1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "dma_resv_utils.h" 19 #include "i915_trace.h" 20 21 static bool swap_available(void) 22 { 23 return get_nr_swap_pages() > 0; 24 } 25 26 static bool can_release_pages(struct drm_i915_gem_object *obj) 27 { 28 /* Consider only shrinkable ojects. */ 29 if (!i915_gem_object_is_shrinkable(obj)) 30 return false; 31 32 /* 33 * We can only return physical pages to the system if we can either 34 * discard the contents (because the user has marked them as being 35 * purgeable) or if we can move their contents out to swap. 36 */ 37 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 38 } 39 40 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 41 unsigned long shrink, bool trylock_vm) 42 { 43 unsigned long flags; 44 45 flags = 0; 46 if (shrink & I915_SHRINK_ACTIVE) 47 flags |= I915_GEM_OBJECT_UNBIND_ACTIVE; 48 if (!(shrink & I915_SHRINK_BOUND)) 49 flags |= I915_GEM_OBJECT_UNBIND_TEST; 50 if (trylock_vm) 51 flags |= I915_GEM_OBJECT_UNBIND_VM_TRYLOCK; 52 53 if (i915_gem_object_unbind(obj, flags) == 0) 54 return true; 55 56 return false; 57 } 58 59 static void try_to_writeback(struct drm_i915_gem_object *obj, 60 unsigned int flags) 61 { 62 switch (obj->mm.madv) { 63 case I915_MADV_DONTNEED: 64 i915_gem_object_truncate(obj); 65 return; 66 case __I915_MADV_PURGED: 67 return; 68 } 69 70 if (flags & I915_SHRINK_WRITEBACK) 71 i915_gem_object_writeback(obj); 72 } 73 74 /** 75 * i915_gem_shrink - Shrink buffer object caches 76 * @ww: i915 gem ww acquire ctx, or NULL 77 * @i915: i915 device 78 * @target: amount of memory to make available, in pages 79 * @nr_scanned: optional output for number of pages scanned (incremental) 80 * @shrink: control flags for selecting cache types 81 * 82 * This function is the main interface to the shrinker. It will try to release 83 * up to @target pages of main memory backing storage from buffer objects. 84 * Selection of the specific caches can be done with @flags. This is e.g. useful 85 * when purgeable objects should be removed from caches preferentially. 86 * 87 * Note that it's not guaranteed that released amount is actually available as 88 * free system memory - the pages might still be in-used to due to other reasons 89 * (like cpu mmaps) or the mm core has reused them before we could grab them. 90 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 91 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 92 * 93 * Also note that any kind of pinning (both per-vma address space pins and 94 * backing storage pins at the buffer object level) result in the shrinker code 95 * having to skip the object. 96 * 97 * Returns: 98 * The number of pages of backing storage actually released. 99 */ 100 unsigned long 101 i915_gem_shrink(struct i915_gem_ww_ctx *ww, 102 struct drm_i915_private *i915, 103 unsigned long target, 104 unsigned long *nr_scanned, 105 unsigned int shrink) 106 { 107 const struct { 108 struct list_head *list; 109 unsigned int bit; 110 } phases[] = { 111 { &i915->mm.purge_list, ~0u }, 112 { 113 &i915->mm.shrink_list, 114 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 115 }, 116 { NULL, 0 }, 117 }, *phase; 118 intel_wakeref_t wakeref = 0; 119 unsigned long count = 0; 120 unsigned long scanned = 0; 121 int err = 0; 122 123 /* CHV + VTD workaround use stop_machine(); need to trylock vm->mutex */ 124 bool trylock_vm = !ww && intel_vm_no_concurrent_access_wa(i915); 125 126 trace_i915_gem_shrink(i915, target, shrink); 127 128 /* 129 * Unbinding of objects will require HW access; Let us not wake the 130 * device just to recover a little memory. If absolutely necessary, 131 * we will force the wake during oom-notifier. 132 */ 133 if (shrink & I915_SHRINK_BOUND) { 134 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 135 if (!wakeref) 136 shrink &= ~I915_SHRINK_BOUND; 137 } 138 139 /* 140 * When shrinking the active list, we should also consider active 141 * contexts. Active contexts are pinned until they are retired, and 142 * so can not be simply unbound to retire and unpin their pages. To 143 * shrink the contexts, we must wait until the gpu is idle and 144 * completed its switch to the kernel context. In short, we do 145 * not have a good mechanism for idling a specific context, but 146 * what we can do is give them a kick so that we do not keep idle 147 * contexts around longer than is necessary. 148 */ 149 if (shrink & I915_SHRINK_ACTIVE) 150 /* Retire requests to unpin all idle contexts */ 151 intel_gt_retire_requests(&i915->gt); 152 153 /* 154 * As we may completely rewrite the (un)bound list whilst unbinding 155 * (due to retiring requests) we have to strictly process only 156 * one element of the list at the time, and recheck the list 157 * on every iteration. 158 * 159 * In particular, we must hold a reference whilst removing the 160 * object as we may end up waiting for and/or retiring the objects. 161 * This might release the final reference (held by the active list) 162 * and result in the object being freed from under us. This is 163 * similar to the precautions the eviction code must take whilst 164 * removing objects. 165 * 166 * Also note that although these lists do not hold a reference to 167 * the object we can safely grab one here: The final object 168 * unreferencing and the bound_list are both protected by the 169 * dev->struct_mutex and so we won't ever be able to observe an 170 * object on the bound_list with a reference count equals 0. 171 */ 172 for (phase = phases; phase->list; phase++) { 173 struct list_head still_in_list; 174 struct drm_i915_gem_object *obj; 175 unsigned long flags; 176 177 if ((shrink & phase->bit) == 0) 178 continue; 179 180 INIT_LIST_HEAD(&still_in_list); 181 182 /* 183 * We serialize our access to unreferenced objects through 184 * the use of the struct_mutex. While the objects are not 185 * yet freed (due to RCU then a workqueue) we still want 186 * to be able to shrink their pages, so they remain on 187 * the unbound/bound list until actually freed. 188 */ 189 spin_lock_irqsave(&i915->mm.obj_lock, flags); 190 while (count < target && 191 (obj = list_first_entry_or_null(phase->list, 192 typeof(*obj), 193 mm.link))) { 194 list_move_tail(&obj->mm.link, &still_in_list); 195 196 if (shrink & I915_SHRINK_VMAPS && 197 !is_vmalloc_addr(obj->mm.mapping)) 198 continue; 199 200 if (!(shrink & I915_SHRINK_ACTIVE) && 201 i915_gem_object_is_framebuffer(obj)) 202 continue; 203 204 if (!can_release_pages(obj)) 205 continue; 206 207 if (!kref_get_unless_zero(&obj->base.refcount)) 208 continue; 209 210 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 211 212 err = 0; 213 if (unsafe_drop_pages(obj, shrink, trylock_vm)) { 214 /* May arrive from get_pages on another bo */ 215 if (!ww) { 216 if (!i915_gem_object_trylock(obj)) 217 goto skip; 218 } else { 219 err = i915_gem_object_lock(obj, ww); 220 if (err) 221 goto skip; 222 } 223 224 if (!__i915_gem_object_put_pages(obj)) { 225 try_to_writeback(obj, shrink); 226 count += obj->base.size >> PAGE_SHIFT; 227 } 228 if (!ww) 229 i915_gem_object_unlock(obj); 230 } 231 232 dma_resv_prune(obj->base.resv); 233 234 scanned += obj->base.size >> PAGE_SHIFT; 235 skip: 236 i915_gem_object_put(obj); 237 238 spin_lock_irqsave(&i915->mm.obj_lock, flags); 239 if (err) 240 break; 241 } 242 list_splice_tail(&still_in_list, phase->list); 243 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 244 if (err) 245 break; 246 } 247 248 if (shrink & I915_SHRINK_BOUND) 249 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 250 251 if (err) 252 return err; 253 254 if (nr_scanned) 255 *nr_scanned += scanned; 256 return count; 257 } 258 259 /** 260 * i915_gem_shrink_all - Shrink buffer object caches completely 261 * @i915: i915 device 262 * 263 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 264 * caches completely. It also first waits for and retires all outstanding 265 * requests to also be able to release backing storage for active objects. 266 * 267 * This should only be used in code to intentionally quiescent the gpu or as a 268 * last-ditch effort when memory seems to have run out. 269 * 270 * Returns: 271 * The number of pages of backing storage actually released. 272 */ 273 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 274 { 275 intel_wakeref_t wakeref; 276 unsigned long freed = 0; 277 278 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 279 freed = i915_gem_shrink(NULL, i915, -1UL, NULL, 280 I915_SHRINK_BOUND | 281 I915_SHRINK_UNBOUND); 282 } 283 284 return freed; 285 } 286 287 static unsigned long 288 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 289 { 290 struct drm_i915_private *i915 = 291 container_of(shrinker, struct drm_i915_private, mm.shrinker); 292 unsigned long num_objects; 293 unsigned long count; 294 295 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 296 num_objects = READ_ONCE(i915->mm.shrink_count); 297 298 /* 299 * Update our preferred vmscan batch size for the next pass. 300 * Our rough guess for an effective batch size is roughly 2 301 * available GEM objects worth of pages. That is we don't want 302 * the shrinker to fire, until it is worth the cost of freeing an 303 * entire GEM object. 304 */ 305 if (num_objects) { 306 unsigned long avg = 2 * count / num_objects; 307 308 i915->mm.shrinker.batch = 309 max((i915->mm.shrinker.batch + avg) >> 1, 310 128ul /* default SHRINK_BATCH */); 311 } 312 313 return count; 314 } 315 316 static unsigned long 317 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 318 { 319 struct drm_i915_private *i915 = 320 container_of(shrinker, struct drm_i915_private, mm.shrinker); 321 unsigned long freed; 322 323 sc->nr_scanned = 0; 324 325 freed = i915_gem_shrink(NULL, i915, 326 sc->nr_to_scan, 327 &sc->nr_scanned, 328 I915_SHRINK_BOUND | 329 I915_SHRINK_UNBOUND); 330 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 331 intel_wakeref_t wakeref; 332 333 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 334 freed += i915_gem_shrink(NULL, i915, 335 sc->nr_to_scan - sc->nr_scanned, 336 &sc->nr_scanned, 337 I915_SHRINK_ACTIVE | 338 I915_SHRINK_BOUND | 339 I915_SHRINK_UNBOUND | 340 I915_SHRINK_WRITEBACK); 341 } 342 } 343 344 return sc->nr_scanned ? freed : SHRINK_STOP; 345 } 346 347 static int 348 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 349 { 350 struct drm_i915_private *i915 = 351 container_of(nb, struct drm_i915_private, mm.oom_notifier); 352 struct drm_i915_gem_object *obj; 353 unsigned long unevictable, available, freed_pages; 354 intel_wakeref_t wakeref; 355 unsigned long flags; 356 357 freed_pages = 0; 358 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 359 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 360 I915_SHRINK_BOUND | 361 I915_SHRINK_UNBOUND | 362 I915_SHRINK_WRITEBACK); 363 364 /* Because we may be allocating inside our own driver, we cannot 365 * assert that there are no objects with pinned pages that are not 366 * being pointed to by hardware. 367 */ 368 available = unevictable = 0; 369 spin_lock_irqsave(&i915->mm.obj_lock, flags); 370 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 371 if (!can_release_pages(obj)) 372 unevictable += obj->base.size >> PAGE_SHIFT; 373 else 374 available += obj->base.size >> PAGE_SHIFT; 375 } 376 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 377 378 if (freed_pages || available) 379 pr_info("Purging GPU memory, %lu pages freed, " 380 "%lu pages still pinned, %lu pages left available.\n", 381 freed_pages, unevictable, available); 382 383 *(unsigned long *)ptr += freed_pages; 384 return NOTIFY_DONE; 385 } 386 387 static int 388 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 389 { 390 struct drm_i915_private *i915 = 391 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 392 struct i915_vma *vma, *next; 393 unsigned long freed_pages = 0; 394 intel_wakeref_t wakeref; 395 396 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 397 freed_pages += i915_gem_shrink(NULL, i915, -1UL, NULL, 398 I915_SHRINK_BOUND | 399 I915_SHRINK_UNBOUND | 400 I915_SHRINK_VMAPS); 401 402 /* We also want to clear any cached iomaps as they wrap vmap */ 403 mutex_lock(&i915->ggtt.vm.mutex); 404 list_for_each_entry_safe(vma, next, 405 &i915->ggtt.vm.bound_list, vm_link) { 406 unsigned long count = vma->node.size >> PAGE_SHIFT; 407 408 if (!vma->iomap || i915_vma_is_active(vma)) 409 continue; 410 411 if (__i915_vma_unbind(vma) == 0) 412 freed_pages += count; 413 } 414 mutex_unlock(&i915->ggtt.vm.mutex); 415 416 *(unsigned long *)ptr += freed_pages; 417 return NOTIFY_DONE; 418 } 419 420 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 421 { 422 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 423 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 424 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 425 i915->mm.shrinker.batch = 4096; 426 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 427 428 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 429 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 430 431 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 432 drm_WARN_ON(&i915->drm, 433 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 434 } 435 436 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 437 { 438 drm_WARN_ON(&i915->drm, 439 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 440 drm_WARN_ON(&i915->drm, 441 unregister_oom_notifier(&i915->mm.oom_notifier)); 442 unregister_shrinker(&i915->mm.shrinker); 443 } 444 445 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 446 struct mutex *mutex) 447 { 448 if (!IS_ENABLED(CONFIG_LOCKDEP)) 449 return; 450 451 fs_reclaim_acquire(GFP_KERNEL); 452 453 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 454 mutex_release(&mutex->dep_map, _RET_IP_); 455 456 fs_reclaim_release(GFP_KERNEL); 457 } 458 459 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 460 461 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 462 { 463 struct drm_i915_private *i915 = obj_to_i915(obj); 464 unsigned long flags; 465 466 /* 467 * We can only be called while the pages are pinned or when 468 * the pages are released. If pinned, we should only be called 469 * from a single caller under controlled conditions; and on release 470 * only one caller may release us. Neither the two may cross. 471 */ 472 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 473 return; 474 475 spin_lock_irqsave(&i915->mm.obj_lock, flags); 476 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 477 !list_empty(&obj->mm.link)) { 478 list_del_init(&obj->mm.link); 479 i915->mm.shrink_count--; 480 i915->mm.shrink_memory -= obj->base.size; 481 } 482 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 483 } 484 485 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 486 struct list_head *head) 487 { 488 struct drm_i915_private *i915 = obj_to_i915(obj); 489 unsigned long flags; 490 491 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 492 if (!i915_gem_object_is_shrinkable(obj)) 493 return; 494 495 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 496 return; 497 498 spin_lock_irqsave(&i915->mm.obj_lock, flags); 499 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 500 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 501 GEM_BUG_ON(!list_empty(&obj->mm.link)); 502 503 list_add_tail(&obj->mm.link, head); 504 i915->mm.shrink_count++; 505 i915->mm.shrink_memory += obj->base.size; 506 507 } 508 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 509 } 510 511 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 512 { 513 __i915_gem_object_make_shrinkable(obj, 514 &obj_to_i915(obj)->mm.shrink_list); 515 } 516 517 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 518 { 519 __i915_gem_object_make_shrinkable(obj, 520 &obj_to_i915(obj)->mm.purge_list); 521 } 522