1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "i915_trace.h" 19 20 static bool swap_available(void) 21 { 22 return get_nr_swap_pages() > 0; 23 } 24 25 static bool can_release_pages(struct drm_i915_gem_object *obj) 26 { 27 /* Consider only shrinkable ojects. */ 28 if (!i915_gem_object_is_shrinkable(obj)) 29 return false; 30 31 /* 32 * We can only return physical pages to the system if we can either 33 * discard the contents (because the user has marked them as being 34 * purgeable) or if we can move their contents out to swap. 35 */ 36 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 37 } 38 39 static int drop_pages(struct drm_i915_gem_object *obj, 40 unsigned long shrink, bool trylock_vm) 41 { 42 unsigned long flags; 43 44 flags = 0; 45 if (shrink & I915_SHRINK_ACTIVE) 46 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 47 if (!(shrink & I915_SHRINK_BOUND)) 48 flags |= I915_GEM_OBJECT_UNBIND_TEST; 49 if (trylock_vm) 50 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 51 52 if (i915_gem_object_unbind(obj, flags) == 0) 53 return true; 54 55 return false; 56 } 57 58 static int try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags) 59 { 60 if (obj->ops->shrinker_release_pages) 61 return obj->ops->shrinker_release_pages(obj, 62 !(flags & I915_SHRINK_ACTIVE), 63 flags & I915_SHRINK_WRITEBACK); 64 65 switch (obj->mm.madv) { 66 case I915_MADV_DONTNEED: 67 i915_gem_object_truncate(obj); 68 return 0; 69 case __I915_MADV_PURGED: 70 return 0; 71 } 72 73 if (flags & I915_SHRINK_WRITEBACK) 74 i915_gem_object_writeback(obj); 75 76 return 0; 77 } 78 79 /** 80 * i915_gem_shrink - Shrink buffer object caches 81 * @ww: i915 gem ww acquire ctx, or NULL 82 * @i915: i915 device 83 * @target: amount of memory to make available, in pages 84 * @nr_scanned: optional output for number of pages scanned (incremental) 85 * @shrink: control flags for selecting cache types 86 * 87 * This function is the main interface to the shrinker. It will try to release 88 * up to @target pages of main memory backing storage from buffer objects. 89 * Selection of the specific caches can be done with @flags. This is e.g. useful 90 * when purgeable objects should be removed from caches preferentially. 91 * 92 * Note that it's not guaranteed that released amount is actually available as 93 * free system memory - the pages might still be in-used to due to other reasons 94 * (like cpu mmaps) or the mm core has reused them before we could grab them. 95 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 96 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 97 * 98 * Also note that any kind of pinning (both per-vma address space pins and 99 * backing storage pins at the buffer object level) result in the shrinker code 100 * having to skip the object. 101 * 102 * Returns: 103 * The number of pages of backing storage actually released. 104 */ 105 unsigned long 106 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 107 struct drm_i915_private *i915, 108 unsigned long target, 109 unsigned long *nr_scanned, 110 unsigned int shrink) 111 { 112 const struct { 113 struct list_head *list; 114 unsigned int bit; 115 } phases[] = { 116 { &i915->mm.purge_list, ~0u }, 117 { 118 &i915->mm.shrink_list, 119 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 120 }, 121 { NULL, 0 }, 122 }, *phase; 123 intel_wakeref_t wakeref = 0; 124 unsigned long count = 0; 125 unsigned long scanned = 0; 126 int err = 0; 127 128 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 129 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 130 131 trace_i915_gem_shrink(i915, target, shrink); 132 133 /* 134 * Unbinding of objects will require HW access; Let us not wake the 135 * device just to recover a little memory. If absolutely necessary, 136 * we will force the wake during oom-notifier. 137 */ 138 if (shrink & I915_SHRINK_BOUND) { 139 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 140 if (!wakeref) 141 shrink &= ~I915_SHRINK_BOUND; 142 } 143 144 /* 145 * When shrinking the active list, we should also consider active 146 * contexts. Active contexts are pinned until they are retired, and 147 * so can not be simply unbound to retire and unpin their pages. To 148 * shrink the contexts, we must wait until the gpu is idle and 149 * completed its switch to the kernel context. In short, we do 150 * not have a good mechanism for idling a specific context, but 151 * what we can do is give them a kick so that we do not keep idle 152 * contexts around longer than is necessary. 153 */ 154 if (shrink & I915_SHRINK_ACTIVE) 155 /* Retire requests to unpin all idle contexts */ 156 intel_gt_retire_requests(to_gt(i915)); 157 158 /* 159 * As we may completely rewrite the (un)bound list whilst unbinding 160 * (due to retiring requests) we have to strictly process only 161 * one element of the list at the time, and recheck the list 162 * on every iteration. 163 * 164 * In particular, we must hold a reference whilst removing the 165 * object as we may end up waiting for and/or retiring the objects. 166 * This might release the final reference (held by the active list) 167 * and result in the object being freed from under us. This is 168 * similar to the precautions the eviction code must take whilst 169 * removing objects. 170 * 171 * Also note that although these lists do not hold a reference to 172 * the object we can safely grab one here: The final object 173 * unreferencing and the bound_list are both protected by the 174 * dev->struct_mutex and so we won't ever be able to observe an 175 * object on the bound_list with a reference count equals 0. 176 */ 177 for (phase = phases; phase->list; phase++) { 178 struct list_head still_in_list; 179 struct drm_i915_gem_object *obj; 180 unsigned long flags; 181 182 if ((shrink & phase->bit) == 0) 183 continue; 184 185 INIT_LIST_HEAD(&still_in_list); 186 187 /* 188 * We serialize our access to unreferenced objects through 189 * the use of the struct_mutex. While the objects are not 190 * yet freed (due to RCU then a workqueue) we still want 191 * to be able to shrink their pages, so they remain on 192 * the unbound/bound list until actually freed. 193 */ 194 spin_lock_irqsave(&i915->mm.obj_lock, flags); 195 while (count < target && 196 (obj = list_first_entry_or_null(phase->list, 197 typeof(*obj), 198 mm.link))) { 199 list_move_tail(&obj->mm.link, &still_in_list); 200 201 if (shrink & I915_SHRINK_VMAPS && 202 !is_vmalloc_addr(obj->mm.mapping)) 203 continue; 204 205 if (!(shrink & I915_SHRINK_ACTIVE) && 206 i915_gem_object_is_framebuffer(obj)) 207 continue; 208 209 if (!can_release_pages(obj)) 210 continue; 211 212 if (!kref_get_unless_zero(&obj->base.refcount)) 213 continue; 214 215 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 216 217 /* May arrive from get_pages on another bo */ 218 if (!ww) { 219 if (!i915_gem_object_trylock(obj, NULL)) 220 goto skip; 221 } else { 222 err = i915_gem_object_lock(obj, ww); 223 if (err) 224 goto skip; 225 } 226 227 if (drop_pages(obj, shrink, trylock_vm) && 228 !__i915_gem_object_put_pages(obj) && 229 !try_to_writeback(obj, shrink)) 230 count += obj->base.size >> PAGE_SHIFT; 231 232 if (!ww) 233 i915_gem_object_unlock(obj); 234 235 scanned += obj->base.size >> PAGE_SHIFT; 236 skip: 237 i915_gem_object_put(obj); 238 239 spin_lock_irqsave(&i915->mm.obj_lock, flags); 240 if (err) 241 break; 242 } 243 list_splice_tail(&still_in_list, phase->list); 244 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 245 if (err) 246 break; 247 } 248 249 if (shrink & I915_SHRINK_BOUND) 250 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 251 252 if (err) 253 return err; 254 255 if (nr_scanned) 256 *nr_scanned += scanned; 257 return count; 258 } 259 260 /** 261 * i915_gem_shrink_all - Shrink buffer object caches completely 262 * @i915: i915 device 263 * 264 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 265 * caches completely. It also first waits for and retires all outstanding 266 * requests to also be able to release backing storage for active objects. 267 * 268 * This should only be used in code to intentionally quiescent the gpu or as a 269 * last-ditch effort when memory seems to have run out. 270 * 271 * Returns: 272 * The number of pages of backing storage actually released. 273 */ 274 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 275 { 276 intel_wakeref_t wakeref; 277 unsigned long freed = 0; 278 279 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 280 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 281 I915_SHRINK_BOUND | 282 I915_SHRINK_UNBOUND); 283 } 284 285 return freed; 286 } 287 288 static unsigned long 289 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 290 { 291 struct drm_i915_private *i915 = 292 container_of(shrinker, struct drm_i915_private, mm.shrinker); 293 unsigned long num_objects; 294 unsigned long count; 295 296 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 297 num_objects = READ_ONCE(i915->mm.shrink_count); 298 299 /* 300 * Update our preferred vmscan batch size for the next pass. 301 * Our rough guess for an effective batch size is roughly 2 302 * available GEM objects worth of pages. That is we don't want 303 * the shrinker to fire, until it is worth the cost of freeing an 304 * entire GEM object. 305 */ 306 if (num_objects) { 307 unsigned long avg = 2 * count / num_objects; 308 309 i915->mm.shrinker.batch = 310 max((i915->mm.shrinker.batch + avg) >> 1, 311 128ul /* default SHRINK_BATCH */); 312 } 313 314 return count; 315 } 316 317 static unsigned long 318 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 319 { 320 struct drm_i915_private *i915 = 321 container_of(shrinker, struct drm_i915_private, mm.shrinker); 322 unsigned long freed; 323 324 sc->nr_scanned = 0; 325 326 freed = i915_gem_shrink(NULL, i915, 327 sc->nr_to_scan, 328 &sc->nr_scanned, 329 I915_SHRINK_BOUND | 330 I915_SHRINK_UNBOUND); 331 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 332 intel_wakeref_t wakeref; 333 334 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 335 freed += i915_gem_shrink(NULL, i915, 336 sc->nr_to_scan - sc->nr_scanned, 337 &sc->nr_scanned, 338 I915_SHRINK_ACTIVE | 339 I915_SHRINK_BOUND | 340 I915_SHRINK_UNBOUND | 341 I915_SHRINK_WRITEBACK); 342 } 343 } 344 345 return sc->nr_scanned ? freed : SHRINK_STOP; 346 } 347 348 static int 349 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 350 { 351 struct drm_i915_private *i915 = 352 container_of(nb, struct drm_i915_private, mm.oom_notifier); 353 struct drm_i915_gem_object *obj; 354 unsigned long unevictable, available, freed_pages; 355 intel_wakeref_t wakeref; 356 unsigned long flags; 357 358 freed_pages = 0; 359 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 360 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 361 I915_SHRINK_BOUND | 362 I915_SHRINK_UNBOUND | 363 I915_SHRINK_WRITEBACK); 364 365 /* Because we may be allocating inside our own driver, we cannot 366 * assert that there are no objects with pinned pages that are not 367 * being pointed to by hardware. 368 */ 369 available = unevictable = 0; 370 spin_lock_irqsave(&i915->mm.obj_lock, flags); 371 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 372 if (!can_release_pages(obj)) 373 unevictable += obj->base.size >> PAGE_SHIFT; 374 else 375 available += obj->base.size >> PAGE_SHIFT; 376 } 377 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 378 379 if (freed_pages || available) 380 pr_info("Purging GPU memory, %lu pages freed, " 381 "%lu pages still pinned, %lu pages left available.\n", 382 freed_pages, unevictable, available); 383 384 *(unsigned long *)ptr += freed_pages; 385 return NOTIFY_DONE; 386 } 387 388 static int 389 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 390 { 391 struct drm_i915_private *i915 = 392 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 393 struct i915_vma *vma, *next; 394 unsigned long freed_pages = 0; 395 intel_wakeref_t wakeref; 396 397 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 398 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 399 I915_SHRINK_BOUND | 400 I915_SHRINK_UNBOUND | 401 I915_SHRINK_VMAPS); 402 403 /* We also want to clear any cached iomaps as they wrap vmap */ 404 mutex_lock(&i915->ggtt.vm.mutex); 405 list_for_each_entry_safe(vma, next, 406 &i915->ggtt.vm.bound_list, vm_link) { 407 unsigned long count = vma->node.size >> PAGE_SHIFT; 408 struct drm_i915_gem_object *obj = vma->obj; 409 410 if (!vma->iomap || i915_vma_is_active(vma)) 411 continue; 412 413 if (!i915_gem_object_trylock(obj, NULL)) 414 continue; 415 416 if (__i915_vma_unbind(vma) == 0) 417 freed_pages += count; 418 419 i915_gem_object_unlock(obj); 420 } 421 mutex_unlock(&i915->ggtt.vm.mutex); 422 423 *(unsigned long *)ptr += freed_pages; 424 return NOTIFY_DONE; 425 } 426 427 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 428 { 429 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 430 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 431 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 432 i915->mm.shrinker.batch = 4096; 433 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 434 435 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 436 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 437 438 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 439 drm_WARN_ON(&i915->drm, 440 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 441 } 442 443 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 444 { 445 drm_WARN_ON(&i915->drm, 446 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 447 drm_WARN_ON(&i915->drm, 448 unregister_oom_notifier(&i915->mm.oom_notifier)); 449 unregister_shrinker(&i915->mm.shrinker); 450 } 451 452 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 453 struct mutex *mutex) 454 { 455 if (!IS_ENABLED(CONFIG_LOCKDEP)) 456 return; 457 458 fs_reclaim_acquire(GFP_KERNEL); 459 460 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 461 mutex_release(&mutex->dep_map, _RET_IP_); 462 463 fs_reclaim_release(GFP_KERNEL); 464 } 465 466 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 467 468 /** 469 * i915_gem_object_make_unshrinkable - Hide the object from the shrinker. By 470 * default all object types that support shrinking(see IS_SHRINKABLE), will also 471 * make the object visible to the shrinker after allocating the system memory 472 * pages. 473 * @obj: The GEM object. 474 * 475 * This is typically used for special kernel internal objects that can't be 476 * easily processed by the shrinker, like if they are perma-pinned. 477 */ 478 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 479 { 480 struct drm_i915_private *i915 = obj_to_i915(obj); 481 unsigned long flags; 482 483 /* 484 * We can only be called while the pages are pinned or when 485 * the pages are released. If pinned, we should only be called 486 * from a single caller under controlled conditions; and on release 487 * only one caller may release us. Neither the two may cross. 488 */ 489 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 490 return; 491 492 spin_lock_irqsave(&i915->mm.obj_lock, flags); 493 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 494 !list_empty(&obj->mm.link)) { 495 list_del_init(&obj->mm.link); 496 i915->mm.shrink_count--; 497 i915->mm.shrink_memory -= obj->base.size; 498 } 499 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 500 } 501 502 static void ___i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 503 struct list_head *head) 504 { 505 struct drm_i915_private *i915 = obj_to_i915(obj); 506 unsigned long flags; 507 508 if (!i915_gem_object_is_shrinkable(obj)) 509 return; 510 511 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 512 return; 513 514 spin_lock_irqsave(&i915->mm.obj_lock, flags); 515 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 516 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 517 GEM_BUG_ON(!list_empty(&obj->mm.link)); 518 519 list_add_tail(&obj->mm.link, head); 520 i915->mm.shrink_count++; 521 i915->mm.shrink_memory += obj->base.size; 522 523 } 524 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 525 } 526 527 /** 528 * __i915_gem_object_make_shrinkable - Move the object to the tail of the 529 * shrinkable list. Objects on this list might be swapped out. Used with 530 * WILLNEED objects. 531 * @obj: The GEM object. 532 * 533 * DO NOT USE. This is intended to be called on very special objects that don't 534 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 535 * underneath. 536 */ 537 void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 538 { 539 ___i915_gem_object_make_shrinkable(obj, 540 &obj_to_i915(obj)->mm.shrink_list); 541 } 542 543 /** 544 * __i915_gem_object_make_purgeable - Move the object to the tail of the 545 * purgeable list. Objects on this list might be swapped out. Used with 546 * DONTNEED objects. 547 * @obj: The GEM object. 548 * 549 * DO NOT USE. This is intended to be called on very special objects that don't 550 * yet have mm.pages, but are guaranteed to have potentially reclaimable pages 551 * underneath. 552 */ 553 void __i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 554 { 555 ___i915_gem_object_make_shrinkable(obj, 556 &obj_to_i915(obj)->mm.purge_list); 557 } 558 559 /** 560 * i915_gem_object_make_shrinkable - Move the object to the tail of the 561 * shrinkable list. Objects on this list might be swapped out. Used with 562 * WILLNEED objects. 563 * @obj: The GEM object. 564 * 565 * MUST only be called on objects which have backing pages. 566 * 567 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 568 */ 569 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 570 { 571 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 572 __i915_gem_object_make_shrinkable(obj); 573 } 574 575 /** 576 * i915_gem_object_make_purgeable - Move the object to the tail of the purgeable 577 * list. Used with DONTNEED objects. Unlike with shrinkable objects, the 578 * shrinker will attempt to discard the backing pages, instead of trying to swap 579 * them out. 580 * @obj: The GEM object. 581 * 582 * MUST only be called on objects which have backing pages. 583 * 584 * MUST be balanced with previous call to i915_gem_object_make_unshrinkable(). 585 */ 586 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 587 { 588 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 589 __i915_gem_object_make_purgeable(obj); 590 } 591