1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include <linux/pagevec.h> 8 #include <linux/swap.h> 9 10 #include "gem/i915_gem_region.h" 11 #include "i915_drv.h" 12 #include "i915_gemfs.h" 13 #include "i915_gem_object.h" 14 #include "i915_scatterlist.h" 15 #include "i915_trace.h" 16 17 /* 18 * Move pages to appropriate lru and release the pagevec, decrementing the 19 * ref count of those pages. 20 */ 21 static void check_release_pagevec(struct pagevec *pvec) 22 { 23 check_move_unevictable_pages(pvec); 24 __pagevec_release(pvec); 25 cond_resched(); 26 } 27 28 static int shmem_get_pages(struct drm_i915_gem_object *obj) 29 { 30 struct drm_i915_private *i915 = to_i915(obj->base.dev); 31 struct intel_memory_region *mem = obj->mm.region; 32 const unsigned long page_count = obj->base.size / PAGE_SIZE; 33 unsigned long i; 34 struct address_space *mapping; 35 struct sg_table *st; 36 struct scatterlist *sg; 37 struct sgt_iter sgt_iter; 38 struct page *page; 39 unsigned long last_pfn = 0; /* suppress gcc warning */ 40 unsigned int max_segment = i915_sg_segment_size(); 41 unsigned int sg_page_sizes; 42 gfp_t noreclaim; 43 int ret; 44 45 /* 46 * Assert that the object is not currently in any GPU domain. As it 47 * wasn't in the GTT, there shouldn't be any way it could have been in 48 * a GPU cache 49 */ 50 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); 51 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); 52 53 /* 54 * If there's no chance of allocating enough pages for the whole 55 * object, bail early. 56 */ 57 if (obj->base.size > resource_size(&mem->region)) 58 return -ENOMEM; 59 60 st = kmalloc(sizeof(*st), GFP_KERNEL); 61 if (!st) 62 return -ENOMEM; 63 64 rebuild_st: 65 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 66 kfree(st); 67 return -ENOMEM; 68 } 69 70 /* 71 * Get the list of pages out of our struct file. They'll be pinned 72 * at this point until we release them. 73 * 74 * Fail silently without starting the shrinker 75 */ 76 mapping = obj->base.filp->f_mapping; 77 mapping_set_unevictable(mapping); 78 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 79 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 80 81 sg = st->sgl; 82 st->nents = 0; 83 sg_page_sizes = 0; 84 for (i = 0; i < page_count; i++) { 85 const unsigned int shrink[] = { 86 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND, 87 0, 88 }, *s = shrink; 89 gfp_t gfp = noreclaim; 90 91 do { 92 cond_resched(); 93 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 94 if (!IS_ERR(page)) 95 break; 96 97 if (!*s) { 98 ret = PTR_ERR(page); 99 goto err_sg; 100 } 101 102 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++); 103 104 /* 105 * We've tried hard to allocate the memory by reaping 106 * our own buffer, now let the real VM do its job and 107 * go down in flames if truly OOM. 108 * 109 * However, since graphics tend to be disposable, 110 * defer the oom here by reporting the ENOMEM back 111 * to userspace. 112 */ 113 if (!*s) { 114 /* reclaim and warn, but no oom */ 115 gfp = mapping_gfp_mask(mapping); 116 117 /* 118 * Our bo are always dirty and so we require 119 * kswapd to reclaim our pages (direct reclaim 120 * does not effectively begin pageout of our 121 * buffers on its own). However, direct reclaim 122 * only waits for kswapd when under allocation 123 * congestion. So as a result __GFP_RECLAIM is 124 * unreliable and fails to actually reclaim our 125 * dirty pages -- unless you try over and over 126 * again with !__GFP_NORETRY. However, we still 127 * want to fail this allocation rather than 128 * trigger the out-of-memory killer and for 129 * this we want __GFP_RETRY_MAYFAIL. 130 */ 131 gfp |= __GFP_RETRY_MAYFAIL; 132 } 133 } while (1); 134 135 if (!i || 136 sg->length >= max_segment || 137 page_to_pfn(page) != last_pfn + 1) { 138 if (i) { 139 sg_page_sizes |= sg->length; 140 sg = sg_next(sg); 141 } 142 st->nents++; 143 sg_set_page(sg, page, PAGE_SIZE, 0); 144 } else { 145 sg->length += PAGE_SIZE; 146 } 147 last_pfn = page_to_pfn(page); 148 149 /* Check that the i965g/gm workaround works. */ 150 GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL); 151 } 152 if (sg) { /* loop terminated early; short sg table */ 153 sg_page_sizes |= sg->length; 154 sg_mark_end(sg); 155 } 156 157 /* Trim unused sg entries to avoid wasting memory. */ 158 i915_sg_trim(st); 159 160 ret = i915_gem_gtt_prepare_pages(obj, st); 161 if (ret) { 162 /* 163 * DMA remapping failed? One possible cause is that 164 * it could not reserve enough large entries, asking 165 * for PAGE_SIZE chunks instead may be helpful. 166 */ 167 if (max_segment > PAGE_SIZE) { 168 for_each_sgt_page(page, sgt_iter, st) 169 put_page(page); 170 sg_free_table(st); 171 172 max_segment = PAGE_SIZE; 173 goto rebuild_st; 174 } else { 175 dev_warn(i915->drm.dev, 176 "Failed to DMA remap %lu pages\n", 177 page_count); 178 goto err_pages; 179 } 180 } 181 182 if (i915_gem_object_needs_bit17_swizzle(obj)) 183 i915_gem_object_do_bit_17_swizzle(obj, st); 184 185 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 186 187 return 0; 188 189 err_sg: 190 sg_mark_end(sg); 191 err_pages: 192 mapping_clear_unevictable(mapping); 193 if (sg != st->sgl) { 194 struct pagevec pvec; 195 196 pagevec_init(&pvec); 197 for_each_sgt_page(page, sgt_iter, st) { 198 if (!pagevec_add(&pvec, page)) 199 check_release_pagevec(&pvec); 200 } 201 if (pagevec_count(&pvec)) 202 check_release_pagevec(&pvec); 203 } 204 sg_free_table(st); 205 kfree(st); 206 207 /* 208 * shmemfs first checks if there is enough memory to allocate the page 209 * and reports ENOSPC should there be insufficient, along with the usual 210 * ENOMEM for a genuine allocation failure. 211 * 212 * We use ENOSPC in our driver to mean that we have run out of aperture 213 * space and so want to translate the error from shmemfs back to our 214 * usual understanding of ENOMEM. 215 */ 216 if (ret == -ENOSPC) 217 ret = -ENOMEM; 218 219 return ret; 220 } 221 222 static void 223 shmem_truncate(struct drm_i915_gem_object *obj) 224 { 225 /* 226 * Our goal here is to return as much of the memory as 227 * is possible back to the system as we are called from OOM. 228 * To do this we must instruct the shmfs to drop all of its 229 * backing pages, *now*. 230 */ 231 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 232 obj->mm.madv = __I915_MADV_PURGED; 233 obj->mm.pages = ERR_PTR(-EFAULT); 234 } 235 236 static void 237 shmem_writeback(struct drm_i915_gem_object *obj) 238 { 239 struct address_space *mapping; 240 struct writeback_control wbc = { 241 .sync_mode = WB_SYNC_NONE, 242 .nr_to_write = SWAP_CLUSTER_MAX, 243 .range_start = 0, 244 .range_end = LLONG_MAX, 245 .for_reclaim = 1, 246 }; 247 unsigned long i; 248 249 /* 250 * Leave mmapings intact (GTT will have been revoked on unbinding, 251 * leaving only CPU mmapings around) and add those pages to the LRU 252 * instead of invoking writeback so they are aged and paged out 253 * as normal. 254 */ 255 mapping = obj->base.filp->f_mapping; 256 257 /* Begin writeback on each dirty page */ 258 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) { 259 struct page *page; 260 261 page = find_lock_page(mapping, i); 262 if (!page) 263 continue; 264 265 if (!page_mapped(page) && clear_page_dirty_for_io(page)) { 266 int ret; 267 268 SetPageReclaim(page); 269 ret = mapping->a_ops->writepage(page, &wbc); 270 if (!PageWriteback(page)) 271 ClearPageReclaim(page); 272 if (!ret) 273 goto put; 274 } 275 unlock_page(page); 276 put: 277 put_page(page); 278 } 279 } 280 281 void 282 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 283 struct sg_table *pages, 284 bool needs_clflush) 285 { 286 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 287 288 if (obj->mm.madv == I915_MADV_DONTNEED) 289 obj->mm.dirty = false; 290 291 if (needs_clflush && 292 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && 293 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 294 drm_clflush_sg(pages); 295 296 __start_cpu_write(obj); 297 } 298 299 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages) 300 { 301 struct sgt_iter sgt_iter; 302 struct pagevec pvec; 303 struct page *page; 304 305 __i915_gem_object_release_shmem(obj, pages, true); 306 307 i915_gem_gtt_finish_pages(obj, pages); 308 309 if (i915_gem_object_needs_bit17_swizzle(obj)) 310 i915_gem_object_save_bit_17_swizzle(obj, pages); 311 312 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping); 313 314 pagevec_init(&pvec); 315 for_each_sgt_page(page, sgt_iter, pages) { 316 if (obj->mm.dirty) 317 set_page_dirty(page); 318 319 if (obj->mm.madv == I915_MADV_WILLNEED) 320 mark_page_accessed(page); 321 322 if (!pagevec_add(&pvec, page)) 323 check_release_pagevec(&pvec); 324 } 325 if (pagevec_count(&pvec)) 326 check_release_pagevec(&pvec); 327 obj->mm.dirty = false; 328 329 sg_free_table(pages); 330 kfree(pages); 331 } 332 333 static void 334 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) 335 { 336 if (likely(i915_gem_object_has_struct_page(obj))) 337 i915_gem_object_put_pages_shmem(obj, pages); 338 else 339 i915_gem_object_put_pages_phys(obj, pages); 340 } 341 342 static int 343 shmem_pwrite(struct drm_i915_gem_object *obj, 344 const struct drm_i915_gem_pwrite *arg) 345 { 346 struct address_space *mapping = obj->base.filp->f_mapping; 347 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 348 u64 remain, offset; 349 unsigned int pg; 350 351 /* Caller already validated user args */ 352 GEM_BUG_ON(!access_ok(user_data, arg->size)); 353 354 if (!i915_gem_object_has_struct_page(obj)) 355 return i915_gem_object_pwrite_phys(obj, arg); 356 357 /* 358 * Before we instantiate/pin the backing store for our use, we 359 * can prepopulate the shmemfs filp efficiently using a write into 360 * the pagecache. We avoid the penalty of instantiating all the 361 * pages, important if the user is just writing to a few and never 362 * uses the object on the GPU, and using a direct write into shmemfs 363 * allows it to avoid the cost of retrieving a page (either swapin 364 * or clearing-before-use) before it is overwritten. 365 */ 366 if (i915_gem_object_has_pages(obj)) 367 return -ENODEV; 368 369 if (obj->mm.madv != I915_MADV_WILLNEED) 370 return -EFAULT; 371 372 /* 373 * Before the pages are instantiated the object is treated as being 374 * in the CPU domain. The pages will be clflushed as required before 375 * use, and we can freely write into the pages directly. If userspace 376 * races pwrite with any other operation; corruption will ensue - 377 * that is userspace's prerogative! 378 */ 379 380 remain = arg->size; 381 offset = arg->offset; 382 pg = offset_in_page(offset); 383 384 do { 385 unsigned int len, unwritten; 386 struct page *page; 387 void *data, *vaddr; 388 int err; 389 char c; 390 391 len = PAGE_SIZE - pg; 392 if (len > remain) 393 len = remain; 394 395 /* Prefault the user page to reduce potential recursion */ 396 err = __get_user(c, user_data); 397 if (err) 398 return err; 399 400 err = __get_user(c, user_data + len - 1); 401 if (err) 402 return err; 403 404 err = pagecache_write_begin(obj->base.filp, mapping, 405 offset, len, 0, 406 &page, &data); 407 if (err < 0) 408 return err; 409 410 vaddr = kmap_atomic(page); 411 unwritten = __copy_from_user_inatomic(vaddr + pg, 412 user_data, 413 len); 414 kunmap_atomic(vaddr); 415 416 err = pagecache_write_end(obj->base.filp, mapping, 417 offset, len, len - unwritten, 418 page, data); 419 if (err < 0) 420 return err; 421 422 /* We don't handle -EFAULT, leave it to the caller to check */ 423 if (unwritten) 424 return -ENODEV; 425 426 remain -= len; 427 user_data += len; 428 offset += len; 429 pg = 0; 430 } while (remain); 431 432 return 0; 433 } 434 435 static int 436 shmem_pread(struct drm_i915_gem_object *obj, 437 const struct drm_i915_gem_pread *arg) 438 { 439 if (!i915_gem_object_has_struct_page(obj)) 440 return i915_gem_object_pread_phys(obj, arg); 441 442 return -ENODEV; 443 } 444 445 static void shmem_release(struct drm_i915_gem_object *obj) 446 { 447 if (obj->flags & I915_BO_ALLOC_STRUCT_PAGE) 448 i915_gem_object_release_memory_region(obj); 449 450 fput(obj->base.filp); 451 } 452 453 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = { 454 .name = "i915_gem_object_shmem", 455 .flags = I915_GEM_OBJECT_IS_SHRINKABLE, 456 457 .get_pages = shmem_get_pages, 458 .put_pages = shmem_put_pages, 459 .truncate = shmem_truncate, 460 .writeback = shmem_writeback, 461 462 .pwrite = shmem_pwrite, 463 .pread = shmem_pread, 464 465 .release = shmem_release, 466 }; 467 468 static int __create_shmem(struct drm_i915_private *i915, 469 struct drm_gem_object *obj, 470 resource_size_t size) 471 { 472 unsigned long flags = VM_NORESERVE; 473 struct file *filp; 474 475 drm_gem_private_object_init(&i915->drm, obj, size); 476 477 if (i915->mm.gemfs) 478 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 479 flags); 480 else 481 filp = shmem_file_setup("i915", size, flags); 482 if (IS_ERR(filp)) 483 return PTR_ERR(filp); 484 485 obj->filp = filp; 486 return 0; 487 } 488 489 static int shmem_object_init(struct intel_memory_region *mem, 490 struct drm_i915_gem_object *obj, 491 resource_size_t size, 492 unsigned int flags) 493 { 494 static struct lock_class_key lock_class; 495 struct drm_i915_private *i915 = mem->i915; 496 struct address_space *mapping; 497 unsigned int cache_level; 498 gfp_t mask; 499 int ret; 500 501 ret = __create_shmem(i915, &obj->base, size); 502 if (ret) 503 return ret; 504 505 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 506 if (IS_I965GM(i915) || IS_I965G(i915)) { 507 /* 965gm cannot relocate objects above 4GiB. */ 508 mask &= ~__GFP_HIGHMEM; 509 mask |= __GFP_DMA32; 510 } 511 512 mapping = obj->base.filp->f_mapping; 513 mapping_set_gfp_mask(mapping, mask); 514 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 515 516 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, 517 I915_BO_ALLOC_STRUCT_PAGE); 518 519 obj->write_domain = I915_GEM_DOMAIN_CPU; 520 obj->read_domains = I915_GEM_DOMAIN_CPU; 521 522 if (HAS_LLC(i915)) 523 /* On some devices, we can have the GPU use the LLC (the CPU 524 * cache) for about a 10% performance improvement 525 * compared to uncached. Graphics requests other than 526 * display scanout are coherent with the CPU in 527 * accessing this cache. This means in this mode we 528 * don't need to clflush on the CPU side, and on the 529 * GPU side we only need to flush internal caches to 530 * get data visible to the CPU. 531 * 532 * However, we maintain the display planes as UC, and so 533 * need to rebind when first used as such. 534 */ 535 cache_level = I915_CACHE_LLC; 536 else 537 cache_level = I915_CACHE_NONE; 538 539 i915_gem_object_set_cache_coherency(obj, cache_level); 540 541 i915_gem_object_init_memory_region(obj, mem); 542 543 return 0; 544 } 545 546 struct drm_i915_gem_object * 547 i915_gem_object_create_shmem(struct drm_i915_private *i915, 548 resource_size_t size) 549 { 550 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM], 551 size, 0); 552 } 553 554 /* Allocate a new GEM object and fill it with the supplied data */ 555 struct drm_i915_gem_object * 556 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv, 557 const void *data, resource_size_t size) 558 { 559 struct drm_i915_gem_object *obj; 560 struct file *file; 561 resource_size_t offset; 562 int err; 563 564 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE)); 565 if (IS_ERR(obj)) 566 return obj; 567 568 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); 569 570 file = obj->base.filp; 571 offset = 0; 572 do { 573 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 574 struct page *page; 575 void *pgdata, *vaddr; 576 577 err = pagecache_write_begin(file, file->f_mapping, 578 offset, len, 0, 579 &page, &pgdata); 580 if (err < 0) 581 goto fail; 582 583 vaddr = kmap(page); 584 memcpy(vaddr, data, len); 585 kunmap(page); 586 587 err = pagecache_write_end(file, file->f_mapping, 588 offset, len, len, 589 page, pgdata); 590 if (err < 0) 591 goto fail; 592 593 size -= len; 594 data += len; 595 offset += len; 596 } while (size); 597 598 return obj; 599 600 fail: 601 i915_gem_object_put(obj); 602 return ERR_PTR(err); 603 } 604 605 static int init_shmem(struct intel_memory_region *mem) 606 { 607 int err; 608 609 err = i915_gemfs_init(mem->i915); 610 if (err) { 611 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", 612 err); 613 } 614 615 intel_memory_region_set_name(mem, "system"); 616 617 return 0; /* Don't error, we can simply fallback to the kernel mnt */ 618 } 619 620 static void release_shmem(struct intel_memory_region *mem) 621 { 622 i915_gemfs_fini(mem->i915); 623 } 624 625 static const struct intel_memory_region_ops shmem_region_ops = { 626 .init = init_shmem, 627 .release = release_shmem, 628 .init_object = shmem_object_init, 629 }; 630 631 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915, 632 u16 type, u16 instance) 633 { 634 return intel_memory_region_create(i915, 0, 635 totalram_pages() << PAGE_SHIFT, 636 PAGE_SIZE, 0, 637 type, instance, 638 &shmem_region_ops); 639 } 640 641 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj) 642 { 643 return obj->ops == &i915_gem_shmem_ops; 644 } 645