, vmf);
1036 	if (ret)
1037 		return ret;
1038 
1039 	if (obj->mm.madv != I915_MADV_WILLNEED) {
1040 		dma_resv_unlock(bo->base.resv);
1041 		return VM_FAULT_SIGBUS;
1042 	}
1043 
1044 	if (!i915_ttm_resource_mappable(bo->resource)) {
1045 		int err = -ENODEV;
1046 		int i;
1047 
1048 		for (i = 0; i < obj->mm.n_placements; i++) {
1049 			struct intel_memory_region *mr = obj->mm.placements[i];
1050 			unsigned int flags;
1051 
1052 			if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
1053 				continue;
1054 
1055 			flags = obj->flags;
1056 			flags &= ~I915_BO_ALLOC_GPU_ONLY;
1057 			err = __i915_ttm_migrate(obj, mr, flags);
1058 			if (!err)
1059 				break;
1060 		}
1061 
1062 		if (err) {
1063 			drm_dbg(dev, "Unable to make resource CPU accessible\n");
1064 			dma_resv_unlock(bo->base.resv);
1065 			return VM_FAULT_SIGBUS;
1066 		}
1067 	}
1068 
1069 	if (drm_dev_enter(dev, &idx)) {
1070 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1071 					       TTM_BO_VM_NUM_PREFAULT);
1072 		drm_dev_exit(idx);
1073 	} else {
1074 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1075 	}
1076 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1077 		return ret;
1078 
1079 	i915_ttm_adjust_lru(obj);
1080 
1081 	dma_resv_unlock(bo->base.resv);
1082 	return ret;
1083 }
1084 
1085 static int
1086 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1087 	      void *buf, int len, int write)
1088 {
1089 	struct drm_i915_gem_object *obj =
1090 		i915_ttm_to_gem(area->vm_private_data);
1091 
1092 	if (i915_gem_object_is_readonly(obj) && write)
1093 		return -EACCES;
1094 
1095 	return ttm_bo_vm_access(area, addr, buf, len, write);
1096 }
1097 
1098 static void ttm_vm_open(struct vm_area_struct *vma)
1099 {
1100 	struct drm_i915_gem_object *obj =
1101 		i915_ttm_to_gem(vma->vm_private_data);
1102 
1103 	GEM_BUG_ON(!obj);
1104 	i915_gem_object_get(obj);
1105 }
1106 
1107 static void ttm_vm_close(struct vm_area_struct *vma)
1108 {
1109 	struct drm_i915_gem_object *obj =
1110 		i915_ttm_to_gem(vma->vm_private_data);
1111 
1112 	GEM_BUG_ON(!obj);
1113 	i915_gem_object_put(obj);
1114 }
1115 
1116 static const struct vm_operations_struct vm_ops_ttm = {
1117 	.fault = vm_fault_ttm,
1118 	.access = vm_access_ttm,
1119 	.open = ttm_vm_open,
1120 	.close = ttm_vm_close,
1121 };
1122 
1123 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1124 {
1125 	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1126 	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1127 
1128 	return drm_vma_node_offset_addr(&obj->base.vma_node);
1129 }
1130 
1131 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1132 {
1133 	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1134 }
1135 
1136 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1137 	.name = "i915_gem_object_ttm",
1138 	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1139 		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1140 
1141 	.get_pages = i915_ttm_get_pages,
1142 	.put_pages = i915_ttm_put_pages,
1143 	.truncate = i915_ttm_truncate,
1144 	.shrink = i915_ttm_shrink,
1145 
1146 	.adjust_lru = i915_ttm_adjust_lru,
1147 	.delayed_free = i915_ttm_delayed_free,
1148 	.migrate = i915_ttm_migrate,
1149 
1150 	.mmap_offset = i915_ttm_mmap_offset,
1151 	.unmap_virtual = i915_ttm_unmap_virtual,
1152 	.mmap_ops = &vm_ops_ttm,
1153 };
1154 
1155 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1156 {
1157 	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1158 
1159 	i915_gem_object_release_memory_region(obj);
1160 	mutex_destroy(&obj->ttm.get_io_page.lock);
1161 
1162 	if (obj->ttm.created) {
1163 		/*
1164 		 * We freely manage the shrinker LRU outide of the mm.pages life
1165 		 * cycle. As a result when destroying the object we should be
1166 		 * extra paranoid and ensure we remove it from the LRU, before
1167 		 * we free the object.
1168 		 *
1169 		 * Touching the ttm_shrinkable outside of the object lock here
1170 		 * should be safe now that the last GEM object ref was dropped.
1171 		 */
1172 		if (obj->mm.ttm_shrinkable)
1173 			i915_gem_object_make_unshrinkable(obj);
1174 
1175 		i915_ttm_backup_free(obj);
1176 
1177 		/* This releases all gem object bindings to the backend. */
1178 		__i915_gem_free_object(obj);
1179 
1180 		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1181 	} else {
1182 		__i915_gem_object_fini(obj);
1183 	}
1184 }
1185 
1186 /**
1187  * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1188  * @mem: The initial memory region for the object.
1189  * @obj: The gem object.
1190  * @size: Object size in bytes.
1191  * @flags: gem object flags.
1192  *
1193  * Return: 0 on success, negative error code on failure.
1194  */
1195 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1196 			       struct drm_i915_gem_object *obj,
1197 			       resource_size_t offset,
1198 			       resource_size_t size,
1199 			       resource_size_t page_size,
1200 			       unsigned int flags)
1201 {
1202 	static struct lock_class_key lock_class;
1203 	struct drm_i915_private *i915 = mem->i915;
1204 	struct ttm_operation_ctx ctx = {
1205 		.interruptible = true,
1206 		.no_wait_gpu = false,
1207 	};
1208 	enum ttm_bo_type bo_type;
1209 	int ret;
1210 
1211 	drm_gem_private_object_init(&i915->drm, &obj->base, size);
1212 	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1213 
1214 	obj->bo_offset = offset;
1215 
1216 	/* Don't put on a region list until we're either locked or fully initialized. */
1217 	obj->mm.region = mem;
1218 	INIT_LIST_HEAD(&obj->mm.region_link);
1219 
1220 	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1221 	mutex_init(&obj->ttm.get_io_page.lock);
1222 	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1223 		ttm_bo_type_kernel;
1224 
1225 	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1226 
1227 	/* Forcing the page size is kernel internal only */
1228 	GEM_BUG_ON(page_size && obj->mm.n_placements);
1229 
1230 	/*
1231 	 * Keep an extra shrink pin to prevent the object from being made
1232 	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1233 	 * drop the pin. The TTM backend manages the shrinker LRU itself,
1234 	 * outside of the normal mm.pages life cycle.
1235 	 */
1236 	i915_gem_object_make_unshrinkable(obj);
1237 
1238 	/*
1239 	 * If this function fails, it will call the destructor, but
1240 	 * our caller still owns the object. So no freeing in the
1241 	 * destructor until obj->ttm.created is true.
1242 	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1243 	 * until successful initialization.
1244 	 */
1245 	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
1246 				   bo_type, &i915_sys_placement,
1247 				   page_size >> PAGE_SHIFT,
1248 				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
1249 	if (ret)
1250 		return i915_ttm_err_to_gem(ret);
1251 
1252 	obj->ttm.created = true;
1253 	i915_gem_object_release_memory_region(obj);
1254 	i915_gem_object_init_memory_region(obj, mem);
1255 	i915_ttm_adjust_domains_after_move(obj);
1256 	i915_ttm_adjust_gem_after_move(obj);
1257 	i915_gem_object_unlock(obj);
1258 
1259 	return 0;
1260 }
1261 
1262 static const struct intel_memory_region_ops ttm_system_region_ops = {
1263 	.init_object = __i915_gem_ttm_object_init,
1264 	.release = intel_region_ttm_fini,
1265 };
1266 
1267 struct intel_memory_region *
1268 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1269 			  u16 type, u16 instance)
1270 {
1271 	struct intel_memory_region *mr;
1272 
1273 	mr = intel_memory_region_create(i915, 0,
1274 					totalram_pages() << PAGE_SHIFT,
1275 					PAGE_SIZE, 0, 0,
1276 					type, instance,
1277 					&ttm_system_region_ops);
1278 	if (IS_ERR(mr))
1279 		return mr;
1280 
1281 	intel_memory_region_set_name(mr, "system-ttm");
1282 	return mr;
1283 }
1284