1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2015 Intel Corporation 5 */ 6 7 #include <linux/oom.h> 8 #include <linux/sched/mm.h> 9 #include <linux/shmem_fs.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/pci.h> 13 #include <linux/dma-buf.h> 14 #include <linux/vmalloc.h> 15 16 #include "gt/intel_gt_requests.h" 17 18 #include "dma_resv_utils.h" 19 #include "i915_trace.h" 20 21 static bool swap_available(void) 22 { 23 return get_nr_swap_pages() > 0; 24 } 25 26 static bool can_release_pages(struct drm_i915_gem_object *obj) 27 { 28 /* Consider only shrinkable ojects. */ 29 if (!i915_gem_object_is_shrinkable(obj)) 30 return false; 31 32 /* 33 * We can only return physical pages to the system if we can either 34 * discard the contents (because the user has marked them as being 35 * purgeable) or if we can move their contents out to swap. 36 */ 37 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 38 } 39 40 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 41 unsigned long shrink) 42 { 43 unsigned long flags; 44 45 flags = 0; 46 if (shrink & I915_SHRINK_ACTIVE) 47 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 48 if (!(shrink & I915_SHRINK_BOUND)) 49 flags = I915_GEM_OBJECT_UNBIND_TEST; 50 51 if (i915_gem_object_unbind(obj, flags) == 0) 52 __i915_gem_object_put_pages(obj); 53 54 return !i915_gem_object_has_pages(obj); 55 } 56 57 static void try_to_writeback(struct drm_i915_gem_object *obj, 58 unsigned int flags) 59 { 60 switch (obj->mm.madv) { 61 case I915_MADV_DONTNEED: 62 i915_gem_object_truncate(obj); 63 case __I915_MADV_PURGED: 64 return; 65 } 66 67 if (flags & I915_SHRINK_WRITEBACK) 68 i915_gem_object_writeback(obj); 69 } 70 71 /** 72 * i915_gem_shrink - Shrink buffer object caches 73 * @i915: i915 device 74 * @target: amount of memory to make available, in pages 75 * @nr_scanned: optional output for number of pages scanned (incremental) 76 * @shrink: control flags for selecting cache types 77 * 78 * This function is the main interface to the shrinker. It will try to release 79 * up to @target pages of main memory backing storage from buffer objects. 80 * Selection of the specific caches can be done with @flags. This is e.g. useful 81 * when purgeable objects should be removed from caches preferentially. 82 * 83 * Note that it's not guaranteed that released amount is actually available as 84 * free system memory - the pages might still be in-used to due to other reasons 85 * (like cpu mmaps) or the mm core has reused them before we could grab them. 86 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 87 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 88 * 89 * Also note that any kind of pinning (both per-vma address space pins and 90 * backing storage pins at the buffer object level) result in the shrinker code 91 * having to skip the object. 92 * 93 * Returns: 94 * The number of pages of backing storage actually released. 95 */ 96 unsigned long 97 i915_gem_shrink(struct drm_i915_private *i915, 98 unsigned long target, 99 unsigned long *nr_scanned, 100 unsigned int shrink) 101 { 102 const struct { 103 struct list_head *list; 104 unsigned int bit; 105 } phases[] = { 106 { &i915->mm.purge_list, ~0u }, 107 { 108 &i915->mm.shrink_list, 109 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 110 }, 111 { NULL, 0 }, 112 }, *phase; 113 intel_wakeref_t wakeref = 0; 114 unsigned long count = 0; 115 unsigned long scanned = 0; 116 117 trace_i915_gem_shrink(i915, target, shrink); 118 119 /* 120 * Unbinding of objects will require HW access; Let us not wake the 121 * device just to recover a little memory. If absolutely necessary, 122 * we will force the wake during oom-notifier. 123 */ 124 if (shrink & I915_SHRINK_BOUND) { 125 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 126 if (!wakeref) 127 shrink &= ~I915_SHRINK_BOUND; 128 } 129 130 /* 131 * When shrinking the active list, we should also consider active 132 * contexts. Active contexts are pinned until they are retired, and 133 * so can not be simply unbound to retire and unpin their pages. To 134 * shrink the contexts, we must wait until the gpu is idle and 135 * completed its switch to the kernel context. In short, we do 136 * not have a good mechanism for idling a specific context, but 137 * what we can do is give them a kick so that we do not keep idle 138 * contexts around longer than is necessary. 139 */ 140 if (shrink & I915_SHRINK_ACTIVE) 141 /* Retire requests to unpin all idle contexts */ 142 intel_gt_retire_requests(&i915->gt); 143 144 /* 145 * As we may completely rewrite the (un)bound list whilst unbinding 146 * (due to retiring requests) we have to strictly process only 147 * one element of the list at the time, and recheck the list 148 * on every iteration. 149 * 150 * In particular, we must hold a reference whilst removing the 151 * object as we may end up waiting for and/or retiring the objects. 152 * This might release the final reference (held by the active list) 153 * and result in the object being freed from under us. This is 154 * similar to the precautions the eviction code must take whilst 155 * removing objects. 156 * 157 * Also note that although these lists do not hold a reference to 158 * the object we can safely grab one here: The final object 159 * unreferencing and the bound_list are both protected by the 160 * dev->struct_mutex and so we won't ever be able to observe an 161 * object on the bound_list with a reference count equals 0. 162 */ 163 for (phase = phases; phase->list; phase++) { 164 struct list_head still_in_list; 165 struct drm_i915_gem_object *obj; 166 unsigned long flags; 167 168 if ((shrink & phase->bit) == 0) 169 continue; 170 171 INIT_LIST_HEAD(&still_in_list); 172 173 /* 174 * We serialize our access to unreferenced objects through 175 * the use of the struct_mutex. While the objects are not 176 * yet freed (due to RCU then a workqueue) we still want 177 * to be able to shrink their pages, so they remain on 178 * the unbound/bound list until actually freed. 179 */ 180 spin_lock_irqsave(&i915->mm.obj_lock, flags); 181 while (count < target && 182 (obj = list_first_entry_or_null(phase->list, 183 typeof(*obj), 184 mm.link))) { 185 list_move_tail(&obj->mm.link, &still_in_list); 186 187 if (shrink & I915_SHRINK_VMAPS && 188 !is_vmalloc_addr(obj->mm.mapping)) 189 continue; 190 191 if (!(shrink & I915_SHRINK_ACTIVE) && 192 i915_gem_object_is_framebuffer(obj)) 193 continue; 194 195 if (!can_release_pages(obj)) 196 continue; 197 198 if (!kref_get_unless_zero(&obj->base.refcount)) 199 continue; 200 201 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 202 203 if (unsafe_drop_pages(obj, shrink)) { 204 /* May arrive from get_pages on another bo */ 205 mutex_lock(&obj->mm.lock); 206 if (!i915_gem_object_has_pages(obj)) { 207 try_to_writeback(obj, shrink); 208 count += obj->base.size >> PAGE_SHIFT; 209 } 210 mutex_unlock(&obj->mm.lock); 211 } 212 213 dma_resv_prune(obj->base.resv); 214 215 scanned += obj->base.size >> PAGE_SHIFT; 216 i915_gem_object_put(obj); 217 218 spin_lock_irqsave(&i915->mm.obj_lock, flags); 219 } 220 list_splice_tail(&still_in_list, phase->list); 221 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 222 } 223 224 if (shrink & I915_SHRINK_BOUND) 225 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 226 227 if (nr_scanned) 228 *nr_scanned += scanned; 229 return count; 230 } 231 232 /** 233 * i915_gem_shrink_all - Shrink buffer object caches completely 234 * @i915: i915 device 235 * 236 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 237 * caches completely. It also first waits for and retires all outstanding 238 * requests to also be able to release backing storage for active objects. 239 * 240 * This should only be used in code to intentionally quiescent the gpu or as a 241 * last-ditch effort when memory seems to have run out. 242 * 243 * Returns: 244 * The number of pages of backing storage actually released. 245 */ 246 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 247 { 248 intel_wakeref_t wakeref; 249 unsigned long freed = 0; 250 251 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 252 freed = i915_gem_shrink(i915, -1UL, NULL, 253 I915_SHRINK_BOUND | 254 I915_SHRINK_UNBOUND); 255 } 256 257 return freed; 258 } 259 260 static unsigned long 261 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 262 { 263 struct drm_i915_private *i915 = 264 container_of(shrinker, struct drm_i915_private, mm.shrinker); 265 unsigned long num_objects; 266 unsigned long count; 267 268 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 269 num_objects = READ_ONCE(i915->mm.shrink_count); 270 271 /* 272 * Update our preferred vmscan batch size for the next pass. 273 * Our rough guess for an effective batch size is roughly 2 274 * available GEM objects worth of pages. That is we don't want 275 * the shrinker to fire, until it is worth the cost of freeing an 276 * entire GEM object. 277 */ 278 if (num_objects) { 279 unsigned long avg = 2 * count / num_objects; 280 281 i915->mm.shrinker.batch = 282 max((i915->mm.shrinker.batch + avg) >> 1, 283 128ul /* default SHRINK_BATCH */); 284 } 285 286 return count; 287 } 288 289 static unsigned long 290 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 291 { 292 struct drm_i915_private *i915 = 293 container_of(shrinker, struct drm_i915_private, mm.shrinker); 294 unsigned long freed; 295 296 sc->nr_scanned = 0; 297 298 freed = i915_gem_shrink(i915, 299 sc->nr_to_scan, 300 &sc->nr_scanned, 301 I915_SHRINK_BOUND | 302 I915_SHRINK_UNBOUND); 303 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 304 intel_wakeref_t wakeref; 305 306 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 307 freed += i915_gem_shrink(i915, 308 sc->nr_to_scan - sc->nr_scanned, 309 &sc->nr_scanned, 310 I915_SHRINK_ACTIVE | 311 I915_SHRINK_BOUND | 312 I915_SHRINK_UNBOUND | 313 I915_SHRINK_WRITEBACK); 314 } 315 } 316 317 return sc->nr_scanned ? freed : SHRINK_STOP; 318 } 319 320 static int 321 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 322 { 323 struct drm_i915_private *i915 = 324 container_of(nb, struct drm_i915_private, mm.oom_notifier); 325 struct drm_i915_gem_object *obj; 326 unsigned long unevictable, available, freed_pages; 327 intel_wakeref_t wakeref; 328 unsigned long flags; 329 330 freed_pages = 0; 331 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 332 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 333 I915_SHRINK_BOUND | 334 I915_SHRINK_UNBOUND | 335 I915_SHRINK_WRITEBACK); 336 337 /* Because we may be allocating inside our own driver, we cannot 338 * assert that there are no objects with pinned pages that are not 339 * being pointed to by hardware. 340 */ 341 available = unevictable = 0; 342 spin_lock_irqsave(&i915->mm.obj_lock, flags); 343 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 344 if (!can_release_pages(obj)) 345 unevictable += obj->base.size >> PAGE_SHIFT; 346 else 347 available += obj->base.size >> PAGE_SHIFT; 348 } 349 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 350 351 if (freed_pages || available) 352 pr_info("Purging GPU memory, %lu pages freed, " 353 "%lu pages still pinned, %lu pages left available.\n", 354 freed_pages, unevictable, available); 355 356 *(unsigned long *)ptr += freed_pages; 357 return NOTIFY_DONE; 358 } 359 360 static int 361 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 362 { 363 struct drm_i915_private *i915 = 364 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 365 struct i915_vma *vma, *next; 366 unsigned long freed_pages = 0; 367 intel_wakeref_t wakeref; 368 369 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 370 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 371 I915_SHRINK_BOUND | 372 I915_SHRINK_UNBOUND | 373 I915_SHRINK_VMAPS); 374 375 /* We also want to clear any cached iomaps as they wrap vmap */ 376 mutex_lock(&i915->ggtt.vm.mutex); 377 list_for_each_entry_safe(vma, next, 378 &i915->ggtt.vm.bound_list, vm_link) { 379 unsigned long count = vma->node.size >> PAGE_SHIFT; 380 381 if (!vma->iomap || i915_vma_is_active(vma)) 382 continue; 383 384 if (__i915_vma_unbind(vma) == 0) 385 freed_pages += count; 386 } 387 mutex_unlock(&i915->ggtt.vm.mutex); 388 389 *(unsigned long *)ptr += freed_pages; 390 return NOTIFY_DONE; 391 } 392 393 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 394 { 395 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 396 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 397 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 398 i915->mm.shrinker.batch = 4096; 399 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker)); 400 401 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 402 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier)); 403 404 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 405 drm_WARN_ON(&i915->drm, 406 register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 407 } 408 409 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 410 { 411 drm_WARN_ON(&i915->drm, 412 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 413 drm_WARN_ON(&i915->drm, 414 unregister_oom_notifier(&i915->mm.oom_notifier)); 415 unregister_shrinker(&i915->mm.shrinker); 416 } 417 418 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 419 struct mutex *mutex) 420 { 421 if (!IS_ENABLED(CONFIG_LOCKDEP)) 422 return; 423 424 fs_reclaim_acquire(GFP_KERNEL); 425 426 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 427 mutex_release(&mutex->dep_map, _RET_IP_); 428 429 fs_reclaim_release(GFP_KERNEL); 430 } 431 432 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 433 434 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 435 { 436 struct drm_i915_private *i915 = obj_to_i915(obj); 437 unsigned long flags; 438 439 /* 440 * We can only be called while the pages are pinned or when 441 * the pages are released. If pinned, we should only be called 442 * from a single caller under controlled conditions; and on release 443 * only one caller may release us. Neither the two may cross. 444 */ 445 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 446 return; 447 448 spin_lock_irqsave(&i915->mm.obj_lock, flags); 449 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 450 !list_empty(&obj->mm.link)) { 451 list_del_init(&obj->mm.link); 452 i915->mm.shrink_count--; 453 i915->mm.shrink_memory -= obj->base.size; 454 } 455 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 456 } 457 458 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 459 struct list_head *head) 460 { 461 struct drm_i915_private *i915 = obj_to_i915(obj); 462 unsigned long flags; 463 464 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 465 if (!i915_gem_object_is_shrinkable(obj)) 466 return; 467 468 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 469 return; 470 471 spin_lock_irqsave(&i915->mm.obj_lock, flags); 472 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 473 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 474 GEM_BUG_ON(!list_empty(&obj->mm.link)); 475 476 list_add_tail(&obj->mm.link, head); 477 i915->mm.shrink_count++; 478 i915->mm.shrink_memory += obj->base.size; 479 480 } 481 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 482 } 483 484 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 485 { 486 __i915_gem_object_make_shrinkable(obj, 487 &obj_to_i915(obj)->mm.shrink_list); 488 } 489 490 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 491 { 492 __i915_gem_object_make_shrinkable(obj, 493 &obj_to_i915(obj)->mm.purge_list); 494 } 495