1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/pagevec.h>
8 #include <linux/swap.h>
9 
10 #include "gem/i915_gem_region.h"
11 #include "i915_drv.h"
12 #include "i915_gemfs.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_trace.h"
16 
17 /*
18  * Move pages to appropriate lru and release the pagevec, decrementing the
19  * ref count of those pages.
20  */
21 static void check_release_pagevec(struct pagevec *pvec)
22 {
23 	check_move_unevictable_pages(pvec);
24 	__pagevec_release(pvec);
25 	cond_resched();
26 }
27 
28 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
29 			 bool dirty, bool backup)
30 {
31 	struct sgt_iter sgt_iter;
32 	struct pagevec pvec;
33 	struct page *page;
34 
35 	mapping_clear_unevictable(mapping);
36 
37 	pagevec_init(&pvec);
38 	for_each_sgt_page(page, sgt_iter, st) {
39 		if (dirty)
40 			set_page_dirty(page);
41 
42 		if (backup)
43 			mark_page_accessed(page);
44 
45 		if (!pagevec_add(&pvec, page))
46 			check_release_pagevec(&pvec);
47 	}
48 	if (pagevec_count(&pvec))
49 		check_release_pagevec(&pvec);
50 
51 	sg_free_table(st);
52 }
53 
54 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
55 			 size_t size, struct intel_memory_region *mr,
56 			 struct address_space *mapping,
57 			 unsigned int max_segment)
58 {
59 	const unsigned long page_count = size / PAGE_SIZE;
60 	unsigned long i;
61 	struct scatterlist *sg;
62 	struct page *page;
63 	unsigned long last_pfn = 0;	/* suppress gcc warning */
64 	gfp_t noreclaim;
65 	int ret;
66 
67 	/*
68 	 * If there's no chance of allocating enough pages for the whole
69 	 * object, bail early.
70 	 */
71 	if (size > resource_size(&mr->region))
72 		return -ENOMEM;
73 
74 	if (sg_alloc_table(st, page_count, GFP_KERNEL))
75 		return -ENOMEM;
76 
77 	/*
78 	 * Get the list of pages out of our struct file.  They'll be pinned
79 	 * at this point until we release them.
80 	 *
81 	 * Fail silently without starting the shrinker
82 	 */
83 	mapping_set_unevictable(mapping);
84 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
85 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
86 
87 	sg = st->sgl;
88 	st->nents = 0;
89 	for (i = 0; i < page_count; i++) {
90 		const unsigned int shrink[] = {
91 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
92 			0,
93 		}, *s = shrink;
94 		gfp_t gfp = noreclaim;
95 
96 		do {
97 			cond_resched();
98 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
99 			if (!IS_ERR(page))
100 				break;
101 
102 			if (!*s) {
103 				ret = PTR_ERR(page);
104 				goto err_sg;
105 			}
106 
107 			i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
108 
109 			/*
110 			 * We've tried hard to allocate the memory by reaping
111 			 * our own buffer, now let the real VM do its job and
112 			 * go down in flames if truly OOM.
113 			 *
114 			 * However, since graphics tend to be disposable,
115 			 * defer the oom here by reporting the ENOMEM back
116 			 * to userspace.
117 			 */
118 			if (!*s) {
119 				/* reclaim and warn, but no oom */
120 				gfp = mapping_gfp_mask(mapping);
121 
122 				/*
123 				 * Our bo are always dirty and so we require
124 				 * kswapd to reclaim our pages (direct reclaim
125 				 * does not effectively begin pageout of our
126 				 * buffers on its own). However, direct reclaim
127 				 * only waits for kswapd when under allocation
128 				 * congestion. So as a result __GFP_RECLAIM is
129 				 * unreliable and fails to actually reclaim our
130 				 * dirty pages -- unless you try over and over
131 				 * again with !__GFP_NORETRY. However, we still
132 				 * want to fail this allocation rather than
133 				 * trigger the out-of-memory killer and for
134 				 * this we want __GFP_RETRY_MAYFAIL.
135 				 */
136 				gfp |= __GFP_RETRY_MAYFAIL;
137 			}
138 		} while (1);
139 
140 		if (!i ||
141 		    sg->length >= max_segment ||
142 		    page_to_pfn(page) != last_pfn + 1) {
143 			if (i)
144 				sg = sg_next(sg);
145 
146 			st->nents++;
147 			sg_set_page(sg, page, PAGE_SIZE, 0);
148 		} else {
149 			sg->length += PAGE_SIZE;
150 		}
151 		last_pfn = page_to_pfn(page);
152 
153 		/* Check that the i965g/gm workaround works. */
154 		GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
155 	}
156 	if (sg) /* loop terminated early; short sg table */
157 		sg_mark_end(sg);
158 
159 	/* Trim unused sg entries to avoid wasting memory. */
160 	i915_sg_trim(st);
161 
162 	return 0;
163 err_sg:
164 	sg_mark_end(sg);
165 	if (sg != st->sgl) {
166 		shmem_sg_free_table(st, mapping, false, false);
167 	} else {
168 		mapping_clear_unevictable(mapping);
169 		sg_free_table(st);
170 	}
171 
172 	/*
173 	 * shmemfs first checks if there is enough memory to allocate the page
174 	 * and reports ENOSPC should there be insufficient, along with the usual
175 	 * ENOMEM for a genuine allocation failure.
176 	 *
177 	 * We use ENOSPC in our driver to mean that we have run out of aperture
178 	 * space and so want to translate the error from shmemfs back to our
179 	 * usual understanding of ENOMEM.
180 	 */
181 	if (ret == -ENOSPC)
182 		ret = -ENOMEM;
183 
184 	return ret;
185 }
186 
187 static int shmem_get_pages(struct drm_i915_gem_object *obj)
188 {
189 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
190 	struct intel_memory_region *mem = obj->mm.region;
191 	struct address_space *mapping = obj->base.filp->f_mapping;
192 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
193 	unsigned int max_segment = i915_sg_segment_size();
194 	struct sg_table *st;
195 	struct sgt_iter sgt_iter;
196 	struct page *page;
197 	int ret;
198 
199 	/*
200 	 * Assert that the object is not currently in any GPU domain. As it
201 	 * wasn't in the GTT, there shouldn't be any way it could have been in
202 	 * a GPU cache
203 	 */
204 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
205 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
206 
207 rebuild_st:
208 	st = kmalloc(sizeof(*st), GFP_KERNEL);
209 	if (!st)
210 		return -ENOMEM;
211 
212 	ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
213 				   max_segment);
214 	if (ret)
215 		goto err_st;
216 
217 	ret = i915_gem_gtt_prepare_pages(obj, st);
218 	if (ret) {
219 		/*
220 		 * DMA remapping failed? One possible cause is that
221 		 * it could not reserve enough large entries, asking
222 		 * for PAGE_SIZE chunks instead may be helpful.
223 		 */
224 		if (max_segment > PAGE_SIZE) {
225 			for_each_sgt_page(page, sgt_iter, st)
226 				put_page(page);
227 			sg_free_table(st);
228 			kfree(st);
229 
230 			max_segment = PAGE_SIZE;
231 			goto rebuild_st;
232 		} else {
233 			dev_warn(i915->drm.dev,
234 				 "Failed to DMA remap %lu pages\n",
235 				 page_count);
236 			goto err_pages;
237 		}
238 	}
239 
240 	if (i915_gem_object_needs_bit17_swizzle(obj))
241 		i915_gem_object_do_bit_17_swizzle(obj, st);
242 
243 	if (i915_gem_object_can_bypass_llc(obj))
244 		obj->cache_dirty = true;
245 
246 	__i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
247 
248 	return 0;
249 
250 err_pages:
251 	shmem_sg_free_table(st, mapping, false, false);
252 	/*
253 	 * shmemfs first checks if there is enough memory to allocate the page
254 	 * and reports ENOSPC should there be insufficient, along with the usual
255 	 * ENOMEM for a genuine allocation failure.
256 	 *
257 	 * We use ENOSPC in our driver to mean that we have run out of aperture
258 	 * space and so want to translate the error from shmemfs back to our
259 	 * usual understanding of ENOMEM.
260 	 */
261 err_st:
262 	if (ret == -ENOSPC)
263 		ret = -ENOMEM;
264 
265 	kfree(st);
266 
267 	return ret;
268 }
269 
270 static int
271 shmem_truncate(struct drm_i915_gem_object *obj)
272 {
273 	/*
274 	 * Our goal here is to return as much of the memory as
275 	 * is possible back to the system as we are called from OOM.
276 	 * To do this we must instruct the shmfs to drop all of its
277 	 * backing pages, *now*.
278 	 */
279 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
280 	obj->mm.madv = __I915_MADV_PURGED;
281 	obj->mm.pages = ERR_PTR(-EFAULT);
282 
283 	return 0;
284 }
285 
286 void __shmem_writeback(size_t size, struct address_space *mapping)
287 {
288 	struct writeback_control wbc = {
289 		.sync_mode = WB_SYNC_NONE,
290 		.nr_to_write = SWAP_CLUSTER_MAX,
291 		.range_start = 0,
292 		.range_end = LLONG_MAX,
293 		.for_reclaim = 1,
294 	};
295 	unsigned long i;
296 
297 	/*
298 	 * Leave mmapings intact (GTT will have been revoked on unbinding,
299 	 * leaving only CPU mmapings around) and add those pages to the LRU
300 	 * instead of invoking writeback so they are aged and paged out
301 	 * as normal.
302 	 */
303 
304 	/* Begin writeback on each dirty page */
305 	for (i = 0; i < size >> PAGE_SHIFT; i++) {
306 		struct page *page;
307 
308 		page = find_lock_page(mapping, i);
309 		if (!page)
310 			continue;
311 
312 		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
313 			int ret;
314 
315 			SetPageReclaim(page);
316 			ret = mapping->a_ops->writepage(page, &wbc);
317 			if (!PageWriteback(page))
318 				ClearPageReclaim(page);
319 			if (!ret)
320 				goto put;
321 		}
322 		unlock_page(page);
323 put:
324 		put_page(page);
325 	}
326 }
327 
328 static void
329 shmem_writeback(struct drm_i915_gem_object *obj)
330 {
331 	__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
332 }
333 
334 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
335 {
336 	switch (obj->mm.madv) {
337 	case I915_MADV_DONTNEED:
338 		return i915_gem_object_truncate(obj);
339 	case __I915_MADV_PURGED:
340 		return 0;
341 	}
342 
343 	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
344 		shmem_writeback(obj);
345 
346 	return 0;
347 }
348 
349 void
350 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
351 				struct sg_table *pages,
352 				bool needs_clflush)
353 {
354 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
355 
356 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
357 
358 	if (obj->mm.madv == I915_MADV_DONTNEED)
359 		obj->mm.dirty = false;
360 
361 	if (needs_clflush &&
362 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
363 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
364 		drm_clflush_sg(pages);
365 
366 	__start_cpu_write(obj);
367 	/*
368 	 * On non-LLC platforms, force the flush-on-acquire if this is ever
369 	 * swapped-in. Our async flush path is not trust worthy enough yet(and
370 	 * happens in the wrong order), and with some tricks it's conceivable
371 	 * for userspace to change the cache-level to I915_CACHE_NONE after the
372 	 * pages are swapped-in, and since execbuf binds the object before doing
373 	 * the async flush, we have a race window.
374 	 */
375 	if (!HAS_LLC(i915))
376 		obj->cache_dirty = true;
377 }
378 
379 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
380 {
381 	__i915_gem_object_release_shmem(obj, pages, true);
382 
383 	i915_gem_gtt_finish_pages(obj, pages);
384 
385 	if (i915_gem_object_needs_bit17_swizzle(obj))
386 		i915_gem_object_save_bit_17_swizzle(obj, pages);
387 
388 	shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
389 			    obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
390 	kfree(pages);
391 	obj->mm.dirty = false;
392 }
393 
394 static void
395 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
396 {
397 	if (likely(i915_gem_object_has_struct_page(obj)))
398 		i915_gem_object_put_pages_shmem(obj, pages);
399 	else
400 		i915_gem_object_put_pages_phys(obj, pages);
401 }
402 
403 static int
404 shmem_pwrite(struct drm_i915_gem_object *obj,
405 	     const struct drm_i915_gem_pwrite *arg)
406 {
407 	struct address_space *mapping = obj->base.filp->f_mapping;
408 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
409 	u64 remain, offset;
410 	unsigned int pg;
411 
412 	/* Caller already validated user args */
413 	GEM_BUG_ON(!access_ok(user_data, arg->size));
414 
415 	if (!i915_gem_object_has_struct_page(obj))
416 		return i915_gem_object_pwrite_phys(obj, arg);
417 
418 	/*
419 	 * Before we instantiate/pin the backing store for our use, we
420 	 * can prepopulate the shmemfs filp efficiently using a write into
421 	 * the pagecache. We avoid the penalty of instantiating all the
422 	 * pages, important if the user is just writing to a few and never
423 	 * uses the object on the GPU, and using a direct write into shmemfs
424 	 * allows it to avoid the cost of retrieving a page (either swapin
425 	 * or clearing-before-use) before it is overwritten.
426 	 */
427 	if (i915_gem_object_has_pages(obj))
428 		return -ENODEV;
429 
430 	if (obj->mm.madv != I915_MADV_WILLNEED)
431 		return -EFAULT;
432 
433 	/*
434 	 * Before the pages are instantiated the object is treated as being
435 	 * in the CPU domain. The pages will be clflushed as required before
436 	 * use, and we can freely write into the pages directly. If userspace
437 	 * races pwrite with any other operation; corruption will ensue -
438 	 * that is userspace's prerogative!
439 	 */
440 
441 	remain = arg->size;
442 	offset = arg->offset;
443 	pg = offset_in_page(offset);
444 
445 	do {
446 		unsigned int len, unwritten;
447 		struct page *page;
448 		void *data, *vaddr;
449 		int err;
450 		char c;
451 
452 		len = PAGE_SIZE - pg;
453 		if (len > remain)
454 			len = remain;
455 
456 		/* Prefault the user page to reduce potential recursion */
457 		err = __get_user(c, user_data);
458 		if (err)
459 			return err;
460 
461 		err = __get_user(c, user_data + len - 1);
462 		if (err)
463 			return err;
464 
465 		err = pagecache_write_begin(obj->base.filp, mapping,
466 					    offset, len, 0,
467 					    &page, &data);
468 		if (err < 0)
469 			return err;
470 
471 		vaddr = kmap_atomic(page);
472 		unwritten = __copy_from_user_inatomic(vaddr + pg,
473 						      user_data,
474 						      len);
475 		kunmap_atomic(vaddr);
476 
477 		err = pagecache_write_end(obj->base.filp, mapping,
478 					  offset, len, len - unwritten,
479 					  page, data);
480 		if (err < 0)
481 			return err;
482 
483 		/* We don't handle -EFAULT, leave it to the caller to check */
484 		if (unwritten)
485 			return -ENODEV;
486 
487 		remain -= len;
488 		user_data += len;
489 		offset += len;
490 		pg = 0;
491 	} while (remain);
492 
493 	return 0;
494 }
495 
496 static int
497 shmem_pread(struct drm_i915_gem_object *obj,
498 	    const struct drm_i915_gem_pread *arg)
499 {
500 	if (!i915_gem_object_has_struct_page(obj))
501 		return i915_gem_object_pread_phys(obj, arg);
502 
503 	return -ENODEV;
504 }
505 
506 static void shmem_release(struct drm_i915_gem_object *obj)
507 {
508 	if (i915_gem_object_has_struct_page(obj))
509 		i915_gem_object_release_memory_region(obj);
510 
511 	fput(obj->base.filp);
512 }
513 
514 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
515 	.name = "i915_gem_object_shmem",
516 	.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
517 
518 	.get_pages = shmem_get_pages,
519 	.put_pages = shmem_put_pages,
520 	.truncate = shmem_truncate,
521 	.shrink = shmem_shrink,
522 
523 	.pwrite = shmem_pwrite,
524 	.pread = shmem_pread,
525 
526 	.release = shmem_release,
527 };
528 
529 static int __create_shmem(struct drm_i915_private *i915,
530 			  struct drm_gem_object *obj,
531 			  resource_size_t size)
532 {
533 	unsigned long flags = VM_NORESERVE;
534 	struct file *filp;
535 
536 	drm_gem_private_object_init(&i915->drm, obj, size);
537 
538 	if (i915->mm.gemfs)
539 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
540 						 flags);
541 	else
542 		filp = shmem_file_setup("i915", size, flags);
543 	if (IS_ERR(filp))
544 		return PTR_ERR(filp);
545 
546 	obj->filp = filp;
547 	return 0;
548 }
549 
550 static int shmem_object_init(struct intel_memory_region *mem,
551 			     struct drm_i915_gem_object *obj,
552 			     resource_size_t size,
553 			     resource_size_t page_size,
554 			     unsigned int flags)
555 {
556 	static struct lock_class_key lock_class;
557 	struct drm_i915_private *i915 = mem->i915;
558 	struct address_space *mapping;
559 	unsigned int cache_level;
560 	gfp_t mask;
561 	int ret;
562 
563 	ret = __create_shmem(i915, &obj->base, size);
564 	if (ret)
565 		return ret;
566 
567 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
568 	if (IS_I965GM(i915) || IS_I965G(i915)) {
569 		/* 965gm cannot relocate objects above 4GiB. */
570 		mask &= ~__GFP_HIGHMEM;
571 		mask |= __GFP_DMA32;
572 	}
573 
574 	mapping = obj->base.filp->f_mapping;
575 	mapping_set_gfp_mask(mapping, mask);
576 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
577 
578 	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, 0);
579 	obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
580 	obj->write_domain = I915_GEM_DOMAIN_CPU;
581 	obj->read_domains = I915_GEM_DOMAIN_CPU;
582 
583 	if (HAS_LLC(i915))
584 		/* On some devices, we can have the GPU use the LLC (the CPU
585 		 * cache) for about a 10% performance improvement
586 		 * compared to uncached.  Graphics requests other than
587 		 * display scanout are coherent with the CPU in
588 		 * accessing this cache.  This means in this mode we
589 		 * don't need to clflush on the CPU side, and on the
590 		 * GPU side we only need to flush internal caches to
591 		 * get data visible to the CPU.
592 		 *
593 		 * However, we maintain the display planes as UC, and so
594 		 * need to rebind when first used as such.
595 		 */
596 		cache_level = I915_CACHE_LLC;
597 	else
598 		cache_level = I915_CACHE_NONE;
599 
600 	i915_gem_object_set_cache_coherency(obj, cache_level);
601 
602 	i915_gem_object_init_memory_region(obj, mem);
603 
604 	return 0;
605 }
606 
607 struct drm_i915_gem_object *
608 i915_gem_object_create_shmem(struct drm_i915_private *i915,
609 			     resource_size_t size)
610 {
611 	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
612 					     size, 0, 0);
613 }
614 
615 /* Allocate a new GEM object and fill it with the supplied data */
616 struct drm_i915_gem_object *
617 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
618 				       const void *data, resource_size_t size)
619 {
620 	struct drm_i915_gem_object *obj;
621 	struct file *file;
622 	resource_size_t offset;
623 	int err;
624 
625 	GEM_WARN_ON(IS_DGFX(dev_priv));
626 	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
627 	if (IS_ERR(obj))
628 		return obj;
629 
630 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
631 
632 	file = obj->base.filp;
633 	offset = 0;
634 	do {
635 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
636 		struct page *page;
637 		void *pgdata, *vaddr;
638 
639 		err = pagecache_write_begin(file, file->f_mapping,
640 					    offset, len, 0,
641 					    &page, &pgdata);
642 		if (err < 0)
643 			goto fail;
644 
645 		vaddr = kmap(page);
646 		memcpy(vaddr, data, len);
647 		kunmap(page);
648 
649 		err = pagecache_write_end(file, file->f_mapping,
650 					  offset, len, len,
651 					  page, pgdata);
652 		if (err < 0)
653 			goto fail;
654 
655 		size -= len;
656 		data += len;
657 		offset += len;
658 	} while (size);
659 
660 	return obj;
661 
662 fail:
663 	i915_gem_object_put(obj);
664 	return ERR_PTR(err);
665 }
666 
667 static int init_shmem(struct intel_memory_region *mem)
668 {
669 	int err;
670 
671 	err = i915_gemfs_init(mem->i915);
672 	if (err) {
673 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
674 			 err);
675 	}
676 
677 	intel_memory_region_set_name(mem, "system");
678 
679 	return 0; /* Don't error, we can simply fallback to the kernel mnt */
680 }
681 
682 static int release_shmem(struct intel_memory_region *mem)
683 {
684 	i915_gemfs_fini(mem->i915);
685 	return 0;
686 }
687 
688 static const struct intel_memory_region_ops shmem_region_ops = {
689 	.init = init_shmem,
690 	.release = release_shmem,
691 	.init_object = shmem_object_init,
692 };
693 
694 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
695 						 u16 type, u16 instance)
696 {
697 	return intel_memory_region_create(i915, 0,
698 					  totalram_pages() << PAGE_SHIFT,
699 					  PAGE_SIZE, 0,
700 					  type, instance,
701 					  &shmem_region_ops);
702 }
703 
704 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
705 {
706 	return obj->ops == &i915_gem_shmem_ops;
707 }
708