1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 #include <drm/i915_drm.h> 16 17 #include "i915_trace.h" 18 19 static bool shrinker_lock(struct drm_i915_private *i915, 20 unsigned int flags, 21 bool *unlock) 22 { 23 struct mutex *m = &i915->drm.struct_mutex; 24 25 switch (mutex_trylock_recursive(m)) { 26 case MUTEX_TRYLOCK_RECURSIVE: 27 *unlock = false; 28 return true; 29 30 case MUTEX_TRYLOCK_FAILED: 31 *unlock = false; 32 if (flags & I915_SHRINK_ACTIVE && 33 mutex_lock_killable_nested(m, I915_MM_SHRINKER) == 0) 34 *unlock = true; 35 return *unlock; 36 37 case MUTEX_TRYLOCK_SUCCESS: 38 *unlock = true; 39 return true; 40 } 41 42 BUG(); 43 } 44 45 static void shrinker_unlock(struct drm_i915_private *i915, bool unlock) 46 { 47 if (!unlock) 48 return; 49 50 mutex_unlock(&i915->drm.struct_mutex); 51 } 52 53 static bool swap_available(void) 54 { 55 return get_nr_swap_pages() > 0; 56 } 57 58 static bool can_release_pages(struct drm_i915_gem_object *obj) 59 { 60 /* Consider only shrinkable ojects. */ 61 if (!i915_gem_object_is_shrinkable(obj)) 62 return false; 63 64 /* Only report true if by unbinding the object and putting its pages 65 * we can actually make forward progress towards freeing physical 66 * pages. 67 * 68 * If the pages are pinned for any other reason than being bound 69 * to the GPU, simply unbinding from the GPU is not going to succeed 70 * in releasing our pin count on the pages themselves. 71 */ 72 if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count)) 73 return false; 74 75 /* If any vma are "permanently" pinned, it will prevent us from 76 * reclaiming the obj->mm.pages. We only allow scanout objects to claim 77 * a permanent pin, along with a few others like the context objects. 78 * To simplify the scan, and to avoid walking the list of vma under the 79 * object, we just check the count of its permanently pinned. 80 */ 81 if (READ_ONCE(obj->pin_global)) 82 return false; 83 84 /* We can only return physical pages to the system if we can either 85 * discard the contents (because the user has marked them as being 86 * purgeable) or if we can move their contents out to swap. 87 */ 88 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 89 } 90 91 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 92 unsigned long shrink) 93 { 94 unsigned long flags; 95 96 flags = 0; 97 if (shrink & I915_SHRINK_ACTIVE) 98 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 99 100 if (i915_gem_object_unbind(obj, flags) == 0) 101 __i915_gem_object_put_pages(obj, I915_MM_SHRINKER); 102 103 return !i915_gem_object_has_pages(obj); 104 } 105 106 static void try_to_writeback(struct drm_i915_gem_object *obj, 107 unsigned int flags) 108 { 109 switch (obj->mm.madv) { 110 case I915_MADV_DONTNEED: 111 i915_gem_object_truncate(obj); 112 case __I915_MADV_PURGED: 113 return; 114 } 115 116 if (flags & I915_SHRINK_WRITEBACK) 117 i915_gem_object_writeback(obj); 118 } 119 120 /** 121 * i915_gem_shrink - Shrink buffer object caches 122 * @i915: i915 device 123 * @target: amount of memory to make available, in pages 124 * @nr_scanned: optional output for number of pages scanned (incremental) 125 * @shrink: control flags for selecting cache types 126 * 127 * This function is the main interface to the shrinker. It will try to release 128 * up to @target pages of main memory backing storage from buffer objects. 129 * Selection of the specific caches can be done with @flags. This is e.g. useful 130 * when purgeable objects should be removed from caches preferentially. 131 * 132 * Note that it's not guaranteed that released amount is actually available as 133 * free system memory - the pages might still be in-used to due to other reasons 134 * (like cpu mmaps) or the mm core has reused them before we could grab them. 135 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 136 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 137 * 138 * Also note that any kind of pinning (both per-vma address space pins and 139 * backing storage pins at the buffer object level) result in the shrinker code 140 * having to skip the object. 141 * 142 * Returns: 143 * The number of pages of backing storage actually released. 144 */ 145 unsigned long 146 i915_gem_shrink(struct drm_i915_private *i915, 147 unsigned long target, 148 unsigned long *nr_scanned, 149 unsigned int shrink) 150 { 151 const struct { 152 struct list_head *list; 153 unsigned int bit; 154 } phases[] = { 155 { &i915->mm.purge_list, ~0u }, 156 { 157 &i915->mm.shrink_list, 158 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 159 }, 160 { NULL, 0 }, 161 }, *phase; 162 intel_wakeref_t wakeref = 0; 163 unsigned long count = 0; 164 unsigned long scanned = 0; 165 bool unlock; 166 167 if (!shrinker_lock(i915, shrink, &unlock)) 168 return 0; 169 170 /* 171 * When shrinking the active list, we should also consider active 172 * contexts. Active contexts are pinned until they are retired, and 173 * so can not be simply unbound to retire and unpin their pages. To 174 * shrink the contexts, we must wait until the gpu is idle and 175 * completed its switch to the kernel context. In short, we do 176 * not have a good mechanism for idling a specific context. 177 */ 178 179 trace_i915_gem_shrink(i915, target, shrink); 180 181 /* 182 * Unbinding of objects will require HW access; Let us not wake the 183 * device just to recover a little memory. If absolutely necessary, 184 * we will force the wake during oom-notifier. 185 */ 186 if (shrink & I915_SHRINK_BOUND) { 187 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 188 if (!wakeref) 189 shrink &= ~I915_SHRINK_BOUND; 190 } 191 192 /* 193 * As we may completely rewrite the (un)bound list whilst unbinding 194 * (due to retiring requests) we have to strictly process only 195 * one element of the list at the time, and recheck the list 196 * on every iteration. 197 * 198 * In particular, we must hold a reference whilst removing the 199 * object as we may end up waiting for and/or retiring the objects. 200 * This might release the final reference (held by the active list) 201 * and result in the object being freed from under us. This is 202 * similar to the precautions the eviction code must take whilst 203 * removing objects. 204 * 205 * Also note that although these lists do not hold a reference to 206 * the object we can safely grab one here: The final object 207 * unreferencing and the bound_list are both protected by the 208 * dev->struct_mutex and so we won't ever be able to observe an 209 * object on the bound_list with a reference count equals 0. 210 */ 211 for (phase = phases; phase->list; phase++) { 212 struct list_head still_in_list; 213 struct drm_i915_gem_object *obj; 214 unsigned long flags; 215 216 if ((shrink & phase->bit) == 0) 217 continue; 218 219 INIT_LIST_HEAD(&still_in_list); 220 221 /* 222 * We serialize our access to unreferenced objects through 223 * the use of the struct_mutex. While the objects are not 224 * yet freed (due to RCU then a workqueue) we still want 225 * to be able to shrink their pages, so they remain on 226 * the unbound/bound list until actually freed. 227 */ 228 spin_lock_irqsave(&i915->mm.obj_lock, flags); 229 while (count < target && 230 (obj = list_first_entry_or_null(phase->list, 231 typeof(*obj), 232 mm.link))) { 233 list_move_tail(&obj->mm.link, &still_in_list); 234 235 if (shrink & I915_SHRINK_VMAPS && 236 !is_vmalloc_addr(obj->mm.mapping)) 237 continue; 238 239 if (!(shrink & I915_SHRINK_ACTIVE) && 240 i915_gem_object_is_framebuffer(obj)) 241 continue; 242 243 if (!(shrink & I915_SHRINK_BOUND) && 244 atomic_read(&obj->bind_count)) 245 continue; 246 247 if (!can_release_pages(obj)) 248 continue; 249 250 if (!kref_get_unless_zero(&obj->base.refcount)) 251 continue; 252 253 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 254 255 if (unsafe_drop_pages(obj, shrink)) { 256 /* May arrive from get_pages on another bo */ 257 mutex_lock_nested(&obj->mm.lock, 258 I915_MM_SHRINKER); 259 if (!i915_gem_object_has_pages(obj)) { 260 try_to_writeback(obj, shrink); 261 count += obj->base.size >> PAGE_SHIFT; 262 } 263 mutex_unlock(&obj->mm.lock); 264 } 265 266 scanned += obj->base.size >> PAGE_SHIFT; 267 i915_gem_object_put(obj); 268 269 spin_lock_irqsave(&i915->mm.obj_lock, flags); 270 } 271 list_splice_tail(&still_in_list, phase->list); 272 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 273 } 274 275 if (shrink & I915_SHRINK_BOUND) 276 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 277 278 shrinker_unlock(i915, unlock); 279 280 if (nr_scanned) 281 *nr_scanned += scanned; 282 return count; 283 } 284 285 /** 286 * i915_gem_shrink_all - Shrink buffer object caches completely 287 * @i915: i915 device 288 * 289 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 290 * caches completely. It also first waits for and retires all outstanding 291 * requests to also be able to release backing storage for active objects. 292 * 293 * This should only be used in code to intentionally quiescent the gpu or as a 294 * last-ditch effort when memory seems to have run out. 295 * 296 * Returns: 297 * The number of pages of backing storage actually released. 298 */ 299 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 300 { 301 intel_wakeref_t wakeref; 302 unsigned long freed = 0; 303 304 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 305 freed = i915_gem_shrink(i915, -1UL, NULL, 306 I915_SHRINK_BOUND | 307 I915_SHRINK_UNBOUND | 308 I915_SHRINK_ACTIVE); 309 } 310 311 return freed; 312 } 313 314 static unsigned long 315 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 316 { 317 struct drm_i915_private *i915 = 318 container_of(shrinker, struct drm_i915_private, mm.shrinker); 319 unsigned long num_objects; 320 unsigned long count; 321 322 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 323 num_objects = READ_ONCE(i915->mm.shrink_count); 324 325 /* 326 * Update our preferred vmscan batch size for the next pass. 327 * Our rough guess for an effective batch size is roughly 2 328 * available GEM objects worth of pages. That is we don't want 329 * the shrinker to fire, until it is worth the cost of freeing an 330 * entire GEM object. 331 */ 332 if (num_objects) { 333 unsigned long avg = 2 * count / num_objects; 334 335 i915->mm.shrinker.batch = 336 max((i915->mm.shrinker.batch + avg) >> 1, 337 128ul /* default SHRINK_BATCH */); 338 } 339 340 return count; 341 } 342 343 static unsigned long 344 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 345 { 346 struct drm_i915_private *i915 = 347 container_of(shrinker, struct drm_i915_private, mm.shrinker); 348 unsigned long freed; 349 bool unlock; 350 351 sc->nr_scanned = 0; 352 353 if (!shrinker_lock(i915, 0, &unlock)) 354 return SHRINK_STOP; 355 356 freed = i915_gem_shrink(i915, 357 sc->nr_to_scan, 358 &sc->nr_scanned, 359 I915_SHRINK_BOUND | 360 I915_SHRINK_UNBOUND | 361 I915_SHRINK_WRITEBACK); 362 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 363 intel_wakeref_t wakeref; 364 365 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 366 freed += i915_gem_shrink(i915, 367 sc->nr_to_scan - sc->nr_scanned, 368 &sc->nr_scanned, 369 I915_SHRINK_ACTIVE | 370 I915_SHRINK_BOUND | 371 I915_SHRINK_UNBOUND | 372 I915_SHRINK_WRITEBACK); 373 } 374 } 375 376 shrinker_unlock(i915, unlock); 377 378 return sc->nr_scanned ? freed : SHRINK_STOP; 379 } 380 381 static int 382 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 383 { 384 struct drm_i915_private *i915 = 385 container_of(nb, struct drm_i915_private, mm.oom_notifier); 386 struct drm_i915_gem_object *obj; 387 unsigned long unevictable, available, freed_pages; 388 intel_wakeref_t wakeref; 389 unsigned long flags; 390 391 freed_pages = 0; 392 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 393 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 394 I915_SHRINK_BOUND | 395 I915_SHRINK_UNBOUND | 396 I915_SHRINK_WRITEBACK); 397 398 /* Because we may be allocating inside our own driver, we cannot 399 * assert that there are no objects with pinned pages that are not 400 * being pointed to by hardware. 401 */ 402 available = unevictable = 0; 403 spin_lock_irqsave(&i915->mm.obj_lock, flags); 404 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 405 if (!can_release_pages(obj)) 406 unevictable += obj->base.size >> PAGE_SHIFT; 407 else 408 available += obj->base.size >> PAGE_SHIFT; 409 } 410 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 411 412 if (freed_pages || available) 413 pr_info("Purging GPU memory, %lu pages freed, " 414 "%lu pages still pinned, %lu pages left available.\n", 415 freed_pages, unevictable, available); 416 417 *(unsigned long *)ptr += freed_pages; 418 return NOTIFY_DONE; 419 } 420 421 static int 422 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 423 { 424 struct drm_i915_private *i915 = 425 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 426 struct i915_vma *vma, *next; 427 unsigned long freed_pages = 0; 428 intel_wakeref_t wakeref; 429 bool unlock; 430 431 if (!shrinker_lock(i915, 0, &unlock)) 432 return NOTIFY_DONE; 433 434 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 435 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 436 I915_SHRINK_BOUND | 437 I915_SHRINK_UNBOUND | 438 I915_SHRINK_VMAPS); 439 440 /* We also want to clear any cached iomaps as they wrap vmap */ 441 mutex_lock(&i915->ggtt.vm.mutex); 442 list_for_each_entry_safe(vma, next, 443 &i915->ggtt.vm.bound_list, vm_link) { 444 unsigned long count = vma->node.size >> PAGE_SHIFT; 445 446 if (!vma->iomap || i915_vma_is_active(vma)) 447 continue; 448 449 mutex_unlock(&i915->ggtt.vm.mutex); 450 if (i915_vma_unbind(vma) == 0) 451 freed_pages += count; 452 mutex_lock(&i915->ggtt.vm.mutex); 453 } 454 mutex_unlock(&i915->ggtt.vm.mutex); 455 456 shrinker_unlock(i915, unlock); 457 458 *(unsigned long *)ptr += freed_pages; 459 return NOTIFY_DONE; 460 } 461 462 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 463 { 464 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 465 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 466 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 467 i915->mm.shrinker.batch = 4096; 468 WARN_ON(register_shrinker(&i915->mm.shrinker)); 469 470 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 471 WARN_ON(register_oom_notifier(&i915->mm.oom_notifier)); 472 473 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 474 WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 475 } 476 477 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 478 { 479 WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 480 WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier)); 481 unregister_shrinker(&i915->mm.shrinker); 482 } 483 484 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 485 struct mutex *mutex) 486 { 487 bool unlock = false; 488 489 if (!IS_ENABLED(CONFIG_LOCKDEP)) 490 return; 491 492 if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) { 493 mutex_acquire(&i915->drm.struct_mutex.dep_map, 494 I915_MM_NORMAL, 0, _RET_IP_); 495 unlock = true; 496 } 497 498 fs_reclaim_acquire(GFP_KERNEL); 499 500 /* 501 * As we invariably rely on the struct_mutex within the shrinker, 502 * but have a complicated recursion dance, taint all the mutexes used 503 * within the shrinker with the struct_mutex. For completeness, we 504 * taint with all subclass of struct_mutex, even though we should 505 * only need tainting by I915_MM_NORMAL to catch possible ABBA 506 * deadlocks from using struct_mutex inside @mutex. 507 */ 508 mutex_acquire(&i915->drm.struct_mutex.dep_map, 509 I915_MM_SHRINKER, 0, _RET_IP_); 510 511 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 512 mutex_release(&mutex->dep_map, 0, _RET_IP_); 513 514 mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_); 515 516 fs_reclaim_release(GFP_KERNEL); 517 518 if (unlock) 519 mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_); 520 } 521 522 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 523 524 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 525 { 526 /* 527 * We can only be called while the pages are pinned or when 528 * the pages are released. If pinned, we should only be called 529 * from a single caller under controlled conditions; and on release 530 * only one caller may release us. Neither the two may cross. 531 */ 532 if (!list_empty(&obj->mm.link)) { /* pinned by caller */ 533 struct drm_i915_private *i915 = obj_to_i915(obj); 534 unsigned long flags; 535 536 spin_lock_irqsave(&i915->mm.obj_lock, flags); 537 GEM_BUG_ON(list_empty(&obj->mm.link)); 538 539 list_del_init(&obj->mm.link); 540 i915->mm.shrink_count--; 541 i915->mm.shrink_memory -= obj->base.size; 542 543 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 544 } 545 } 546 547 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 548 struct list_head *head) 549 { 550 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 551 GEM_BUG_ON(!list_empty(&obj->mm.link)); 552 553 if (i915_gem_object_is_shrinkable(obj)) { 554 struct drm_i915_private *i915 = obj_to_i915(obj); 555 unsigned long flags; 556 557 spin_lock_irqsave(&i915->mm.obj_lock, flags); 558 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 559 560 list_add_tail(&obj->mm.link, head); 561 i915->mm.shrink_count++; 562 i915->mm.shrink_memory += obj->base.size; 563 564 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 565 } 566 } 567 568 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 569 { 570 __i915_gem_object_make_shrinkable(obj, 571 &obj_to_i915(obj)->mm.shrink_list); 572 } 573 574 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 575 { 576 __i915_gem_object_make_shrinkable(obj, 577 &obj_to_i915(obj)->mm.purge_list); 578 } 579