1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "i915_trace.h" 19 20 static bool swap_available(void) 21 { 22 return get_nr_swap_pages() > 0; 23 } 24 25 static bool can_release_pages(struct drm_i915_gem_object *obj) 26 { 27 /* Consider only shrinkable ojects. */ 28 if (!i915_gem_object_is_shrinkable(obj)) 29 return false; 30 31 /* 32 * We can only return physical pages to the system if we can either 33 * discard the contents (because the user has marked them as being 34 * purgeable) or if we can move their contents out to swap. 35 */ 36 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 37 } 38 39 static bool drop_pages(struct drm_i915_gem_object *obj, 40 unsigned long shrink, bool trylock_vm) 41 { 42 unsigned long flags; 43 44 flags = 0; 45 if (shrink & I915_SHRINK_ACTIVE) 46 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 47 if (!(shrink & I915_SHRINK_BOUND)) 48 flags |= I915_GEM_OBJECT_UNBIND_TEST; 49 if (trylock_vm) 50 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 51 52 if (i915_gem_object_unbind(obj, flags) == 0) 53 return true; 54 55 return false; 56 } 57 58 static int try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags) 59 { 60 if (obj->ops->shrink) { 61 unsigned int shrink_flags = 0; 62 63 if (!(flags & I915_SHRINK_ACTIVE)) 64 shrink_flags |= I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT; 65 66 if (flags & I915_SHRINK_WRITEBACK) 67 shrink_flags |= I915_GEM_OBJECT_SHRINK_WRITEBACK; 68 69 return obj->ops->shrink(obj, shrink_flags); 70 } 71 72 return 0; 73 } 74 75 /** 76 * i915_gem_shrink - Shrink buffer object caches 77 * @ww: i915 gem ww acquire ctx, or NULL 78 * @i915: i915 device 79 * @target: amount of memory to make available, in pages 80 * @nr_scanned: optional output for number of pages scanned (incremental) 81 * @shrink: control flags for selecting cache types 82 * 83 * This function is the main interface to the shrinker. It will try to release 84 * up to @target pages of main memory backing storage from buffer objects. 85 * Selection of the specific caches can be done with @flags. This is e.g. useful 86 * when purgeable objects should be removed from caches preferentially. 87 * 88 * Note that it's not guaranteed that released amount is actually available as 89 * free system memory - the pages might still be in-used to due to other reasons 90 * (like cpu mmaps) or the mm core has reused them before we could grab them. 91 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 92 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 93 * 94 * Also note that any kind of pinning (both per-vma address space pins and 95 * backing storage pins at the buffer object level) result in the shrinker code 96 * having to skip the object. 97 * 98 * Returns: 99 * The number of pages of backing storage actually released. 100 */ 101 unsigned long 102 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 103 struct drm_i915_private *i915, 104 unsigned long target, 105 unsigned long *nr_scanned, 106 unsigned int shrink) 107 { 108 const struct { 109 struct list_head *list; 110 unsigned int bit; 111 } phases[] = { 112 { &i915->mm.purge_list, ~0u }, 113 { 114 &i915->mm.shrink_list, 115 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 116 }, 117 { NULL, 0 }, 118 }, *phase; 119 intel_wakeref_t wakeref = 0; 120 unsigned long count = 0; 121 unsigned long scanned = 0; 122 int err = 0; 123 124 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 125 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 126 127 trace_i915_gem_shrink(i915, target, shrink); 128 129 /* 130 * Unbinding of objects will require HW access; Let us not wake the 131 * device just to recover a little memory. If absolutely necessary, 132 * we will force the wake during oom-notifier. 133 */ 134 if (shrink & I915_SHRINK_BOUND) { 135 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 136 if (!wakeref) 137 shrink &= ~I915_SHRINK_BOUND; 138 } 139 140 /* 141 * When shrinking the active list, we should also consider active 142 * contexts. Active contexts are pinned until they are retired, and 143 * so can not be simply unbound to retire and unpin their pages. To 144 * shrink the contexts, we must wait until the gpu is idle and 145 * completed its switch to the kernel context. In short, we do 146 * not have a good mechanism for idling a specific context, but 147 * what we can do is give them a kick so that we do not keep idle 148 * contexts around longer than is necessary. 149 */ 150 if (shrink & I915_SHRINK_ACTIVE) 151 /* Retire requests to unpin all idle contexts */ 152 intel_gt_retire_requests(to_gt(i915)); 153 154 /* 155 * As we may completely rewrite the (un)bound list whilst unbinding 156 * (due to retiring requests) we have to strictly process only 157 * one element of the list at the time, and recheck the list 158 * on every iteration. 159 * 160 * In particular, we must hold a reference whilst removing the 161 * object as we may end up waiting for and/or retiring the objects. 162 * This might release the final reference (held by the active list) 163 * and result in the object being freed from under us. This is 164 * similar to the precautions the eviction code must take whilst 165 * removing objects. 166 * 167 * Also note that although these lists do not hold a reference to 168 * the object we can safely grab one here: The final object 169 * unreferencing and the bound_list are both protected by the 170 * dev->struct_mutex and so we won't ever be able to observe an 171 * object on the bound_list with a reference count equals 0. 172 */ 173 for (phase = phases; phase->list; phase++) { 174 struct list_head still_in_list; 175 struct drm_i915_gem_object *obj; 176 unsigned long flags; 177 178 if ((shrink & phase->bit) == 0) 179 continue; 180 181 INIT_LIST_HEAD(&still_in_list); 182 183 /* 184 * We serialize our access to unreferenced objects through 185 * the use of the struct_mutex. While the objects are not 186 * yet freed (due to RCU then a workqueue) we still want 187 * to be able to shrink their pages, so they remain on 188 * the unbound/bound list until actually freed. 189 */ 190 spin_lock_irqsave(&i915->mm.obj_lock, flags); 191 while (count < target && 192 (obj = list_first_entry_or_null(phase->list, 193 typeof(*obj), 194 mm.link))) { 195 list_move_tail(&obj->mm.link, &still_in_list); 196 197 if (shrink & I915_SHRINK_VMAPS && 198 !is_vmalloc_addr(obj->mm.mapping)) 199 continue; 200 201 if (!(shrink & I915_SHRINK_ACTIVE) && 202 i915_gem_object_is_framebuffer(obj)) 203 continue; 204 205 if (!can_release_pages(obj)) 206 continue; 207 208 if (!kref_get_unless_zero(&obj->base.refcount)) 209 continue; 210 211 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 212 213 /* May arrive from get_pages on another bo */ 214 if (!ww) { 215 if (!i915_gem_object_trylock(obj, NULL)) 216 goto skip; 217 } else { 218 err = i915_gem_object_lock(obj, ww); 219 if (err) 220 goto skip; 221 } 222 223 if (drop_pages(obj, shrink, trylock_vm) && 224 !__i915_gem_object_put_pages(obj) && 225 !try_to_writeback(obj, shrink)) 226 count += obj->base.size >> PAGE_SHIFT; 227 228 if (!ww) 229 i915_gem_object_unlock(obj); 230 231 scanned += obj->base.size >> PAGE_SHIFT; 232 skip: 233 i915_gem_object_put(obj); 234 235 spin_lock_irqsave(&i915->mm.obj_lock, flags); 236 if (err) 237 break; 238 } 239 list_splice_tail(&still_in_list, phase->list); 240 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 241 if (err) 242 break; 243 } 244 245 if (shrink & I915_SHRINK_BOUND) 246 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 247 248 if (err) 249 return err; 250 251 if (nr_scanned) 252 *nr_scanned += scanned; 253 return count; 254 } 255 256 /** 257 * i915_gem_shrink_all - Shrink buffer object caches completely 258 * @i915: i915 device 259 * 260 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 261 * caches completely. It also first waits for and retires all outstanding 262 * requests to also be able to release backing storage for active objects. 263 * 264 * This should only be used in code to intentionally quiescent the gpu or as a 265 * last-ditch effort when memory seems to have run out. 266 * 267 * Returns: 268 * The number of pages of backing storage actually released. 269 */ 270 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 271 { 272 intel_wakeref_t wakeref; 273 unsigned long freed = 0; 274 275 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 276 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 277 I915_SHRINK_BOUND | 278 I915_SHRINK_UNBOUND); 279 } 280 281 return freed; 282 } 283 284 static unsigned long 285 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 286 { 287 struct drm_i915_private *i915 = 288 container_of(shrinker, struct drm_i915_private, mm.shrinker); 289 unsigned long num_objects; 290 unsigned long count; 291 292 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 293 num_objects = READ_ONCE(i915->mm.shrink_count); 294 295 /* 296 * Update our preferred vmscan batch size for the next pass. 297 * Our rough guess for an effective batch size is roughly 2 298 * available GEM objects worth of pages. That is we don't want 299 * the shrinker to fire, until it is worth the cost of freeing an 300 * entire GEM object. 301 */ 302 if (num_objects) { 303 unsigned long avg = 2 * count / num_objects; 304 305 i915->mm.shrinker.batch = 306 max((i915->mm.shrinker.batch + avg) >> 1, 307 128ul /* default SHRINK_BATCH */); 308 } 309 310 return count; 311 } 312 313 static unsigned long 314 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 315 { 316 struct drm_i915_private *i915 = 317 container_of(shrinker, struct drm_i915_private, mm.shrinker); 318 unsigned long freed; 319 320 sc->nr_scanned = 0; 321 322 freed = i915_gem_shrink(NULL, i915, 323 sc->nr_to_scan, 324 &sc->nr_scanned, 325 I915_SHRINK_BOUND | 326 I915_SHRINK_UNBOUND); 327 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 328 intel_wakeref_t wakeref; 329 330 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 331 freed += i915_gem_shrink(NULL, i915, 332 sc->nr_to_scan - sc->nr_scanned, 333 &sc->nr_scanned, 334 I915_SHRINK_ACTIVE | 335 I915_SHRINK_BOUND | 336 I915_SHRINK_UNBOUND | 337 I915_SHRINK_WRITEBACK); 338 } 339 } 340 341 return sc->nr_scanned ? freed : SHRINK_STOP; 342 } 343 344 static int 345 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 346 { 347 struct drm_i915_private *i915 = 348 container_of(nb, struct drm_i915_private, mm.oom_notifier); 349 struct drm_i915_gem_object *obj; 350 unsigned long unevictable, available, freed_pages; 351 intel_wakeref_t wakeref; 352 unsigned long flags; 353 354 freed_pages = 0; 355 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 356 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 357 I915_SHRINK_BOUND | 358 I915_SHRINK_UNBOUND | 359 I915_SHRINK_WRITEBACK); 360 361 /* Because we may be allocating inside our own driver, we cannot 362 * assert that there are no objects with pinned pages that are not 363 * being pointed to by hardware. 364 */ 365 available = unevictable = 0; 366 spin_lock_irqsave(&i915->mm.obj_lock, flags); 367 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 368 if (!can_release_pages(obj)) 369 unevictable += obj->base.size >> PAGE_SHIFT; 370 else 371 available += obj->base.size >> PAGE_SHIFT; 372 } 373 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 374 375 if (freed_pages || available) 376 pr_info("Purging GPU memory, %lu pages freed, " 377 "%lu pages still pinned, %lu pages left available.\n", 378 freed_pages, unevictable, available); 379 380 *(unsigned long *)ptr += freed_pages; 381 return NOTIFY_DONE; 382 } 383 384 static int 385 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 386 { 387 struct drm_i915_private *i915 = 388 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 389 struct i915_vma *vma, *next; 390 unsigned long freed_pages = 0; 391 intel_wakeref_t wakeref; 392 393 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 394 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 395 I915_SHRINK_BOUND | 396 I915_SHRINK_UNBOUND | 397 I915_SHRINK_VMAPS); 398 399 /* We also want to clear any cached iomaps as they wrap vmap */ 400 mutex_lock(&to_gt(i915)->ggtt->vm.mutex); 401 list_for_each_entry_safe(vma, next, 402 &to_gt(i915)->ggtt->vm.bound_list, vm_link) { 403 unsigned long count = vma->node.size >> PAGE_SHIFT; 404 struct drm_i915_gem_object *obj = vma->obj; 405 406 if (!vma->iomap || i915_vma_is_active(vma)) 407 continue; 408 409 if (!i915_gem_object_trylock(obj, NULL)) 410 continue; 411 412 if (__i915_vma_unbind(vma) == 0) 413 freed_pages += count; 414 415 i915_gem_object_unlock(obj); 416 } 417 mutex_unlock(&to_gt(i915)->ggtt->vm.mutex); 418 419 *(unsigned long *)ptr += freed_pages; 420 return NOTIFY_DONE; 421 } 422 423 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 424 { 425 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 426 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 427 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 428 i915->mm.shrinker.batch = 4096; 429 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 430 431 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 432 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 433 434 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 435 drm_WARN_ON(&i915->drm, 436 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 437 } 438 439 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 440 { 441 drm_WARN_ON(&i915->drm, 442 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 443 drm_WARN_ON(&i915->drm, 444 unregister_oom_notifier(&i915->mm.oom_notifier)); 445 unregister_shrinker(&i915->mm.shrinker); 446 } 447 448 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 449 struct mutex *mutex) 450 { 451 if (!IS_ENABLED(CONFIG_LOCKDEP)) 452 return; 453 454 fs_reclaim_acquire(GFP_KERNEL); 455 456 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 457 mutex_release(&mutex->dep_map, _RET_IP_); 458 459 fs_reclaim_release(GFP_KERNEL); 460 } 461 462 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 463 464 /** 465 * i915_gem_object_make_unshrinkable - Hide the object from the shrinker. By 466 * default all object types that support shrinking(see IS_SHRINKABLE), will also 467 * make the object visible to the shrinker after allocating the system memory 468 * pages. 469 * @obj: The GEM object. 470 * 471 * This is typically used for special kernel internal objects that can't be 472 * easily processed by the shrinker, like if they are perma-pinned. 473 */ 474 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 475 { 476 struct drm_i915_private *i915 = obj_to_i915(obj); 477 unsigned long flags; 478 479 /* 480 * We can only be called while the pages are pinned or when 481 * the pages are released. If pinned, we should only be called 482 * from a single caller under controlled conditions; and on release 483 * only one caller may release us. Neither the two may cross. 484 */ 485 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 486 return; 487 488 spin_lock_irqsave(&i915->mm.obj_lock, flags); 489 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 490 !list_empty(&obj->mm.link)) { 491 list_del_init(&obj->mm.link); 492 i915->mm.shrink_count--; 493 i915->mm.shrink_memory -= obj->base.size; 494 } 495 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 496 } 497 498 static void ___i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 499 struct list_head *head) 500 { 501 struct drm_i915_private *i915 = obj_to_i915(obj); 502 unsigned long flags; 503 504 if (!i915_gem_object_is_shrinkable(obj)) 505 return; 506 507 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 508 return; 509 510 spin_lock_irqsave(&i915->mm.obj_lock, flags); 511 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 512 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 513 GEM_BUG_ON(!list_empty(&obj->mm.link)); 514 515 list_add_tail(&obj->mm.link, head); 516 i915->mm.shrink_count++; 517 i915->mm.shrink_memory += obj->base.size; 518 519 } 520 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 521 } 522 523 /** 524 * __i915_gem_object_make_shrinkable - Move the object to the tail of the 525 * shrinkable list. Objects on this list might be swapped out. Used with 526 * WILLNEED objects. 527 * @obj: The GEM object. 528 * 529 * DO NOT USE. This is intended to be called on very special objects that don't 530 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 531 * underneath. 532 */ 533 void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 534 { 535 ___i915_gem_object_make_shrinkable(obj, 536 &obj_to_i915(obj)->mm.shrink_list); 537 } 538 539 /** 540 * __i915_gem_object_make_purgeable - Move the object to the tail of the 541 * purgeable list. Objects on this list might be swapped out. Used with 542 * DONTNEED objects. 543 * @obj: The GEM object. 544 * 545 * DO NOT USE. This is intended to be called on very special objects that don't 546 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 547 * underneath. 548 */ 549 void __i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 550 { 551 ___i915_gem_object_make_shrinkable(obj, 552 &obj_to_i915(obj)->mm.purge_list); 553 } 554 555 /** 556 * i915_gem_object_make_shrinkable - Move the object to the tail of the 557 * shrinkable list. Objects on this list might be swapped out. Used with 558 * WILLNEED objects. 559 * @obj: The GEM object. 560 * 561 * MUST only be called on objects which have backing pages. 562 * 563 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 564 */ 565 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 566 { 567 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 568 __i915_gem_object_make_shrinkable(obj); 569 } 570 571 /** 572 * i915_gem_object_make_purgeable - Move the object to the tail of the purgeable 573 * list. Used with DONTNEED objects. Unlike with shrinkable objects, the 574 * shrinker will attempt to discard the backing pages, instead of trying to swap 575 * them out. 576 * @obj: The GEM object. 577 * 578 * MUST only be called on objects which have backing pages. 579 * 580 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 581 */ 582 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 583 { 584 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 585 __i915_gem_object_make_purgeable(obj); 586 } 587