1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "dma_resv_utils.h" 19 #include "i915_trace.h" 20 21 static bool swap_available(void) 22 { 23 return get_nr_swap_pages() > 0; 24 } 25 26 static bool can_release_pages(struct drm_i915_gem_object *obj) 27 { 28 /* Consider only shrinkable ojects. */ 29 if (!i915_gem_object_is_shrinkable(obj)) 30 return false; 31 32 /* 33 * We can only return physical pages to the system if we can either 34 * discard the contents (because the user has marked them as being 35 * purgeable) or if we can move their contents out to swap. 36 */ 37 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 38 } 39 40 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 41 unsigned long shrink, bool trylock_vm) 42 { 43 unsigned long flags; 44 45 flags = 0; 46 if (shrink & I915_SHRINK_ACTIVE) 47 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 48 if (!(shrink & I915_SHRINK_BOUND)) 49 flags |= I915_GEM_OBJECT_UNBIND_TEST; 50 if (trylock_vm) 51 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 52 53 if (i915_gem_object_unbind(obj, flags) == 0) 54 return true; 55 56 return false; 57 } 58 59 static void try_to_writeback(struct drm_i915_gem_object *obj, 60 unsigned int flags) 61 { 62 switch (obj->mm.madv) { 63 case I915_MADV_DONTNEED: 64 i915_gem_object_truncate(obj); 65 case __I915_MADV_PURGED: 66 return; 67 } 68 69 if (flags & I915_SHRINK_WRITEBACK) 70 i915_gem_object_writeback(obj); 71 } 72 73 /** 74 * i915_gem_shrink - Shrink buffer object caches 75 * @ww: i915 gem ww acquire ctx, or NULL 76 * @i915: i915 device 77 * @target: amount of memory to make available, in pages 78 * @nr_scanned: optional output for number of pages scanned (incremental) 79 * @shrink: control flags for selecting cache types 80 * 81 * This function is the main interface to the shrinker. It will try to release 82 * up to @target pages of main memory backing storage from buffer objects. 83 * Selection of the specific caches can be done with @flags. This is e.g. useful 84 * when purgeable objects should be removed from caches preferentially. 85 * 86 * Note that it's not guaranteed that released amount is actually available as 87 * free system memory - the pages might still be in-used to due to other reasons 88 * (like cpu mmaps) or the mm core has reused them before we could grab them. 89 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 90 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 91 * 92 * Also note that any kind of pinning (both per-vma address space pins and 93 * backing storage pins at the buffer object level) result in the shrinker code 94 * having to skip the object. 95 * 96 * Returns: 97 * The number of pages of backing storage actually released. 98 */ 99 unsigned long 100 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 101 struct drm_i915_private *i915, 102 unsigned long target, 103 unsigned long *nr_scanned, 104 unsigned int shrink) 105 { 106 const struct { 107 struct list_head *list; 108 unsigned int bit; 109 } phases[] = { 110 { &i915->mm.purge_list, ~0u }, 111 { 112 &i915->mm.shrink_list, 113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 114 }, 115 { NULL, 0 }, 116 }, *phase; 117 intel_wakeref_t wakeref = 0; 118 unsigned long count = 0; 119 unsigned long scanned = 0; 120 int err; 121 122 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 123 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 124 125 trace_i915_gem_shrink(i915, target, shrink); 126 127 /* 128 * Unbinding of objects will require HW access; Let us not wake the 129 * device just to recover a little memory. If absolutely necessary, 130 * we will force the wake during oom-notifier. 131 */ 132 if (shrink & I915_SHRINK_BOUND) { 133 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 134 if (!wakeref) 135 shrink &= ~I915_SHRINK_BOUND; 136 } 137 138 /* 139 * When shrinking the active list, we should also consider active 140 * contexts. Active contexts are pinned until they are retired, and 141 * so can not be simply unbound to retire and unpin their pages. To 142 * shrink the contexts, we must wait until the gpu is idle and 143 * completed its switch to the kernel context. In short, we do 144 * not have a good mechanism for idling a specific context, but 145 * what we can do is give them a kick so that we do not keep idle 146 * contexts around longer than is necessary. 147 */ 148 if (shrink & I915_SHRINK_ACTIVE) 149 /* Retire requests to unpin all idle contexts */ 150 intel_gt_retire_requests(&i915->gt); 151 152 /* 153 * As we may completely rewrite the (un)bound list whilst unbinding 154 * (due to retiring requests) we have to strictly process only 155 * one element of the list at the time, and recheck the list 156 * on every iteration. 157 * 158 * In particular, we must hold a reference whilst removing the 159 * object as we may end up waiting for and/or retiring the objects. 160 * This might release the final reference (held by the active list) 161 * and result in the object being freed from under us. This is 162 * similar to the precautions the eviction code must take whilst 163 * removing objects. 164 * 165 * Also note that although these lists do not hold a reference to 166 * the object we can safely grab one here: The final object 167 * unreferencing and the bound_list are both protected by the 168 * dev->struct_mutex and so we won't ever be able to observe an 169 * object on the bound_list with a reference count equals 0. 170 */ 171 for (phase = phases; phase->list; phase++) { 172 struct list_head still_in_list; 173 struct drm_i915_gem_object *obj; 174 unsigned long flags; 175 176 if ((shrink & phase->bit) == 0) 177 continue; 178 179 INIT_LIST_HEAD(&still_in_list); 180 181 /* 182 * We serialize our access to unreferenced objects through 183 * the use of the struct_mutex. While the objects are not 184 * yet freed (due to RCU then a workqueue) we still want 185 * to be able to shrink their pages, so they remain on 186 * the unbound/bound list until actually freed. 187 */ 188 spin_lock_irqsave(&i915->mm.obj_lock, flags); 189 while (count < target && 190 (obj = list_first_entry_or_null(phase->list, 191 typeof(*obj), 192 mm.link))) { 193 list_move_tail(&obj->mm.link, &still_in_list); 194 195 if (shrink & I915_SHRINK_VMAPS && 196 !is_vmalloc_addr(obj->mm.mapping)) 197 continue; 198 199 if (!(shrink & I915_SHRINK_ACTIVE) && 200 i915_gem_object_is_framebuffer(obj)) 201 continue; 202 203 if (!can_release_pages(obj)) 204 continue; 205 206 if (!kref_get_unless_zero(&obj->base.refcount)) 207 continue; 208 209 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 210 211 err = 0; 212 if (unsafe_drop_pages(obj, shrink, trylock_vm)) { 213 /* May arrive from get_pages on another bo */ 214 if (!ww) { 215 if (!i915_gem_object_trylock(obj)) 216 goto skip; 217 } else { 218 err = i915_gem_object_lock(obj, ww); 219 if (err) 220 goto skip; 221 } 222 223 if (!__i915_gem_object_put_pages(obj)) { 224 try_to_writeback(obj, shrink); 225 count += obj->base.size >> PAGE_SHIFT; 226 } 227 if (!ww) 228 i915_gem_object_unlock(obj); 229 } 230 231 dma_resv_prune(obj->base.resv); 232 233 scanned += obj->base.size >> PAGE_SHIFT; 234 skip: 235 i915_gem_object_put(obj); 236 237 spin_lock_irqsave(&i915->mm.obj_lock, flags); 238 if (err) 239 break; 240 } 241 list_splice_tail(&still_in_list, phase->list); 242 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 243 if (err) 244 return err; 245 } 246 247 if (shrink & I915_SHRINK_BOUND) 248 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 249 250 if (nr_scanned) 251 *nr_scanned += scanned; 252 return count; 253 } 254 255 /** 256 * i915_gem_shrink_all - Shrink buffer object caches completely 257 * @i915: i915 device 258 * 259 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 260 * caches completely. It also first waits for and retires all outstanding 261 * requests to also be able to release backing storage for active objects. 262 * 263 * This should only be used in code to intentionally quiescent the gpu or as a 264 * last-ditch effort when memory seems to have run out. 265 * 266 * Returns: 267 * The number of pages of backing storage actually released. 268 */ 269 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 270 { 271 intel_wakeref_t wakeref; 272 unsigned long freed = 0; 273 274 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 275 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 276 I915_SHRINK_BOUND | 277 I915_SHRINK_UNBOUND); 278 } 279 280 return freed; 281 } 282 283 static unsigned long 284 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 285 { 286 struct drm_i915_private *i915 = 287 container_of(shrinker, struct drm_i915_private, mm.shrinker); 288 unsigned long num_objects; 289 unsigned long count; 290 291 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 292 num_objects = READ_ONCE(i915->mm.shrink_count); 293 294 /* 295 * Update our preferred vmscan batch size for the next pass. 296 * Our rough guess for an effective batch size is roughly 2 297 * available GEM objects worth of pages. That is we don't want 298 * the shrinker to fire, until it is worth the cost of freeing an 299 * entire GEM object. 300 */ 301 if (num_objects) { 302 unsigned long avg = 2 * count / num_objects; 303 304 i915->mm.shrinker.batch = 305 max((i915->mm.shrinker.batch + avg) >> 1, 306 128ul /* default SHRINK_BATCH */); 307 } 308 309 return count; 310 } 311 312 static unsigned long 313 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 314 { 315 struct drm_i915_private *i915 = 316 container_of(shrinker, struct drm_i915_private, mm.shrinker); 317 unsigned long freed; 318 319 sc->nr_scanned = 0; 320 321 freed = i915_gem_shrink(NULL, i915, 322 sc->nr_to_scan, 323 &sc->nr_scanned, 324 I915_SHRINK_BOUND | 325 I915_SHRINK_UNBOUND); 326 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 327 intel_wakeref_t wakeref; 328 329 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 330 freed += i915_gem_shrink(NULL, i915, 331 sc->nr_to_scan - sc->nr_scanned, 332 &sc->nr_scanned, 333 I915_SHRINK_ACTIVE | 334 I915_SHRINK_BOUND | 335 I915_SHRINK_UNBOUND | 336 I915_SHRINK_WRITEBACK); 337 } 338 } 339 340 return sc->nr_scanned ? freed : SHRINK_STOP; 341 } 342 343 static int 344 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 345 { 346 struct drm_i915_private *i915 = 347 container_of(nb, struct drm_i915_private, mm.oom_notifier); 348 struct drm_i915_gem_object *obj; 349 unsigned long unevictable, available, freed_pages; 350 intel_wakeref_t wakeref; 351 unsigned long flags; 352 353 freed_pages = 0; 354 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 355 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 356 I915_SHRINK_BOUND | 357 I915_SHRINK_UNBOUND | 358 I915_SHRINK_WRITEBACK); 359 360 /* Because we may be allocating inside our own driver, we cannot 361 * assert that there are no objects with pinned pages that are not 362 * being pointed to by hardware. 363 */ 364 available = unevictable = 0; 365 spin_lock_irqsave(&i915->mm.obj_lock, flags); 366 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 367 if (!can_release_pages(obj)) 368 unevictable += obj->base.size >> PAGE_SHIFT; 369 else 370 available += obj->base.size >> PAGE_SHIFT; 371 } 372 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 373 374 if (freed_pages || available) 375 pr_info("Purging GPU memory, %lu pages freed, " 376 "%lu pages still pinned, %lu pages left available.\n", 377 freed_pages, unevictable, available); 378 379 *(unsigned long *)ptr += freed_pages; 380 return NOTIFY_DONE; 381 } 382 383 static int 384 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 385 { 386 struct drm_i915_private *i915 = 387 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 388 struct i915_vma *vma, *next; 389 unsigned long freed_pages = 0; 390 intel_wakeref_t wakeref; 391 392 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 393 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 394 I915_SHRINK_BOUND | 395 I915_SHRINK_UNBOUND | 396 I915_SHRINK_VMAPS); 397 398 /* We also want to clear any cached iomaps as they wrap vmap */ 399 mutex_lock(&i915->ggtt.vm.mutex); 400 list_for_each_entry_safe(vma, next, 401 &i915->ggtt.vm.bound_list, vm_link) { 402 unsigned long count = vma->node.size >> PAGE_SHIFT; 403 404 if (!vma->iomap || i915_vma_is_active(vma)) 405 continue; 406 407 if (__i915_vma_unbind(vma) == 0) 408 freed_pages += count; 409 } 410 mutex_unlock(&i915->ggtt.vm.mutex); 411 412 *(unsigned long *)ptr += freed_pages; 413 return NOTIFY_DONE; 414 } 415 416 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 417 { 418 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 419 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 420 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 421 i915->mm.shrinker.batch = 4096; 422 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 423 424 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 425 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 426 427 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 428 drm_WARN_ON(&i915->drm, 429 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 430 } 431 432 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 433 { 434 drm_WARN_ON(&i915->drm, 435 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 436 drm_WARN_ON(&i915->drm, 437 unregister_oom_notifier(&i915->mm.oom_notifier)); 438 unregister_shrinker(&i915->mm.shrinker); 439 } 440 441 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 442 struct mutex *mutex) 443 { 444 if (!IS_ENABLED(CONFIG_LOCKDEP)) 445 return; 446 447 fs_reclaim_acquire(GFP_KERNEL); 448 449 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 450 mutex_release(&mutex->dep_map, _RET_IP_); 451 452 fs_reclaim_release(GFP_KERNEL); 453 } 454 455 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 456 457 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 458 { 459 struct drm_i915_private *i915 = obj_to_i915(obj); 460 unsigned long flags; 461 462 /* 463 * We can only be called while the pages are pinned or when 464 * the pages are released. If pinned, we should only be called 465 * from a single caller under controlled conditions; and on release 466 * only one caller may release us. Neither the two may cross. 467 */ 468 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 469 return; 470 471 spin_lock_irqsave(&i915->mm.obj_lock, flags); 472 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 473 !list_empty(&obj->mm.link)) { 474 list_del_init(&obj->mm.link); 475 i915->mm.shrink_count--; 476 i915->mm.shrink_memory -= obj->base.size; 477 } 478 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 479 } 480 481 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 482 struct list_head *head) 483 { 484 struct drm_i915_private *i915 = obj_to_i915(obj); 485 unsigned long flags; 486 487 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 488 if (!i915_gem_object_is_shrinkable(obj)) 489 return; 490 491 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 492 return; 493 494 spin_lock_irqsave(&i915->mm.obj_lock, flags); 495 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 496 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 497 GEM_BUG_ON(!list_empty(&obj->mm.link)); 498 499 list_add_tail(&obj->mm.link, head); 500 i915->mm.shrink_count++; 501 i915->mm.shrink_memory += obj->base.size; 502 503 } 504 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 505 } 506 507 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 508 { 509 __i915_gem_object_make_shrinkable(obj, 510 &obj_to_i915(obj)->mm.shrink_list); 511 } 512 513 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 514 { 515 __i915_gem_object_make_shrinkable(obj, 516 &obj_to_i915(obj)->mm.purge_list); 517 } 518