1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <linux/shmem_fs.h> 7 8 #include <drm/ttm/ttm_placement.h> 9 #include <drm/ttm/ttm_tt.h> 10 #include <drm/drm_buddy.h> 11 12 #include "i915_drv.h" 13 #include "i915_ttm_buddy_manager.h" 14 #include "intel_memory_region.h" 15 #include "intel_region_ttm.h" 16 17 #include "gem/i915_gem_mman.h" 18 #include "gem/i915_gem_object.h" 19 #include "gem/i915_gem_region.h" 20 #include "gem/i915_gem_ttm.h" 21 #include "gem/i915_gem_ttm_move.h" 22 #include "gem/i915_gem_ttm_pm.h" 23 #include "gt/intel_gpu_commands.h" 24 25 #define I915_TTM_PRIO_PURGE 0 26 #define I915_TTM_PRIO_NO_PAGES 1 27 #define I915_TTM_PRIO_HAS_PAGES 2 28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3 29 30 /* 31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs 32 */ 33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN 34 35 /** 36 * struct i915_ttm_tt - TTM page vector with additional private information 37 * @ttm: The base TTM page vector. 38 * @dev: The struct device used for dma mapping and unmapping. 39 * @cached_rsgt: The cached scatter-gather table. 40 * @is_shmem: Set if using shmem. 41 * @filp: The shmem file, if using shmem backend. 42 * 43 * Note that DMA may be going on right up to the point where the page- 44 * vector is unpopulated in delayed destroy. Hence keep the 45 * scatter-gather table mapped and cached up to that point. This is 46 * different from the cached gem object io scatter-gather table which 47 * doesn't have an associated dma mapping. 48 */ 49 struct i915_ttm_tt { 50 struct ttm_tt ttm; 51 struct device *dev; 52 struct i915_refct_sgt cached_rsgt; 53 54 bool is_shmem; 55 struct file *filp; 56 }; 57 58 static const struct ttm_place sys_placement_flags = { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = I915_PL_SYSTEM, 62 .flags = 0, 63 }; 64 65 static struct ttm_placement i915_sys_placement = { 66 .num_placement = 1, 67 .placement = &sys_placement_flags, 68 .num_busy_placement = 1, 69 .busy_placement = &sys_placement_flags, 70 }; 71 72 /** 73 * i915_ttm_sys_placement - Return the struct ttm_placement to be 74 * used for an object in system memory. 75 * 76 * Rather than making the struct extern, use this 77 * function. 78 * 79 * Return: A pointer to a static variable for sys placement. 80 */ 81 struct ttm_placement *i915_ttm_sys_placement(void) 82 { 83 return &i915_sys_placement; 84 } 85 86 static int i915_ttm_err_to_gem(int err) 87 { 88 /* Fastpath */ 89 if (likely(!err)) 90 return 0; 91 92 switch (err) { 93 case -EBUSY: 94 /* 95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to 96 * restart the operation, since we don't record the contending 97 * lock. We use -EAGAIN to restart. 98 */ 99 return -EAGAIN; 100 case -ENOSPC: 101 /* 102 * Memory type / region is full, and we can't evict. 103 * Except possibly system, that returns -ENOMEM; 104 */ 105 return -ENXIO; 106 default: 107 break; 108 } 109 110 return err; 111 } 112 113 static enum ttm_caching 114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj) 115 { 116 /* 117 * Objects only allowed in system get cached cpu-mappings, or when 118 * evicting lmem-only buffers to system for swapping. Other objects get 119 * WC mapping for now. Even if in system. 120 */ 121 if (obj->mm.n_placements <= 1) 122 return ttm_cached; 123 124 return ttm_write_combined; 125 } 126 127 static void 128 i915_ttm_place_from_region(const struct intel_memory_region *mr, 129 struct ttm_place *place, 130 resource_size_t offset, 131 resource_size_t size, 132 unsigned int flags) 133 { 134 memset(place, 0, sizeof(*place)); 135 place->mem_type = intel_region_to_ttm_type(mr); 136 137 if (mr->type == INTEL_MEMORY_SYSTEM) 138 return; 139 140 if (flags & I915_BO_ALLOC_CONTIGUOUS) 141 place->flags |= TTM_PL_FLAG_CONTIGUOUS; 142 if (offset != I915_BO_INVALID_OFFSET) { 143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn)); 144 place->fpfn = offset >> PAGE_SHIFT; 145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn)); 146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT); 147 } else if (mr->io_size && mr->io_size < mr->total) { 148 if (flags & I915_BO_ALLOC_GPU_ONLY) { 149 place->flags |= TTM_PL_FLAG_TOPDOWN; 150 } else { 151 place->fpfn = 0; 152 WARN_ON(overflows_type(mr->io_size >> PAGE_SHIFT, place->lpfn)); 153 place->lpfn = mr->io_size >> PAGE_SHIFT; 154 } 155 } 156 } 157 158 static void 159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj, 160 struct ttm_place *requested, 161 struct ttm_place *busy, 162 struct ttm_placement *placement) 163 { 164 unsigned int num_allowed = obj->mm.n_placements; 165 unsigned int flags = obj->flags; 166 unsigned int i; 167 168 placement->num_placement = 1; 169 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] : 170 obj->mm.region, requested, obj->bo_offset, 171 obj->base.size, flags); 172 173 /* Cache this on object? */ 174 placement->num_busy_placement = num_allowed; 175 for (i = 0; i < placement->num_busy_placement; ++i) 176 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, 177 obj->bo_offset, obj->base.size, flags); 178 179 if (num_allowed == 0) { 180 *busy = *requested; 181 placement->num_busy_placement = 1; 182 } 183 184 placement->placement = requested; 185 placement->busy_placement = busy; 186 } 187 188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev, 189 struct ttm_tt *ttm, 190 struct ttm_operation_ctx *ctx) 191 { 192 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 193 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM]; 194 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 195 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 196 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT; 197 struct file *filp = i915_tt->filp; 198 struct sgt_iter sgt_iter; 199 struct sg_table *st; 200 struct page *page; 201 unsigned long i; 202 int err; 203 204 if (!filp) { 205 struct address_space *mapping; 206 gfp_t mask; 207 208 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE); 209 if (IS_ERR(filp)) 210 return PTR_ERR(filp); 211 212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 213 214 mapping = filp->f_mapping; 215 mapping_set_gfp_mask(mapping, mask); 216 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 217 218 i915_tt->filp = filp; 219 } 220 221 st = &i915_tt->cached_rsgt.table; 222 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping, 223 max_segment); 224 if (err) 225 return err; 226 227 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 228 DMA_ATTR_SKIP_CPU_SYNC); 229 if (err) 230 goto err_free_st; 231 232 i = 0; 233 for_each_sgt_page(page, sgt_iter, st) 234 ttm->pages[i++] = page; 235 236 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED) 237 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 238 239 return 0; 240 241 err_free_st: 242 shmem_sg_free_table(st, filp->f_mapping, false, false); 243 244 return err; 245 } 246 247 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm) 248 { 249 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 250 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED; 251 struct sg_table *st = &i915_tt->cached_rsgt.table; 252 253 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping, 254 backup, backup); 255 } 256 257 static void i915_ttm_tt_release(struct kref *ref) 258 { 259 struct i915_ttm_tt *i915_tt = 260 container_of(ref, typeof(*i915_tt), cached_rsgt.kref); 261 struct sg_table *st = &i915_tt->cached_rsgt.table; 262 263 GEM_WARN_ON(st->sgl); 264 265 kfree(i915_tt); 266 } 267 268 static const struct i915_refct_sgt_ops tt_rsgt_ops = { 269 .release = i915_ttm_tt_release 270 }; 271 272 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo, 273 uint32_t page_flags) 274 { 275 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 276 bdev); 277 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 278 unsigned long ccs_pages = 0; 279 enum ttm_caching caching; 280 struct i915_ttm_tt *i915_tt; 281 int ret; 282 283 if (i915_ttm_is_ghost_object(bo)) 284 return NULL; 285 286 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL); 287 if (!i915_tt) 288 return NULL; 289 290 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource || 291 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt)) 292 page_flags |= TTM_TT_FLAG_ZERO_ALLOC; 293 294 caching = i915_ttm_select_tt_caching(obj); 295 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) { 296 page_flags |= TTM_TT_FLAG_EXTERNAL | 297 TTM_TT_FLAG_EXTERNAL_MAPPABLE; 298 i915_tt->is_shmem = true; 299 } 300 301 if (i915_gem_object_needs_ccs_pages(obj)) 302 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size, 303 NUM_BYTES_PER_CCS_BYTE), 304 PAGE_SIZE); 305 306 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages); 307 if (ret) 308 goto err_free; 309 310 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size, 311 &tt_rsgt_ops); 312 313 i915_tt->dev = obj->base.dev->dev; 314 315 return &i915_tt->ttm; 316 317 err_free: 318 kfree(i915_tt); 319 return NULL; 320 } 321 322 static int i915_ttm_tt_populate(struct ttm_device *bdev, 323 struct ttm_tt *ttm, 324 struct ttm_operation_ctx *ctx) 325 { 326 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 327 328 if (i915_tt->is_shmem) 329 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx); 330 331 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 332 } 333 334 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) 335 { 336 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 337 struct sg_table *st = &i915_tt->cached_rsgt.table; 338 339 if (st->sgl) 340 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 341 342 if (i915_tt->is_shmem) { 343 i915_ttm_tt_shmem_unpopulate(ttm); 344 } else { 345 sg_free_table(st); 346 ttm_pool_free(&bdev->pool, ttm); 347 } 348 } 349 350 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 351 { 352 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 353 354 if (i915_tt->filp) 355 fput(i915_tt->filp); 356 357 ttm_tt_fini(ttm); 358 i915_refct_sgt_put(&i915_tt->cached_rsgt); 359 } 360 361 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo, 362 const struct ttm_place *place) 363 { 364 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 365 366 if (i915_ttm_is_ghost_object(bo)) 367 return false; 368 369 /* 370 * EXTERNAL objects should never be swapped out by TTM, instead we need 371 * to handle that ourselves. TTM will already skip such objects for us, 372 * but we would like to avoid grabbing locks for no good reason. 373 */ 374 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 375 return false; 376 377 /* Will do for now. Our pinned objects are still on TTM's LRU lists */ 378 if (!i915_gem_object_evictable(obj)) 379 return false; 380 381 return ttm_bo_eviction_valuable(bo, place); 382 } 383 384 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo, 385 struct ttm_placement *placement) 386 { 387 *placement = i915_sys_placement; 388 } 389 390 /** 391 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information 392 * @obj: The GEM object 393 * This function frees any LMEM-related information that is cached on 394 * the object. For example the radix tree for fast page lookup and the 395 * cached refcounted sg-table 396 */ 397 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj) 398 { 399 struct radix_tree_iter iter; 400 void __rcu **slot; 401 402 if (!obj->ttm.cached_io_rsgt) 403 return; 404 405 rcu_read_lock(); 406 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0) 407 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index); 408 rcu_read_unlock(); 409 410 i915_refct_sgt_put(obj->ttm.cached_io_rsgt); 411 obj->ttm.cached_io_rsgt = NULL; 412 } 413 414 /** 415 * i915_ttm_purge - Clear an object of its memory 416 * @obj: The object 417 * 418 * This function is called to clear an object of it's memory when it is 419 * marked as not needed anymore. 420 * 421 * Return: 0 on success, negative error code on failure. 422 */ 423 int i915_ttm_purge(struct drm_i915_gem_object *obj) 424 { 425 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 426 struct i915_ttm_tt *i915_tt = 427 container_of(bo->ttm, typeof(*i915_tt), ttm); 428 struct ttm_operation_ctx ctx = { 429 .interruptible = true, 430 .no_wait_gpu = false, 431 }; 432 struct ttm_placement place = {}; 433 int ret; 434 435 if (obj->mm.madv == __I915_MADV_PURGED) 436 return 0; 437 438 ret = ttm_bo_validate(bo, &place, &ctx); 439 if (ret) 440 return ret; 441 442 if (bo->ttm && i915_tt->filp) { 443 /* 444 * The below fput(which eventually calls shmem_truncate) might 445 * be delayed by worker, so when directly called to purge the 446 * pages(like by the shrinker) we should try to be more 447 * aggressive and release the pages immediately. 448 */ 449 shmem_truncate_range(file_inode(i915_tt->filp), 450 0, (loff_t)-1); 451 fput(fetch_and_zero(&i915_tt->filp)); 452 } 453 454 obj->write_domain = 0; 455 obj->read_domains = 0; 456 i915_ttm_adjust_gem_after_move(obj); 457 i915_ttm_free_cached_io_rsgt(obj); 458 obj->mm.madv = __I915_MADV_PURGED; 459 460 return 0; 461 } 462 463 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 464 { 465 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 466 struct i915_ttm_tt *i915_tt = 467 container_of(bo->ttm, typeof(*i915_tt), ttm); 468 struct ttm_operation_ctx ctx = { 469 .interruptible = true, 470 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT, 471 }; 472 struct ttm_placement place = {}; 473 int ret; 474 475 if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM) 476 return 0; 477 478 GEM_BUG_ON(!i915_tt->is_shmem); 479 480 if (!i915_tt->filp) 481 return 0; 482 483 ret = ttm_bo_wait_ctx(bo, &ctx); 484 if (ret) 485 return ret; 486 487 switch (obj->mm.madv) { 488 case I915_MADV_DONTNEED: 489 return i915_ttm_purge(obj); 490 case __I915_MADV_PURGED: 491 return 0; 492 } 493 494 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) 495 return 0; 496 497 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED; 498 ret = ttm_bo_validate(bo, &place, &ctx); 499 if (ret) { 500 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 501 return ret; 502 } 503 504 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 505 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping); 506 507 return 0; 508 } 509 510 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo) 511 { 512 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 513 514 if (bo->resource && !i915_ttm_is_ghost_object(bo)) { 515 __i915_gem_object_pages_fini(obj); 516 i915_ttm_free_cached_io_rsgt(obj); 517 } 518 } 519 520 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm) 521 { 522 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 523 struct sg_table *st; 524 int ret; 525 526 if (i915_tt->cached_rsgt.table.sgl) 527 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 528 529 st = &i915_tt->cached_rsgt.table; 530 ret = sg_alloc_table_from_pages_segment(st, 531 ttm->pages, ttm->num_pages, 532 0, (unsigned long)ttm->num_pages << PAGE_SHIFT, 533 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL); 534 if (ret) { 535 st->sgl = NULL; 536 return ERR_PTR(ret); 537 } 538 539 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 540 if (ret) { 541 sg_free_table(st); 542 return ERR_PTR(ret); 543 } 544 545 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 546 } 547 548 /** 549 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the 550 * resource memory 551 * @obj: The GEM object used for sg-table caching 552 * @res: The struct ttm_resource for which an sg-table is requested. 553 * 554 * This function returns a refcounted sg-table representing the memory 555 * pointed to by @res. If @res is the object's current resource it may also 556 * cache the sg_table on the object or attempt to access an already cached 557 * sg-table. The refcounted sg-table needs to be put when no-longer in use. 558 * 559 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on 560 * failure. 561 */ 562 struct i915_refct_sgt * 563 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj, 564 struct ttm_resource *res) 565 { 566 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 567 u32 page_alignment; 568 569 if (!i915_ttm_gtt_binds_lmem(res)) 570 return i915_ttm_tt_get_st(bo->ttm); 571 572 page_alignment = bo->page_alignment << PAGE_SHIFT; 573 if (!page_alignment) 574 page_alignment = obj->mm.region->min_page_size; 575 576 /* 577 * If CPU mapping differs, we need to add the ttm_tt pages to 578 * the resulting st. Might make sense for GGTT. 579 */ 580 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res)); 581 if (bo->resource == res) { 582 if (!obj->ttm.cached_io_rsgt) { 583 struct i915_refct_sgt *rsgt; 584 585 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region, 586 res, 587 page_alignment); 588 if (IS_ERR(rsgt)) 589 return rsgt; 590 591 obj->ttm.cached_io_rsgt = rsgt; 592 } 593 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt); 594 } 595 596 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res, 597 page_alignment); 598 } 599 600 static int i915_ttm_truncate(struct drm_i915_gem_object *obj) 601 { 602 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 603 long err; 604 605 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED); 606 607 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 608 true, 15 * HZ); 609 if (err < 0) 610 return err; 611 if (err == 0) 612 return -EBUSY; 613 614 err = i915_ttm_move_notify(bo); 615 if (err) 616 return err; 617 618 return i915_ttm_purge(obj); 619 } 620 621 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo) 622 { 623 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 624 int ret; 625 626 if (i915_ttm_is_ghost_object(bo)) 627 return; 628 629 ret = i915_ttm_move_notify(bo); 630 GEM_WARN_ON(ret); 631 GEM_WARN_ON(obj->ttm.cached_io_rsgt); 632 if (!ret && obj->mm.madv != I915_MADV_WILLNEED) 633 i915_ttm_purge(obj); 634 } 635 636 /** 637 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU 638 * accessible. 639 * @res: The TTM resource to check. 640 * 641 * This is interesting on small-BAR systems where we may encounter lmem objects 642 * that can't be accessed via the CPU. 643 */ 644 bool i915_ttm_resource_mappable(struct ttm_resource *res) 645 { 646 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res); 647 648 if (!i915_ttm_cpu_maps_iomem(res)) 649 return true; 650 651 return bman_res->used_visible_size == PFN_UP(bman_res->base.size); 652 } 653 654 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 655 { 656 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo); 657 bool unknown_state; 658 659 if (i915_ttm_is_ghost_object(mem->bo)) 660 return -EINVAL; 661 662 if (!kref_get_unless_zero(&obj->base.refcount)) 663 return -EINVAL; 664 665 assert_object_held(obj); 666 667 unknown_state = i915_gem_object_has_unknown_state(obj); 668 i915_gem_object_put(obj); 669 if (unknown_state) 670 return -EINVAL; 671 672 if (!i915_ttm_cpu_maps_iomem(mem)) 673 return 0; 674 675 if (!i915_ttm_resource_mappable(mem)) 676 return -EINVAL; 677 678 mem->bus.caching = ttm_write_combined; 679 mem->bus.is_iomem = true; 680 681 return 0; 682 } 683 684 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 685 unsigned long page_offset) 686 { 687 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 688 struct scatterlist *sg; 689 unsigned long base; 690 unsigned int ofs; 691 692 GEM_BUG_ON(i915_ttm_is_ghost_object(bo)); 693 GEM_WARN_ON(bo->ttm); 694 695 base = obj->mm.region->iomap.base - obj->mm.region->region.start; 696 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs); 697 698 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs; 699 } 700 701 static int i915_ttm_access_memory(struct ttm_buffer_object *bo, 702 unsigned long offset, void *buf, 703 int len, int write) 704 { 705 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 706 resource_size_t iomap = obj->mm.region->iomap.base - 707 obj->mm.region->region.start; 708 unsigned long page = offset >> PAGE_SHIFT; 709 unsigned long bytes_left = len; 710 711 /* 712 * TODO: For now just let it fail if the resource is non-mappable, 713 * otherwise we need to perform the memcpy from the gpu here, without 714 * interfering with the object (like moving the entire thing). 715 */ 716 if (!i915_ttm_resource_mappable(bo->resource)) 717 return -EIO; 718 719 offset -= page << PAGE_SHIFT; 720 do { 721 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset); 722 void __iomem *ptr; 723 dma_addr_t daddr; 724 725 daddr = i915_gem_object_get_dma_address(obj, page); 726 ptr = ioremap_wc(iomap + daddr + offset, bytes); 727 if (!ptr) 728 return -EIO; 729 730 if (write) 731 memcpy_toio(ptr, buf, bytes); 732 else 733 memcpy_fromio(buf, ptr, bytes); 734 iounmap(ptr); 735 736 page++; 737 buf += bytes; 738 bytes_left -= bytes; 739 offset = 0; 740 } while (bytes_left); 741 742 return len; 743 } 744 745 /* 746 * All callbacks need to take care not to downcast a struct ttm_buffer_object 747 * without checking its subclass, since it might be a TTM ghost object. 748 */ 749 static struct ttm_device_funcs i915_ttm_bo_driver = { 750 .ttm_tt_create = i915_ttm_tt_create, 751 .ttm_tt_populate = i915_ttm_tt_populate, 752 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate, 753 .ttm_tt_destroy = i915_ttm_tt_destroy, 754 .eviction_valuable = i915_ttm_eviction_valuable, 755 .evict_flags = i915_ttm_evict_flags, 756 .move = i915_ttm_move, 757 .swap_notify = i915_ttm_swap_notify, 758 .delete_mem_notify = i915_ttm_delete_mem_notify, 759 .io_mem_reserve = i915_ttm_io_mem_reserve, 760 .io_mem_pfn = i915_ttm_io_mem_pfn, 761 .access_memory = i915_ttm_access_memory, 762 }; 763 764 /** 765 * i915_ttm_driver - Return a pointer to the TTM device funcs 766 * 767 * Return: Pointer to statically allocated TTM device funcs. 768 */ 769 struct ttm_device_funcs *i915_ttm_driver(void) 770 { 771 return &i915_ttm_bo_driver; 772 } 773 774 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj, 775 struct ttm_placement *placement) 776 { 777 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 778 struct ttm_operation_ctx ctx = { 779 .interruptible = true, 780 .no_wait_gpu = false, 781 }; 782 int real_num_busy; 783 int ret; 784 785 /* First try only the requested placement. No eviction. */ 786 real_num_busy = fetch_and_zero(&placement->num_busy_placement); 787 ret = ttm_bo_validate(bo, placement, &ctx); 788 if (ret) { 789 ret = i915_ttm_err_to_gem(ret); 790 /* 791 * Anything that wants to restart the operation gets to 792 * do that. 793 */ 794 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS || 795 ret == -EAGAIN) 796 return ret; 797 798 /* 799 * If the initial attempt fails, allow all accepted placements, 800 * evicting if necessary. 801 */ 802 placement->num_busy_placement = real_num_busy; 803 ret = ttm_bo_validate(bo, placement, &ctx); 804 if (ret) 805 return i915_ttm_err_to_gem(ret); 806 } 807 808 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) { 809 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx); 810 if (ret) 811 return ret; 812 813 i915_ttm_adjust_domains_after_move(obj); 814 i915_ttm_adjust_gem_after_move(obj); 815 } 816 817 if (!i915_gem_object_has_pages(obj)) { 818 struct i915_refct_sgt *rsgt = 819 i915_ttm_resource_get_st(obj, bo->resource); 820 821 if (IS_ERR(rsgt)) 822 return PTR_ERR(rsgt); 823 824 GEM_BUG_ON(obj->mm.rsgt); 825 obj->mm.rsgt = rsgt; 826 __i915_gem_object_set_pages(obj, &rsgt->table); 827 } 828 829 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages)); 830 i915_ttm_adjust_lru(obj); 831 return ret; 832 } 833 834 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj) 835 { 836 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS]; 837 struct ttm_placement placement; 838 839 /* restricted by sg_alloc_table */ 840 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int)) 841 return -E2BIG; 842 843 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS); 844 845 /* Move to the requested placement. */ 846 i915_ttm_placement_from_obj(obj, &requested, busy, &placement); 847 848 return __i915_ttm_get_pages(obj, &placement); 849 } 850 851 /** 852 * DOC: Migration vs eviction 853 * 854 * GEM migration may not be the same as TTM migration / eviction. If 855 * the TTM core decides to evict an object it may be evicted to a 856 * TTM memory type that is not in the object's allowable GEM regions, or 857 * in fact theoretically to a TTM memory type that doesn't correspond to 858 * a GEM memory region. In that case the object's GEM region is not 859 * updated, and the data is migrated back to the GEM region at 860 * get_pages time. TTM may however set up CPU ptes to the object even 861 * when it is evicted. 862 * Gem forced migration using the i915_ttm_migrate() op, is allowed even 863 * to regions that are not in the object's list of allowable placements. 864 */ 865 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj, 866 struct intel_memory_region *mr, 867 unsigned int flags) 868 { 869 struct ttm_place requested; 870 struct ttm_placement placement; 871 int ret; 872 873 i915_ttm_place_from_region(mr, &requested, obj->bo_offset, 874 obj->base.size, flags); 875 placement.num_placement = 1; 876 placement.num_busy_placement = 1; 877 placement.placement = &requested; 878 placement.busy_placement = &requested; 879 880 ret = __i915_ttm_get_pages(obj, &placement); 881 if (ret) 882 return ret; 883 884 /* 885 * Reinitialize the region bindings. This is primarily 886 * required for objects where the new region is not in 887 * its allowable placements. 888 */ 889 if (obj->mm.region != mr) { 890 i915_gem_object_release_memory_region(obj); 891 i915_gem_object_init_memory_region(obj, mr); 892 } 893 894 return 0; 895 } 896 897 static int i915_ttm_migrate(struct drm_i915_gem_object *obj, 898 struct intel_memory_region *mr, 899 unsigned int flags) 900 { 901 return __i915_ttm_migrate(obj, mr, flags); 902 } 903 904 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj, 905 struct sg_table *st) 906 { 907 /* 908 * We're currently not called from a shrinker, so put_pages() 909 * typically means the object is about to destroyed, or called 910 * from move_notify(). So just avoid doing much for now. 911 * If the object is not destroyed next, The TTM eviction logic 912 * and shrinkers will move it out if needed. 913 */ 914 915 if (obj->mm.rsgt) 916 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt)); 917 } 918 919 /** 920 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists. 921 * @obj: The object 922 */ 923 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj) 924 { 925 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 926 struct i915_ttm_tt *i915_tt = 927 container_of(bo->ttm, typeof(*i915_tt), ttm); 928 bool shrinkable = 929 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm); 930 931 /* 932 * Don't manipulate the TTM LRUs while in TTM bo destruction. 933 * We're called through i915_ttm_delete_mem_notify(). 934 */ 935 if (!kref_read(&bo->kref)) 936 return; 937 938 /* 939 * We skip managing the shrinker LRU in set_pages() and just manage 940 * everything here. This does at least solve the issue with having 941 * temporary shmem mappings(like with evicted lmem) not being visible to 942 * the shrinker. Only our shmem objects are shrinkable, everything else 943 * we keep as unshrinkable. 944 * 945 * To make sure everything plays nice we keep an extra shrink pin in TTM 946 * if the underlying pages are not currently shrinkable. Once we release 947 * our pin, like when the pages are moved to shmem, the pages will then 948 * be added to the shrinker LRU, assuming the caller isn't also holding 949 * a pin. 950 * 951 * TODO: consider maybe also bumping the shrinker list here when we have 952 * already unpinned it, which should give us something more like an LRU. 953 * 954 * TODO: There is a small window of opportunity for this function to 955 * get called from eviction after we've dropped the last GEM refcount, 956 * but before the TTM deleted flag is set on the object. Avoid 957 * adjusting the shrinker list in such cases, since the object is 958 * not available to the shrinker anyway due to its zero refcount. 959 * To fix this properly we should move to a TTM shrinker LRU list for 960 * these objects. 961 */ 962 if (kref_get_unless_zero(&obj->base.refcount)) { 963 if (shrinkable != obj->mm.ttm_shrinkable) { 964 if (shrinkable) { 965 if (obj->mm.madv == I915_MADV_WILLNEED) 966 __i915_gem_object_make_shrinkable(obj); 967 else 968 __i915_gem_object_make_purgeable(obj); 969 } else { 970 i915_gem_object_make_unshrinkable(obj); 971 } 972 973 obj->mm.ttm_shrinkable = shrinkable; 974 } 975 i915_gem_object_put(obj); 976 } 977 978 /* 979 * Put on the correct LRU list depending on the MADV status 980 */ 981 spin_lock(&bo->bdev->lru_lock); 982 if (shrinkable) { 983 /* Try to keep shmem_tt from being considered for shrinking. */ 984 bo->priority = TTM_MAX_BO_PRIORITY - 1; 985 } else if (obj->mm.madv != I915_MADV_WILLNEED) { 986 bo->priority = I915_TTM_PRIO_PURGE; 987 } else if (!i915_gem_object_has_pages(obj)) { 988 bo->priority = I915_TTM_PRIO_NO_PAGES; 989 } else { 990 struct ttm_resource_manager *man = 991 ttm_manager_type(bo->bdev, bo->resource->mem_type); 992 993 /* 994 * If we need to place an LMEM resource which doesn't need CPU 995 * access then we should try not to victimize mappable objects 996 * first, since we likely end up stealing more of the mappable 997 * portion. And likewise when we try to find space for a mappble 998 * object, we know not to ever victimize objects that don't 999 * occupy any mappable pages. 1000 */ 1001 if (i915_ttm_cpu_maps_iomem(bo->resource) && 1002 i915_ttm_buddy_man_visible_size(man) < man->size && 1003 !(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 1004 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS; 1005 else 1006 bo->priority = I915_TTM_PRIO_HAS_PAGES; 1007 } 1008 1009 ttm_bo_move_to_lru_tail(bo); 1010 spin_unlock(&bo->bdev->lru_lock); 1011 } 1012 1013 /* 1014 * TTM-backed gem object destruction requires some clarification. 1015 * Basically we have two possibilities here. We can either rely on the 1016 * i915 delayed destruction and put the TTM object when the object 1017 * is idle. This would be detected by TTM which would bypass the 1018 * TTM delayed destroy handling. The other approach is to put the TTM 1019 * object early and rely on the TTM destroyed handling, and then free 1020 * the leftover parts of the GEM object once TTM's destroyed list handling is 1021 * complete. For now, we rely on the latter for two reasons: 1022 * a) TTM can evict an object even when it's on the delayed destroy list, 1023 * which in theory allows for complete eviction. 1024 * b) There is work going on in TTM to allow freeing an object even when 1025 * it's not idle, and using the TTM destroyed list handling could help us 1026 * benefit from that. 1027 */ 1028 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj) 1029 { 1030 GEM_BUG_ON(!obj->ttm.created); 1031 1032 ttm_bo_put(i915_gem_to_ttm(obj)); 1033 } 1034 1035 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf) 1036 { 1037 struct vm_area_struct *area = vmf->vma; 1038 struct ttm_buffer_object *bo = area->vm_private_data; 1039 struct drm_device *dev = bo->base.dev; 1040 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1041 intel_wakeref_t wakeref = 0; 1042 vm_fault_t ret; 1043 int idx; 1044 1045 /* Sanity check that we allow writing into this object */ 1046 if (unlikely(i915_gem_object_is_readonly(obj) && 1047 area->vm_flags & VM_WRITE)) 1048 return VM_FAULT_SIGBUS; 1049 1050 ret = ttm_bo_vm_reserve(bo, vmf); 1051 if (ret) 1052 return ret; 1053 1054 if (obj->mm.madv != I915_MADV_WILLNEED) { 1055 dma_resv_unlock(bo->base.resv); 1056 return VM_FAULT_SIGBUS; 1057 } 1058 1059 /* 1060 * This must be swapped out with shmem ttm_tt (pipeline-gutting). 1061 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as 1062 * far as far doing a ttm_bo_move_null(), which should skip all the 1063 * other junk. 1064 */ 1065 if (!bo->resource) { 1066 struct ttm_operation_ctx ctx = { 1067 .interruptible = true, 1068 .no_wait_gpu = true, /* should be idle already */ 1069 }; 1070 int err; 1071 1072 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 1073 1074 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx); 1075 if (err) { 1076 dma_resv_unlock(bo->base.resv); 1077 return VM_FAULT_SIGBUS; 1078 } 1079 } else if (!i915_ttm_resource_mappable(bo->resource)) { 1080 int err = -ENODEV; 1081 int i; 1082 1083 for (i = 0; i < obj->mm.n_placements; i++) { 1084 struct intel_memory_region *mr = obj->mm.placements[i]; 1085 unsigned int flags; 1086 1087 if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM) 1088 continue; 1089 1090 flags = obj->flags; 1091 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1092 err = __i915_ttm_migrate(obj, mr, flags); 1093 if (!err) 1094 break; 1095 } 1096 1097 if (err) { 1098 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n", 1099 ERR_PTR(err)); 1100 dma_resv_unlock(bo->base.resv); 1101 ret = VM_FAULT_SIGBUS; 1102 goto out_rpm; 1103 } 1104 } 1105 1106 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1107 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1108 1109 if (drm_dev_enter(dev, &idx)) { 1110 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1111 TTM_BO_VM_NUM_PREFAULT); 1112 drm_dev_exit(idx); 1113 } else { 1114 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1115 } 1116 1117 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1118 goto out_rpm; 1119 1120 /* 1121 * ttm_bo_vm_reserve() already has dma_resv_lock. 1122 * userfault_count is protected by dma_resv lock and rpm wakeref. 1123 */ 1124 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1125 obj->userfault_count = 1; 1126 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1127 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1128 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1129 1130 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1131 } 1132 1133 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND) 1134 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1135 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1136 1137 i915_ttm_adjust_lru(obj); 1138 1139 dma_resv_unlock(bo->base.resv); 1140 1141 out_rpm: 1142 if (wakeref) 1143 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1144 1145 return ret; 1146 } 1147 1148 static int 1149 vm_access_ttm(struct vm_area_struct *area, unsigned long addr, 1150 void *buf, int len, int write) 1151 { 1152 struct drm_i915_gem_object *obj = 1153 i915_ttm_to_gem(area->vm_private_data); 1154 1155 if (i915_gem_object_is_readonly(obj) && write) 1156 return -EACCES; 1157 1158 return ttm_bo_vm_access(area, addr, buf, len, write); 1159 } 1160 1161 static void ttm_vm_open(struct vm_area_struct *vma) 1162 { 1163 struct drm_i915_gem_object *obj = 1164 i915_ttm_to_gem(vma->vm_private_data); 1165 1166 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1167 i915_gem_object_get(obj); 1168 } 1169 1170 static void ttm_vm_close(struct vm_area_struct *vma) 1171 { 1172 struct drm_i915_gem_object *obj = 1173 i915_ttm_to_gem(vma->vm_private_data); 1174 1175 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1176 i915_gem_object_put(obj); 1177 } 1178 1179 static const struct vm_operations_struct vm_ops_ttm = { 1180 .fault = vm_fault_ttm, 1181 .access = vm_access_ttm, 1182 .open = ttm_vm_open, 1183 .close = ttm_vm_close, 1184 }; 1185 1186 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj) 1187 { 1188 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */ 1189 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node)); 1190 1191 return drm_vma_node_offset_addr(&obj->base.vma_node); 1192 } 1193 1194 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj) 1195 { 1196 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 1197 intel_wakeref_t wakeref = 0; 1198 1199 assert_object_held_shared(obj); 1200 1201 if (i915_ttm_cpu_maps_iomem(bo->resource)) { 1202 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1203 1204 /* userfault_count is protected by obj lock and rpm wakeref. */ 1205 if (obj->userfault_count) { 1206 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1207 list_del(&obj->userfault_link); 1208 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1209 obj->userfault_count = 0; 1210 } 1211 } 1212 1213 GEM_WARN_ON(obj->userfault_count); 1214 1215 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj)); 1216 1217 if (wakeref) 1218 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1219 } 1220 1221 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = { 1222 .name = "i915_gem_object_ttm", 1223 .flags = I915_GEM_OBJECT_IS_SHRINKABLE | 1224 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST, 1225 1226 .get_pages = i915_ttm_get_pages, 1227 .put_pages = i915_ttm_put_pages, 1228 .truncate = i915_ttm_truncate, 1229 .shrink = i915_ttm_shrink, 1230 1231 .adjust_lru = i915_ttm_adjust_lru, 1232 .delayed_free = i915_ttm_delayed_free, 1233 .migrate = i915_ttm_migrate, 1234 1235 .mmap_offset = i915_ttm_mmap_offset, 1236 .unmap_virtual = i915_ttm_unmap_virtual, 1237 .mmap_ops = &vm_ops_ttm, 1238 }; 1239 1240 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo) 1241 { 1242 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1243 1244 i915_gem_object_release_memory_region(obj); 1245 mutex_destroy(&obj->ttm.get_io_page.lock); 1246 1247 if (obj->ttm.created) { 1248 /* 1249 * We freely manage the shrinker LRU outide of the mm.pages life 1250 * cycle. As a result when destroying the object we should be 1251 * extra paranoid and ensure we remove it from the LRU, before 1252 * we free the object. 1253 * 1254 * Touching the ttm_shrinkable outside of the object lock here 1255 * should be safe now that the last GEM object ref was dropped. 1256 */ 1257 if (obj->mm.ttm_shrinkable) 1258 i915_gem_object_make_unshrinkable(obj); 1259 1260 i915_ttm_backup_free(obj); 1261 1262 /* This releases all gem object bindings to the backend. */ 1263 __i915_gem_free_object(obj); 1264 1265 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 1266 } else { 1267 __i915_gem_object_fini(obj); 1268 } 1269 } 1270 1271 /** 1272 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object 1273 * @mem: The initial memory region for the object. 1274 * @obj: The gem object. 1275 * @size: Object size in bytes. 1276 * @flags: gem object flags. 1277 * 1278 * Return: 0 on success, negative error code on failure. 1279 */ 1280 int __i915_gem_ttm_object_init(struct intel_memory_region *mem, 1281 struct drm_i915_gem_object *obj, 1282 resource_size_t offset, 1283 resource_size_t size, 1284 resource_size_t page_size, 1285 unsigned int flags) 1286 { 1287 static struct lock_class_key lock_class; 1288 struct drm_i915_private *i915 = mem->i915; 1289 struct ttm_operation_ctx ctx = { 1290 .interruptible = true, 1291 .no_wait_gpu = false, 1292 }; 1293 enum ttm_bo_type bo_type; 1294 int ret; 1295 1296 drm_gem_private_object_init(&i915->drm, &obj->base, size); 1297 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags); 1298 1299 obj->bo_offset = offset; 1300 1301 /* Don't put on a region list until we're either locked or fully initialized. */ 1302 obj->mm.region = mem; 1303 INIT_LIST_HEAD(&obj->mm.region_link); 1304 1305 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN); 1306 mutex_init(&obj->ttm.get_io_page.lock); 1307 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device : 1308 ttm_bo_type_kernel; 1309 1310 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj); 1311 1312 /* Forcing the page size is kernel internal only */ 1313 GEM_BUG_ON(page_size && obj->mm.n_placements); 1314 1315 /* 1316 * Keep an extra shrink pin to prevent the object from being made 1317 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we 1318 * drop the pin. The TTM backend manages the shrinker LRU itself, 1319 * outside of the normal mm.pages life cycle. 1320 */ 1321 i915_gem_object_make_unshrinkable(obj); 1322 1323 /* 1324 * If this function fails, it will call the destructor, but 1325 * our caller still owns the object. So no freeing in the 1326 * destructor until obj->ttm.created is true. 1327 * Similarly, in delayed_destroy, we can't call ttm_bo_put() 1328 * until successful initialization. 1329 */ 1330 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type, 1331 &i915_sys_placement, page_size >> PAGE_SHIFT, 1332 &ctx, NULL, NULL, i915_ttm_bo_destroy); 1333 1334 /* 1335 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size 1336 * is too big to add vma. The direct function that returns -ENOSPC is 1337 * drm_mm_insert_node_in_range(). To handle the same error as other code 1338 * that returns -E2BIG when the size is too large, it converts -ENOSPC to 1339 * -E2BIG. 1340 */ 1341 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC) 1342 ret = -E2BIG; 1343 1344 if (ret) 1345 return i915_ttm_err_to_gem(ret); 1346 1347 obj->ttm.created = true; 1348 i915_gem_object_release_memory_region(obj); 1349 i915_gem_object_init_memory_region(obj, mem); 1350 i915_ttm_adjust_domains_after_move(obj); 1351 i915_ttm_adjust_gem_after_move(obj); 1352 i915_gem_object_unlock(obj); 1353 1354 return 0; 1355 } 1356 1357 static const struct intel_memory_region_ops ttm_system_region_ops = { 1358 .init_object = __i915_gem_ttm_object_init, 1359 .release = intel_region_ttm_fini, 1360 }; 1361 1362 struct intel_memory_region * 1363 i915_gem_ttm_system_setup(struct drm_i915_private *i915, 1364 u16 type, u16 instance) 1365 { 1366 struct intel_memory_region *mr; 1367 1368 mr = intel_memory_region_create(i915, 0, 1369 totalram_pages() << PAGE_SHIFT, 1370 PAGE_SIZE, 0, 0, 1371 type, instance, 1372 &ttm_system_region_ops); 1373 if (IS_ERR(mr)) 1374 return mr; 1375 1376 intel_memory_region_set_name(mr, "system-ttm"); 1377 return mr; 1378 } 1379