1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "i915_trace.h" 19 20 static bool swap_available(void) 21 { 22 return get_nr_swap_pages() > 0; 23 } 24 25 static bool can_release_pages(struct drm_i915_gem_object *obj) 26 { 27 /* Consider only shrinkable ojects. */ 28 if (!i915_gem_object_is_shrinkable(obj)) 29 return false; 30 31 /* 32 * We can only return physical pages to the system if we can either 33 * discard the contents (because the user has marked them as being 34 * purgeable) or if we can move their contents out to swap. 35 */ 36 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 37 } 38 39 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 40 unsigned long shrink) 41 { 42 unsigned long flags; 43 44 flags = 0; 45 if (shrink & I915_SHRINK_ACTIVE) 46 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 47 if (!(shrink & I915_SHRINK_BOUND)) 48 flags = I915_GEM_OBJECT_UNBIND_TEST; 49 50 if (i915_gem_object_unbind(obj, flags) == 0) 51 __i915_gem_object_put_pages(obj); 52 53 return !i915_gem_object_has_pages(obj); 54 } 55 56 static void try_to_writeback(struct drm_i915_gem_object *obj, 57 unsigned int flags) 58 { 59 switch (obj->mm.madv) { 60 case I915_MADV_DONTNEED: 61 i915_gem_object_truncate(obj); 62 case __I915_MADV_PURGED: 63 return; 64 } 65 66 if (flags & I915_SHRINK_WRITEBACK) 67 i915_gem_object_writeback(obj); 68 } 69 70 /** 71 * i915_gem_shrink - Shrink buffer object caches 72 * @i915: i915 device 73 * @target: amount of memory to make available, in pages 74 * @nr_scanned: optional output for number of pages scanned (incremental) 75 * @shrink: control flags for selecting cache types 76 * 77 * This function is the main interface to the shrinker. It will try to release 78 * up to @target pages of main memory backing storage from buffer objects. 79 * Selection of the specific caches can be done with @flags. This is e.g. useful 80 * when purgeable objects should be removed from caches preferentially. 81 * 82 * Note that it's not guaranteed that released amount is actually available as 83 * free system memory - the pages might still be in-used to due to other reasons 84 * (like cpu mmaps) or the mm core has reused them before we could grab them. 85 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 86 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 87 * 88 * Also note that any kind of pinning (both per-vma address space pins and 89 * backing storage pins at the buffer object level) result in the shrinker code 90 * having to skip the object. 91 * 92 * Returns: 93 * The number of pages of backing storage actually released. 94 */ 95 unsigned long 96 i915_gem_shrink(struct drm_i915_private *i915, 97 unsigned long target, 98 unsigned long *nr_scanned, 99 unsigned int shrink) 100 { 101 const struct { 102 struct list_head *list; 103 unsigned int bit; 104 } phases[] = { 105 { &i915->mm.purge_list, ~0u }, 106 { 107 &i915->mm.shrink_list, 108 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 109 }, 110 { NULL, 0 }, 111 }, *phase; 112 intel_wakeref_t wakeref = 0; 113 unsigned long count = 0; 114 unsigned long scanned = 0; 115 116 trace_i915_gem_shrink(i915, target, shrink); 117 118 /* 119 * Unbinding of objects will require HW access; Let us not wake the 120 * device just to recover a little memory. If absolutely necessary, 121 * we will force the wake during oom-notifier. 122 */ 123 if (shrink & I915_SHRINK_BOUND) { 124 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 125 if (!wakeref) 126 shrink &= ~I915_SHRINK_BOUND; 127 } 128 129 /* 130 * When shrinking the active list, we should also consider active 131 * contexts. Active contexts are pinned until they are retired, and 132 * so can not be simply unbound to retire and unpin their pages. To 133 * shrink the contexts, we must wait until the gpu is idle and 134 * completed its switch to the kernel context. In short, we do 135 * not have a good mechanism for idling a specific context, but 136 * what we can do is give them a kick so that we do not keep idle 137 * contexts around longer than is necessary. 138 */ 139 if (shrink & I915_SHRINK_ACTIVE) 140 /* Retire requests to unpin all idle contexts */ 141 intel_gt_retire_requests(&i915->gt); 142 143 /* 144 * As we may completely rewrite the (un)bound list whilst unbinding 145 * (due to retiring requests) we have to strictly process only 146 * one element of the list at the time, and recheck the list 147 * on every iteration. 148 * 149 * In particular, we must hold a reference whilst removing the 150 * object as we may end up waiting for and/or retiring the objects. 151 * This might release the final reference (held by the active list) 152 * and result in the object being freed from under us. This is 153 * similar to the precautions the eviction code must take whilst 154 * removing objects. 155 * 156 * Also note that although these lists do not hold a reference to 157 * the object we can safely grab one here: The final object 158 * unreferencing and the bound_list are both protected by the 159 * dev->struct_mutex and so we won't ever be able to observe an 160 * object on the bound_list with a reference count equals 0. 161 */ 162 for (phase = phases; phase->list; phase++) { 163 struct list_head still_in_list; 164 struct drm_i915_gem_object *obj; 165 unsigned long flags; 166 167 if ((shrink & phase->bit) == 0) 168 continue; 169 170 INIT_LIST_HEAD(&still_in_list); 171 172 /* 173 * We serialize our access to unreferenced objects through 174 * the use of the struct_mutex. While the objects are not 175 * yet freed (due to RCU then a workqueue) we still want 176 * to be able to shrink their pages, so they remain on 177 * the unbound/bound list until actually freed. 178 */ 179 spin_lock_irqsave(&i915->mm.obj_lock, flags); 180 while (count < target && 181 (obj = list_first_entry_or_null(phase->list, 182 typeof(*obj), 183 mm.link))) { 184 list_move_tail(&obj->mm.link, &still_in_list); 185 186 if (shrink & I915_SHRINK_VMAPS && 187 !is_vmalloc_addr(obj->mm.mapping)) 188 continue; 189 190 if (!(shrink & I915_SHRINK_ACTIVE) && 191 i915_gem_object_is_framebuffer(obj)) 192 continue; 193 194 if (!can_release_pages(obj)) 195 continue; 196 197 if (!kref_get_unless_zero(&obj->base.refcount)) 198 continue; 199 200 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 201 202 if (unsafe_drop_pages(obj, shrink)) { 203 /* May arrive from get_pages on another bo */ 204 mutex_lock(&obj->mm.lock); 205 if (!i915_gem_object_has_pages(obj)) { 206 try_to_writeback(obj, shrink); 207 count += obj->base.size >> PAGE_SHIFT; 208 } 209 mutex_unlock(&obj->mm.lock); 210 } 211 212 scanned += obj->base.size >> PAGE_SHIFT; 213 i915_gem_object_put(obj); 214 215 spin_lock_irqsave(&i915->mm.obj_lock, flags); 216 } 217 list_splice_tail(&still_in_list, phase->list); 218 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 219 } 220 221 if (shrink & I915_SHRINK_BOUND) 222 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 223 224 if (nr_scanned) 225 *nr_scanned += scanned; 226 return count; 227 } 228 229 /** 230 * i915_gem_shrink_all - Shrink buffer object caches completely 231 * @i915: i915 device 232 * 233 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 234 * caches completely. It also first waits for and retires all outstanding 235 * requests to also be able to release backing storage for active objects. 236 * 237 * This should only be used in code to intentionally quiescent the gpu or as a 238 * last-ditch effort when memory seems to have run out. 239 * 240 * Returns: 241 * The number of pages of backing storage actually released. 242 */ 243 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 244 { 245 intel_wakeref_t wakeref; 246 unsigned long freed = 0; 247 248 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 249 freed = i915_gem_shrink(i915, -1UL, NULL, 250 I915_SHRINK_BOUND | 251 I915_SHRINK_UNBOUND); 252 } 253 254 return freed; 255 } 256 257 static unsigned long 258 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 259 { 260 struct drm_i915_private *i915 = 261 container_of(shrinker, struct drm_i915_private, mm.shrinker); 262 unsigned long num_objects; 263 unsigned long count; 264 265 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 266 num_objects = READ_ONCE(i915->mm.shrink_count); 267 268 /* 269 * Update our preferred vmscan batch size for the next pass. 270 * Our rough guess for an effective batch size is roughly 2 271 * available GEM objects worth of pages. That is we don't want 272 * the shrinker to fire, until it is worth the cost of freeing an 273 * entire GEM object. 274 */ 275 if (num_objects) { 276 unsigned long avg = 2 * count / num_objects; 277 278 i915->mm.shrinker.batch = 279 max((i915->mm.shrinker.batch + avg) >> 1, 280 128ul /* default SHRINK_BATCH */); 281 } 282 283 return count; 284 } 285 286 static unsigned long 287 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 288 { 289 struct drm_i915_private *i915 = 290 container_of(shrinker, struct drm_i915_private, mm.shrinker); 291 unsigned long freed; 292 293 sc->nr_scanned = 0; 294 295 freed = i915_gem_shrink(i915, 296 sc->nr_to_scan, 297 &sc->nr_scanned, 298 I915_SHRINK_BOUND | 299 I915_SHRINK_UNBOUND); 300 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 301 intel_wakeref_t wakeref; 302 303 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 304 freed += i915_gem_shrink(i915, 305 sc->nr_to_scan - sc->nr_scanned, 306 &sc->nr_scanned, 307 I915_SHRINK_ACTIVE | 308 I915_SHRINK_BOUND | 309 I915_SHRINK_UNBOUND | 310 I915_SHRINK_WRITEBACK); 311 } 312 } 313 314 return sc->nr_scanned ? freed : SHRINK_STOP; 315 } 316 317 static int 318 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 319 { 320 struct drm_i915_private *i915 = 321 container_of(nb, struct drm_i915_private, mm.oom_notifier); 322 struct drm_i915_gem_object *obj; 323 unsigned long unevictable, available, freed_pages; 324 intel_wakeref_t wakeref; 325 unsigned long flags; 326 327 freed_pages = 0; 328 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 329 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 330 I915_SHRINK_BOUND | 331 I915_SHRINK_UNBOUND | 332 I915_SHRINK_WRITEBACK); 333 334 /* Because we may be allocating inside our own driver, we cannot 335 * assert that there are no objects with pinned pages that are not 336 * being pointed to by hardware. 337 */ 338 available = unevictable = 0; 339 spin_lock_irqsave(&i915->mm.obj_lock, flags); 340 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 341 if (!can_release_pages(obj)) 342 unevictable += obj->base.size >> PAGE_SHIFT; 343 else 344 available += obj->base.size >> PAGE_SHIFT; 345 } 346 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 347 348 if (freed_pages || available) 349 pr_info("Purging GPU memory, %lu pages freed, " 350 "%lu pages still pinned, %lu pages left available.\n", 351 freed_pages, unevictable, available); 352 353 *(unsigned long *)ptr += freed_pages; 354 return NOTIFY_DONE; 355 } 356 357 static int 358 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 359 { 360 struct drm_i915_private *i915 = 361 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 362 struct i915_vma *vma, *next; 363 unsigned long freed_pages = 0; 364 intel_wakeref_t wakeref; 365 366 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 367 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 368 I915_SHRINK_BOUND | 369 I915_SHRINK_UNBOUND | 370 I915_SHRINK_VMAPS); 371 372 /* We also want to clear any cached iomaps as they wrap vmap */ 373 mutex_lock(&i915->ggtt.vm.mutex); 374 list_for_each_entry_safe(vma, next, 375 &i915->ggtt.vm.bound_list, vm_link) { 376 unsigned long count = vma->node.size >> PAGE_SHIFT; 377 378 if (!vma->iomap || i915_vma_is_active(vma)) 379 continue; 380 381 if (__i915_vma_unbind(vma) == 0) 382 freed_pages += count; 383 } 384 mutex_unlock(&i915->ggtt.vm.mutex); 385 386 *(unsigned long *)ptr += freed_pages; 387 return NOTIFY_DONE; 388 } 389 390 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 391 { 392 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 393 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 394 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 395 i915->mm.shrinker.batch = 4096; 396 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 397 398 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 399 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 400 401 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 402 drm_WARN_ON(&i915->drm, 403 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 404 } 405 406 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 407 { 408 drm_WARN_ON(&i915->drm, 409 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 410 drm_WARN_ON(&i915->drm, 411 unregister_oom_notifier(&i915->mm.oom_notifier)); 412 unregister_shrinker(&i915->mm.shrinker); 413 } 414 415 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 416 struct mutex *mutex) 417 { 418 if (!IS_ENABLED(CONFIG_LOCKDEP)) 419 return; 420 421 fs_reclaim_acquire(GFP_KERNEL); 422 423 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 424 mutex_release(&mutex->dep_map, _RET_IP_); 425 426 fs_reclaim_release(GFP_KERNEL); 427 } 428 429 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 430 431 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 432 { 433 struct drm_i915_private *i915 = obj_to_i915(obj); 434 unsigned long flags; 435 436 /* 437 * We can only be called while the pages are pinned or when 438 * the pages are released. If pinned, we should only be called 439 * from a single caller under controlled conditions; and on release 440 * only one caller may release us. Neither the two may cross. 441 */ 442 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 443 return; 444 445 spin_lock_irqsave(&i915->mm.obj_lock, flags); 446 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 447 !list_empty(&obj->mm.link)) { 448 list_del_init(&obj->mm.link); 449 i915->mm.shrink_count--; 450 i915->mm.shrink_memory -= obj->base.size; 451 } 452 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 453 } 454 455 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 456 struct list_head *head) 457 { 458 struct drm_i915_private *i915 = obj_to_i915(obj); 459 unsigned long flags; 460 461 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 462 if (!i915_gem_object_is_shrinkable(obj)) 463 return; 464 465 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 466 return; 467 468 spin_lock_irqsave(&i915->mm.obj_lock, flags); 469 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 470 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 471 GEM_BUG_ON(!list_empty(&obj->mm.link)); 472 473 list_add_tail(&obj->mm.link, head); 474 i915->mm.shrink_count++; 475 i915->mm.shrink_memory += obj->base.size; 476 477 } 478 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 479 } 480 481 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 482 { 483 __i915_gem_object_make_shrinkable(obj, 484 &obj_to_i915(obj)->mm.shrink_list); 485 } 486 487 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 488 { 489 __i915_gem_object_make_shrinkable(obj, 490 &obj_to_i915(obj)->mm.purge_list); 491 } 492