1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "i915_trace.h" 17 18 static bool swap_available(void) 19 { 20 return get_nr_swap_pages() > 0; 21 } 22 23 static bool can_release_pages(struct drm_i915_gem_object *obj) 24 { 25 /* Consider only shrinkable ojects. */ 26 if (!i915_gem_object_is_shrinkable(obj)) 27 return false; 28 29 /* 30 * Only report true if by unbinding the object and putting its pages 31 * we can actually make forward progress towards freeing physical 32 * pages. 33 * 34 * If the pages are pinned for any other reason than being bound 35 * to the GPU, simply unbinding from the GPU is not going to succeed 36 * in releasing our pin count on the pages themselves. 37 */ 38 if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count)) 39 return false; 40 41 /* 42 * We can only return physical pages to the system if we can either 43 * discard the contents (because the user has marked them as being 44 * purgeable) or if we can move their contents out to swap. 45 */ 46 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 47 } 48 49 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 50 unsigned long shrink) 51 { 52 unsigned long flags; 53 54 flags = 0; 55 if (shrink & I915_SHRINK_ACTIVE) 56 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 57 58 if (i915_gem_object_unbind(obj, flags) == 0) 59 __i915_gem_object_put_pages(obj); 60 61 return !i915_gem_object_has_pages(obj); 62 } 63 64 static void try_to_writeback(struct drm_i915_gem_object *obj, 65 unsigned int flags) 66 { 67 switch (obj->mm.madv) { 68 case I915_MADV_DONTNEED: 69 i915_gem_object_truncate(obj); 70 case __I915_MADV_PURGED: 71 return; 72 } 73 74 if (flags & I915_SHRINK_WRITEBACK) 75 i915_gem_object_writeback(obj); 76 } 77 78 /** 79 * i915_gem_shrink - Shrink buffer object caches 80 * @i915: i915 device 81 * @target: amount of memory to make available, in pages 82 * @nr_scanned: optional output for number of pages scanned (incremental) 83 * @shrink: control flags for selecting cache types 84 * 85 * This function is the main interface to the shrinker. It will try to release 86 * up to @target pages of main memory backing storage from buffer objects. 87 * Selection of the specific caches can be done with @flags. This is e.g. useful 88 * when purgeable objects should be removed from caches preferentially. 89 * 90 * Note that it's not guaranteed that released amount is actually available as 91 * free system memory - the pages might still be in-used to due to other reasons 92 * (like cpu mmaps) or the mm core has reused them before we could grab them. 93 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 94 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 95 * 96 * Also note that any kind of pinning (both per-vma address space pins and 97 * backing storage pins at the buffer object level) result in the shrinker code 98 * having to skip the object. 99 * 100 * Returns: 101 * The number of pages of backing storage actually released. 102 */ 103 unsigned long 104 i915_gem_shrink(struct drm_i915_private *i915, 105 unsigned long target, 106 unsigned long *nr_scanned, 107 unsigned int shrink) 108 { 109 const struct { 110 struct list_head *list; 111 unsigned int bit; 112 } phases[] = { 113 { &i915->mm.purge_list, ~0u }, 114 { 115 &i915->mm.shrink_list, 116 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 117 }, 118 { NULL, 0 }, 119 }, *phase; 120 intel_wakeref_t wakeref = 0; 121 unsigned long count = 0; 122 unsigned long scanned = 0; 123 124 /* 125 * When shrinking the active list, we should also consider active 126 * contexts. Active contexts are pinned until they are retired, and 127 * so can not be simply unbound to retire and unpin their pages. To 128 * shrink the contexts, we must wait until the gpu is idle and 129 * completed its switch to the kernel context. In short, we do 130 * not have a good mechanism for idling a specific context. 131 */ 132 133 trace_i915_gem_shrink(i915, target, shrink); 134 135 /* 136 * Unbinding of objects will require HW access; Let us not wake the 137 * device just to recover a little memory. If absolutely necessary, 138 * we will force the wake during oom-notifier. 139 */ 140 if (shrink & I915_SHRINK_BOUND) { 141 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 142 if (!wakeref) 143 shrink &= ~I915_SHRINK_BOUND; 144 } 145 146 /* 147 * As we may completely rewrite the (un)bound list whilst unbinding 148 * (due to retiring requests) we have to strictly process only 149 * one element of the list at the time, and recheck the list 150 * on every iteration. 151 * 152 * In particular, we must hold a reference whilst removing the 153 * object as we may end up waiting for and/or retiring the objects. 154 * This might release the final reference (held by the active list) 155 * and result in the object being freed from under us. This is 156 * similar to the precautions the eviction code must take whilst 157 * removing objects. 158 * 159 * Also note that although these lists do not hold a reference to 160 * the object we can safely grab one here: The final object 161 * unreferencing and the bound_list are both protected by the 162 * dev->struct_mutex and so we won't ever be able to observe an 163 * object on the bound_list with a reference count equals 0. 164 */ 165 for (phase = phases; phase->list; phase++) { 166 struct list_head still_in_list; 167 struct drm_i915_gem_object *obj; 168 unsigned long flags; 169 170 if ((shrink & phase->bit) == 0) 171 continue; 172 173 INIT_LIST_HEAD(&still_in_list); 174 175 /* 176 * We serialize our access to unreferenced objects through 177 * the use of the struct_mutex. While the objects are not 178 * yet freed (due to RCU then a workqueue) we still want 179 * to be able to shrink their pages, so they remain on 180 * the unbound/bound list until actually freed. 181 */ 182 spin_lock_irqsave(&i915->mm.obj_lock, flags); 183 while (count < target && 184 (obj = list_first_entry_or_null(phase->list, 185 typeof(*obj), 186 mm.link))) { 187 list_move_tail(&obj->mm.link, &still_in_list); 188 189 if (shrink & I915_SHRINK_VMAPS && 190 !is_vmalloc_addr(obj->mm.mapping)) 191 continue; 192 193 if (!(shrink & I915_SHRINK_ACTIVE) && 194 i915_gem_object_is_framebuffer(obj)) 195 continue; 196 197 if (!(shrink & I915_SHRINK_BOUND) && 198 atomic_read(&obj->bind_count)) 199 continue; 200 201 if (!can_release_pages(obj)) 202 continue; 203 204 if (!kref_get_unless_zero(&obj->base.refcount)) 205 continue; 206 207 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 208 209 if (unsafe_drop_pages(obj, shrink)) { 210 /* May arrive from get_pages on another bo */ 211 mutex_lock(&obj->mm.lock); 212 if (!i915_gem_object_has_pages(obj)) { 213 try_to_writeback(obj, shrink); 214 count += obj->base.size >> PAGE_SHIFT; 215 } 216 mutex_unlock(&obj->mm.lock); 217 } 218 219 scanned += obj->base.size >> PAGE_SHIFT; 220 i915_gem_object_put(obj); 221 222 spin_lock_irqsave(&i915->mm.obj_lock, flags); 223 } 224 list_splice_tail(&still_in_list, phase->list); 225 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 226 } 227 228 if (shrink & I915_SHRINK_BOUND) 229 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 230 231 if (nr_scanned) 232 *nr_scanned += scanned; 233 return count; 234 } 235 236 /** 237 * i915_gem_shrink_all - Shrink buffer object caches completely 238 * @i915: i915 device 239 * 240 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 241 * caches completely. It also first waits for and retires all outstanding 242 * requests to also be able to release backing storage for active objects. 243 * 244 * This should only be used in code to intentionally quiescent the gpu or as a 245 * last-ditch effort when memory seems to have run out. 246 * 247 * Returns: 248 * The number of pages of backing storage actually released. 249 */ 250 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 251 { 252 intel_wakeref_t wakeref; 253 unsigned long freed = 0; 254 255 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 256 freed = i915_gem_shrink(i915, -1UL, NULL, 257 I915_SHRINK_BOUND | 258 I915_SHRINK_UNBOUND); 259 } 260 261 return freed; 262 } 263 264 static unsigned long 265 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 266 { 267 struct drm_i915_private *i915 = 268 container_of(shrinker, struct drm_i915_private, mm.shrinker); 269 unsigned long num_objects; 270 unsigned long count; 271 272 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 273 num_objects = READ_ONCE(i915->mm.shrink_count); 274 275 /* 276 * Update our preferred vmscan batch size for the next pass. 277 * Our rough guess for an effective batch size is roughly 2 278 * available GEM objects worth of pages. That is we don't want 279 * the shrinker to fire, until it is worth the cost of freeing an 280 * entire GEM object. 281 */ 282 if (num_objects) { 283 unsigned long avg = 2 * count / num_objects; 284 285 i915->mm.shrinker.batch = 286 max((i915->mm.shrinker.batch + avg) >> 1, 287 128ul /* default SHRINK_BATCH */); 288 } 289 290 return count; 291 } 292 293 static unsigned long 294 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 295 { 296 struct drm_i915_private *i915 = 297 container_of(shrinker, struct drm_i915_private, mm.shrinker); 298 unsigned long freed; 299 300 sc->nr_scanned = 0; 301 302 freed = i915_gem_shrink(i915, 303 sc->nr_to_scan, 304 &sc->nr_scanned, 305 I915_SHRINK_BOUND | 306 I915_SHRINK_UNBOUND); 307 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 308 intel_wakeref_t wakeref; 309 310 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 311 freed += i915_gem_shrink(i915, 312 sc->nr_to_scan - sc->nr_scanned, 313 &sc->nr_scanned, 314 I915_SHRINK_ACTIVE | 315 I915_SHRINK_BOUND | 316 I915_SHRINK_UNBOUND | 317 I915_SHRINK_WRITEBACK); 318 } 319 } 320 321 return sc->nr_scanned ? freed : SHRINK_STOP; 322 } 323 324 static int 325 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 326 { 327 struct drm_i915_private *i915 = 328 container_of(nb, struct drm_i915_private, mm.oom_notifier); 329 struct drm_i915_gem_object *obj; 330 unsigned long unevictable, available, freed_pages; 331 intel_wakeref_t wakeref; 332 unsigned long flags; 333 334 freed_pages = 0; 335 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 336 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 337 I915_SHRINK_BOUND | 338 I915_SHRINK_UNBOUND | 339 I915_SHRINK_WRITEBACK); 340 341 /* Because we may be allocating inside our own driver, we cannot 342 * assert that there are no objects with pinned pages that are not 343 * being pointed to by hardware. 344 */ 345 available = unevictable = 0; 346 spin_lock_irqsave(&i915->mm.obj_lock, flags); 347 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 348 if (!can_release_pages(obj)) 349 unevictable += obj->base.size >> PAGE_SHIFT; 350 else 351 available += obj->base.size >> PAGE_SHIFT; 352 } 353 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 354 355 if (freed_pages || available) 356 pr_info("Purging GPU memory, %lu pages freed, " 357 "%lu pages still pinned, %lu pages left available.\n", 358 freed_pages, unevictable, available); 359 360 *(unsigned long *)ptr += freed_pages; 361 return NOTIFY_DONE; 362 } 363 364 static int 365 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 366 { 367 struct drm_i915_private *i915 = 368 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 369 struct i915_vma *vma, *next; 370 unsigned long freed_pages = 0; 371 intel_wakeref_t wakeref; 372 373 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 374 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 375 I915_SHRINK_BOUND | 376 I915_SHRINK_UNBOUND | 377 I915_SHRINK_VMAPS); 378 379 /* We also want to clear any cached iomaps as they wrap vmap */ 380 mutex_lock(&i915->ggtt.vm.mutex); 381 list_for_each_entry_safe(vma, next, 382 &i915->ggtt.vm.bound_list, vm_link) { 383 unsigned long count = vma->node.size >> PAGE_SHIFT; 384 385 if (!vma->iomap || i915_vma_is_active(vma)) 386 continue; 387 388 if (__i915_vma_unbind(vma) == 0) 389 freed_pages += count; 390 } 391 mutex_unlock(&i915->ggtt.vm.mutex); 392 393 *(unsigned long *)ptr += freed_pages; 394 return NOTIFY_DONE; 395 } 396 397 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 398 { 399 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 400 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 401 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 402 i915->mm.shrinker.batch = 4096; 403 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 404 405 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 406 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 407 408 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 409 drm_WARN_ON(&i915->drm, 410 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 411 } 412 413 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 414 { 415 drm_WARN_ON(&i915->drm, 416 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 417 drm_WARN_ON(&i915->drm, 418 unregister_oom_notifier(&i915->mm.oom_notifier)); 419 unregister_shrinker(&i915->mm.shrinker); 420 } 421 422 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 423 struct mutex *mutex) 424 { 425 bool unlock = false; 426 427 if (!IS_ENABLED(CONFIG_LOCKDEP)) 428 return; 429 430 if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) { 431 mutex_acquire(&i915->drm.struct_mutex.dep_map, 432 I915_MM_NORMAL, 0, _RET_IP_); 433 unlock = true; 434 } 435 436 fs_reclaim_acquire(GFP_KERNEL); 437 438 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 439 mutex_release(&mutex->dep_map, _RET_IP_); 440 441 fs_reclaim_release(GFP_KERNEL); 442 443 if (unlock) 444 mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_); 445 } 446 447 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 448 449 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 450 { 451 struct drm_i915_private *i915 = obj_to_i915(obj); 452 unsigned long flags; 453 454 /* 455 * We can only be called while the pages are pinned or when 456 * the pages are released. If pinned, we should only be called 457 * from a single caller under controlled conditions; and on release 458 * only one caller may release us. Neither the two may cross. 459 */ 460 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 461 return; 462 463 spin_lock_irqsave(&i915->mm.obj_lock, flags); 464 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 465 !list_empty(&obj->mm.link)) { 466 list_del_init(&obj->mm.link); 467 i915->mm.shrink_count--; 468 i915->mm.shrink_memory -= obj->base.size; 469 } 470 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 471 } 472 473 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 474 struct list_head *head) 475 { 476 struct drm_i915_private *i915 = obj_to_i915(obj); 477 unsigned long flags; 478 479 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 480 if (!i915_gem_object_is_shrinkable(obj)) 481 return; 482 483 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 484 return; 485 486 spin_lock_irqsave(&i915->mm.obj_lock, flags); 487 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 488 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 489 GEM_BUG_ON(!list_empty(&obj->mm.link)); 490 491 list_add_tail(&obj->mm.link, head); 492 i915->mm.shrink_count++; 493 i915->mm.shrink_memory += obj->base.size; 494 495 } 496 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 497 } 498 499 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 500 { 501 __i915_gem_object_make_shrinkable(obj, 502 &obj_to_i915(obj)->mm.shrink_list); 503 } 504 505 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 506 { 507 __i915_gem_object_make_shrinkable(obj, 508 &obj_to_i915(obj)->mm.purge_list); 509 } 510