1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "dma_resv_utils.h" 19 #include "i915_trace.h" 20 21 static bool swap_available(void) 22 { 23 return get_nr_swap_pages() > 0; 24 } 25 26 static bool can_release_pages(struct drm_i915_gem_object *obj) 27 { 28 /* Consider only shrinkable ojects. */ 29 if (!i915_gem_object_is_shrinkable(obj)) 30 return false; 31 32 /* 33 * We can only return physical pages to the system if we can either 34 * discard the contents (because the user has marked them as being 35 * purgeable) or if we can move their contents out to swap. 36 */ 37 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 38 } 39 40 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 41 unsigned long shrink) 42 { 43 unsigned long flags; 44 45 flags = 0; 46 if (shrink & I915_SHRINK_ACTIVE) 47 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 48 if (!(shrink & I915_SHRINK_BOUND)) 49 flags = I915_GEM_OBJECT_UNBIND_TEST; 50 51 if (i915_gem_object_unbind(obj, flags) == 0) 52 return true; 53 54 return false; 55 } 56 57 static void try_to_writeback(struct drm_i915_gem_object *obj, 58 unsigned int flags) 59 { 60 switch (obj->mm.madv) { 61 case I915_MADV_DONTNEED: 62 i915_gem_object_truncate(obj); 63 case __I915_MADV_PURGED: 64 return; 65 } 66 67 if (flags & I915_SHRINK_WRITEBACK) 68 i915_gem_object_writeback(obj); 69 } 70 71 /** 72 * i915_gem_shrink - Shrink buffer object caches 73 * @i915: i915 device 74 * @target: amount of memory to make available, in pages 75 * @nr_scanned: optional output for number of pages scanned (incremental) 76 * @shrink: control flags for selecting cache types 77 * 78 * This function is the main interface to the shrinker. It will try to release 79 * up to @target pages of main memory backing storage from buffer objects. 80 * Selection of the specific caches can be done with @flags. This is e.g. useful 81 * when purgeable objects should be removed from caches preferentially. 82 * 83 * Note that it's not guaranteed that released amount is actually available as 84 * free system memory - the pages might still be in-used to due to other reasons 85 * (like cpu mmaps) or the mm core has reused them before we could grab them. 86 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 87 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 88 * 89 * Also note that any kind of pinning (both per-vma address space pins and 90 * backing storage pins at the buffer object level) result in the shrinker code 91 * having to skip the object. 92 * 93 * Returns: 94 * The number of pages of backing storage actually released. 95 */ 96 unsigned long 97 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 98 struct drm_i915_private *i915, 99 unsigned long target, 100 unsigned long *nr_scanned, 101 unsigned int shrink) 102 { 103 const struct { 104 struct list_head *list; 105 unsigned int bit; 106 } phases[] = { 107 { &i915->mm.purge_list, ~0u }, 108 { 109 &i915->mm.shrink_list, 110 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 111 }, 112 { NULL, 0 }, 113 }, *phase; 114 intel_wakeref_t wakeref = 0; 115 unsigned long count = 0; 116 unsigned long scanned = 0; 117 int err; 118 119 trace_i915_gem_shrink(i915, target, shrink); 120 121 /* 122 * Unbinding of objects will require HW access; Let us not wake the 123 * device just to recover a little memory. If absolutely necessary, 124 * we will force the wake during oom-notifier. 125 */ 126 if (shrink & I915_SHRINK_BOUND) { 127 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 128 if (!wakeref) 129 shrink &= ~I915_SHRINK_BOUND; 130 } 131 132 /* 133 * When shrinking the active list, we should also consider active 134 * contexts. Active contexts are pinned until they are retired, and 135 * so can not be simply unbound to retire and unpin their pages. To 136 * shrink the contexts, we must wait until the gpu is idle and 137 * completed its switch to the kernel context. In short, we do 138 * not have a good mechanism for idling a specific context, but 139 * what we can do is give them a kick so that we do not keep idle 140 * contexts around longer than is necessary. 141 */ 142 if (shrink & I915_SHRINK_ACTIVE) 143 /* Retire requests to unpin all idle contexts */ 144 intel_gt_retire_requests(&i915->gt); 145 146 /* 147 * As we may completely rewrite the (un)bound list whilst unbinding 148 * (due to retiring requests) we have to strictly process only 149 * one element of the list at the time, and recheck the list 150 * on every iteration. 151 * 152 * In particular, we must hold a reference whilst removing the 153 * object as we may end up waiting for and/or retiring the objects. 154 * This might release the final reference (held by the active list) 155 * and result in the object being freed from under us. This is 156 * similar to the precautions the eviction code must take whilst 157 * removing objects. 158 * 159 * Also note that although these lists do not hold a reference to 160 * the object we can safely grab one here: The final object 161 * unreferencing and the bound_list are both protected by the 162 * dev->struct_mutex and so we won't ever be able to observe an 163 * object on the bound_list with a reference count equals 0. 164 */ 165 for (phase = phases; phase->list; phase++) { 166 struct list_head still_in_list; 167 struct drm_i915_gem_object *obj; 168 unsigned long flags; 169 170 if ((shrink & phase->bit) == 0) 171 continue; 172 173 INIT_LIST_HEAD(&still_in_list); 174 175 /* 176 * We serialize our access to unreferenced objects through 177 * the use of the struct_mutex. While the objects are not 178 * yet freed (due to RCU then a workqueue) we still want 179 * to be able to shrink their pages, so they remain on 180 * the unbound/bound list until actually freed. 181 */ 182 spin_lock_irqsave(&i915->mm.obj_lock, flags); 183 while (count < target && 184 (obj = list_first_entry_or_null(phase->list, 185 typeof(*obj), 186 mm.link))) { 187 list_move_tail(&obj->mm.link, &still_in_list); 188 189 if (shrink & I915_SHRINK_VMAPS && 190 !is_vmalloc_addr(obj->mm.mapping)) 191 continue; 192 193 if (!(shrink & I915_SHRINK_ACTIVE) && 194 i915_gem_object_is_framebuffer(obj)) 195 continue; 196 197 if (!can_release_pages(obj)) 198 continue; 199 200 if (!kref_get_unless_zero(&obj->base.refcount)) 201 continue; 202 203 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 204 205 err = 0; 206 if (unsafe_drop_pages(obj, shrink)) { 207 /* May arrive from get_pages on another bo */ 208 if (!ww) { 209 if (!i915_gem_object_trylock(obj)) 210 goto skip; 211 } else { 212 err = i915_gem_object_lock(obj, ww); 213 if (err) 214 goto skip; 215 } 216 217 if (!__i915_gem_object_put_pages(obj)) { 218 try_to_writeback(obj, shrink); 219 count += obj->base.size >> PAGE_SHIFT; 220 } 221 if (!ww) 222 i915_gem_object_unlock(obj); 223 } 224 225 dma_resv_prune(obj->base.resv); 226 227 scanned += obj->base.size >> PAGE_SHIFT; 228 skip: 229 i915_gem_object_put(obj); 230 231 spin_lock_irqsave(&i915->mm.obj_lock, flags); 232 if (err) 233 break; 234 } 235 list_splice_tail(&still_in_list, phase->list); 236 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 237 if (err) 238 return err; 239 } 240 241 if (shrink & I915_SHRINK_BOUND) 242 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 243 244 if (nr_scanned) 245 *nr_scanned += scanned; 246 return count; 247 } 248 249 /** 250 * i915_gem_shrink_all - Shrink buffer object caches completely 251 * @i915: i915 device 252 * 253 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 254 * caches completely. It also first waits for and retires all outstanding 255 * requests to also be able to release backing storage for active objects. 256 * 257 * This should only be used in code to intentionally quiescent the gpu or as a 258 * last-ditch effort when memory seems to have run out. 259 * 260 * Returns: 261 * The number of pages of backing storage actually released. 262 */ 263 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 264 { 265 intel_wakeref_t wakeref; 266 unsigned long freed = 0; 267 268 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 269 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 270 I915_SHRINK_BOUND | 271 I915_SHRINK_UNBOUND); 272 } 273 274 return freed; 275 } 276 277 static unsigned long 278 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 279 { 280 struct drm_i915_private *i915 = 281 container_of(shrinker, struct drm_i915_private, mm.shrinker); 282 unsigned long num_objects; 283 unsigned long count; 284 285 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 286 num_objects = READ_ONCE(i915->mm.shrink_count); 287 288 /* 289 * Update our preferred vmscan batch size for the next pass. 290 * Our rough guess for an effective batch size is roughly 2 291 * available GEM objects worth of pages. That is we don't want 292 * the shrinker to fire, until it is worth the cost of freeing an 293 * entire GEM object. 294 */ 295 if (num_objects) { 296 unsigned long avg = 2 * count / num_objects; 297 298 i915->mm.shrinker.batch = 299 max((i915->mm.shrinker.batch + avg) >> 1, 300 128ul /* default SHRINK_BATCH */); 301 } 302 303 return count; 304 } 305 306 static unsigned long 307 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 308 { 309 struct drm_i915_private *i915 = 310 container_of(shrinker, struct drm_i915_private, mm.shrinker); 311 unsigned long freed; 312 313 sc->nr_scanned = 0; 314 315 freed = i915_gem_shrink(NULL, i915, 316 sc->nr_to_scan, 317 &sc->nr_scanned, 318 I915_SHRINK_BOUND | 319 I915_SHRINK_UNBOUND); 320 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 321 intel_wakeref_t wakeref; 322 323 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 324 freed += i915_gem_shrink(NULL, i915, 325 sc->nr_to_scan - sc->nr_scanned, 326 &sc->nr_scanned, 327 I915_SHRINK_ACTIVE | 328 I915_SHRINK_BOUND | 329 I915_SHRINK_UNBOUND | 330 I915_SHRINK_WRITEBACK); 331 } 332 } 333 334 return sc->nr_scanned ? freed : SHRINK_STOP; 335 } 336 337 static int 338 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 339 { 340 struct drm_i915_private *i915 = 341 container_of(nb, struct drm_i915_private, mm.oom_notifier); 342 struct drm_i915_gem_object *obj; 343 unsigned long unevictable, available, freed_pages; 344 intel_wakeref_t wakeref; 345 unsigned long flags; 346 347 freed_pages = 0; 348 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 349 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 350 I915_SHRINK_BOUND | 351 I915_SHRINK_UNBOUND | 352 I915_SHRINK_WRITEBACK); 353 354 /* Because we may be allocating inside our own driver, we cannot 355 * assert that there are no objects with pinned pages that are not 356 * being pointed to by hardware. 357 */ 358 available = unevictable = 0; 359 spin_lock_irqsave(&i915->mm.obj_lock, flags); 360 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 361 if (!can_release_pages(obj)) 362 unevictable += obj->base.size >> PAGE_SHIFT; 363 else 364 available += obj->base.size >> PAGE_SHIFT; 365 } 366 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 367 368 if (freed_pages || available) 369 pr_info("Purging GPU memory, %lu pages freed, " 370 "%lu pages still pinned, %lu pages left available.\n", 371 freed_pages, unevictable, available); 372 373 *(unsigned long *)ptr += freed_pages; 374 return NOTIFY_DONE; 375 } 376 377 static int 378 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 379 { 380 struct drm_i915_private *i915 = 381 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 382 struct i915_vma *vma, *next; 383 unsigned long freed_pages = 0; 384 intel_wakeref_t wakeref; 385 386 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 387 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 388 I915_SHRINK_BOUND | 389 I915_SHRINK_UNBOUND | 390 I915_SHRINK_VMAPS); 391 392 /* We also want to clear any cached iomaps as they wrap vmap */ 393 mutex_lock(&i915->ggtt.vm.mutex); 394 list_for_each_entry_safe(vma, next, 395 &i915->ggtt.vm.bound_list, vm_link) { 396 unsigned long count = vma->node.size >> PAGE_SHIFT; 397 398 if (!vma->iomap || i915_vma_is_active(vma)) 399 continue; 400 401 if (__i915_vma_unbind(vma) == 0) 402 freed_pages += count; 403 } 404 mutex_unlock(&i915->ggtt.vm.mutex); 405 406 *(unsigned long *)ptr += freed_pages; 407 return NOTIFY_DONE; 408 } 409 410 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 411 { 412 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 413 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 414 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 415 i915->mm.shrinker.batch = 4096; 416 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 417 418 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 419 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 420 421 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 422 drm_WARN_ON(&i915->drm, 423 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 424 } 425 426 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 427 { 428 drm_WARN_ON(&i915->drm, 429 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 430 drm_WARN_ON(&i915->drm, 431 unregister_oom_notifier(&i915->mm.oom_notifier)); 432 unregister_shrinker(&i915->mm.shrinker); 433 } 434 435 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 436 struct mutex *mutex) 437 { 438 if (!IS_ENABLED(CONFIG_LOCKDEP)) 439 return; 440 441 fs_reclaim_acquire(GFP_KERNEL); 442 443 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 444 mutex_release(&mutex->dep_map, _RET_IP_); 445 446 fs_reclaim_release(GFP_KERNEL); 447 } 448 449 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 450 451 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 452 { 453 struct drm_i915_private *i915 = obj_to_i915(obj); 454 unsigned long flags; 455 456 /* 457 * We can only be called while the pages are pinned or when 458 * the pages are released. If pinned, we should only be called 459 * from a single caller under controlled conditions; and on release 460 * only one caller may release us. Neither the two may cross. 461 */ 462 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 463 return; 464 465 spin_lock_irqsave(&i915->mm.obj_lock, flags); 466 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 467 !list_empty(&obj->mm.link)) { 468 list_del_init(&obj->mm.link); 469 i915->mm.shrink_count--; 470 i915->mm.shrink_memory -= obj->base.size; 471 } 472 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 473 } 474 475 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 476 struct list_head *head) 477 { 478 struct drm_i915_private *i915 = obj_to_i915(obj); 479 unsigned long flags; 480 481 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 482 if (!i915_gem_object_is_shrinkable(obj)) 483 return; 484 485 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 486 return; 487 488 spin_lock_irqsave(&i915->mm.obj_lock, flags); 489 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 490 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 491 GEM_BUG_ON(!list_empty(&obj->mm.link)); 492 493 list_add_tail(&obj->mm.link, head); 494 i915->mm.shrink_count++; 495 i915->mm.shrink_memory += obj->base.size; 496 497 } 498 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 499 } 500 501 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 502 { 503 __i915_gem_object_make_shrinkable(obj, 504 &obj_to_i915(obj)->mm.shrink_list); 505 } 506 507 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 508 { 509 __i915_gem_object_make_shrinkable(obj, 510 &obj_to_i915(obj)->mm.purge_list); 511 } 512