xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_shmem.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/pagevec.h>
8 #include <linux/shmem_fs.h>
9 #include <linux/swap.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_region.h"
14 #include "i915_drv.h"
15 #include "i915_gem_object.h"
16 #include "i915_gem_tiling.h"
17 #include "i915_gemfs.h"
18 #include "i915_scatterlist.h"
19 #include "i915_trace.h"
20 
21 /*
22  * Move pages to appropriate lru and release the pagevec, decrementing the
23  * ref count of those pages.
24  */
25 static void check_release_pagevec(struct pagevec *pvec)
26 {
27 	check_move_unevictable_pages(pvec);
28 	__pagevec_release(pvec);
29 	cond_resched();
30 }
31 
32 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
33 			 bool dirty, bool backup)
34 {
35 	struct sgt_iter sgt_iter;
36 	struct pagevec pvec;
37 	struct page *page;
38 
39 	mapping_clear_unevictable(mapping);
40 
41 	pagevec_init(&pvec);
42 	for_each_sgt_page(page, sgt_iter, st) {
43 		if (dirty)
44 			set_page_dirty(page);
45 
46 		if (backup)
47 			mark_page_accessed(page);
48 
49 		if (!pagevec_add(&pvec, page))
50 			check_release_pagevec(&pvec);
51 	}
52 	if (pagevec_count(&pvec))
53 		check_release_pagevec(&pvec);
54 
55 	sg_free_table(st);
56 }
57 
58 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
59 			 size_t size, struct intel_memory_region *mr,
60 			 struct address_space *mapping,
61 			 unsigned int max_segment)
62 {
63 	unsigned int page_count; /* restricted by sg_alloc_table */
64 	unsigned long i;
65 	struct scatterlist *sg;
66 	struct page *page;
67 	unsigned long last_pfn = 0;	/* suppress gcc warning */
68 	gfp_t noreclaim;
69 	int ret;
70 
71 	if (overflows_type(size / PAGE_SIZE, page_count))
72 		return -E2BIG;
73 
74 	page_count = size / PAGE_SIZE;
75 	/*
76 	 * If there's no chance of allocating enough pages for the whole
77 	 * object, bail early.
78 	 */
79 	if (size > resource_size(&mr->region))
80 		return -ENOMEM;
81 
82 	if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
83 		return -ENOMEM;
84 
85 	/*
86 	 * Get the list of pages out of our struct file.  They'll be pinned
87 	 * at this point until we release them.
88 	 *
89 	 * Fail silently without starting the shrinker
90 	 */
91 	mapping_set_unevictable(mapping);
92 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
93 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
94 
95 	sg = st->sgl;
96 	st->nents = 0;
97 	for (i = 0; i < page_count; i++) {
98 		const unsigned int shrink[] = {
99 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
100 			0,
101 		}, *s = shrink;
102 		gfp_t gfp = noreclaim;
103 
104 		do {
105 			cond_resched();
106 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
107 			if (!IS_ERR(page))
108 				break;
109 
110 			if (!*s) {
111 				ret = PTR_ERR(page);
112 				goto err_sg;
113 			}
114 
115 			i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
116 
117 			/*
118 			 * We've tried hard to allocate the memory by reaping
119 			 * our own buffer, now let the real VM do its job and
120 			 * go down in flames if truly OOM.
121 			 *
122 			 * However, since graphics tend to be disposable,
123 			 * defer the oom here by reporting the ENOMEM back
124 			 * to userspace.
125 			 */
126 			if (!*s) {
127 				/* reclaim and warn, but no oom */
128 				gfp = mapping_gfp_mask(mapping);
129 
130 				/*
131 				 * Our bo are always dirty and so we require
132 				 * kswapd to reclaim our pages (direct reclaim
133 				 * does not effectively begin pageout of our
134 				 * buffers on its own). However, direct reclaim
135 				 * only waits for kswapd when under allocation
136 				 * congestion. So as a result __GFP_RECLAIM is
137 				 * unreliable and fails to actually reclaim our
138 				 * dirty pages -- unless you try over and over
139 				 * again with !__GFP_NORETRY. However, we still
140 				 * want to fail this allocation rather than
141 				 * trigger the out-of-memory killer and for
142 				 * this we want __GFP_RETRY_MAYFAIL.
143 				 */
144 				gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
145 			}
146 		} while (1);
147 
148 		if (!i ||
149 		    sg->length >= max_segment ||
150 		    page_to_pfn(page) != last_pfn + 1) {
151 			if (i)
152 				sg = sg_next(sg);
153 
154 			st->nents++;
155 			sg_set_page(sg, page, PAGE_SIZE, 0);
156 		} else {
157 			sg->length += PAGE_SIZE;
158 		}
159 		last_pfn = page_to_pfn(page);
160 
161 		/* Check that the i965g/gm workaround works. */
162 		GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
163 	}
164 	if (sg) /* loop terminated early; short sg table */
165 		sg_mark_end(sg);
166 
167 	/* Trim unused sg entries to avoid wasting memory. */
168 	i915_sg_trim(st);
169 
170 	return 0;
171 err_sg:
172 	sg_mark_end(sg);
173 	if (sg != st->sgl) {
174 		shmem_sg_free_table(st, mapping, false, false);
175 	} else {
176 		mapping_clear_unevictable(mapping);
177 		sg_free_table(st);
178 	}
179 
180 	/*
181 	 * shmemfs first checks if there is enough memory to allocate the page
182 	 * and reports ENOSPC should there be insufficient, along with the usual
183 	 * ENOMEM for a genuine allocation failure.
184 	 *
185 	 * We use ENOSPC in our driver to mean that we have run out of aperture
186 	 * space and so want to translate the error from shmemfs back to our
187 	 * usual understanding of ENOMEM.
188 	 */
189 	if (ret == -ENOSPC)
190 		ret = -ENOMEM;
191 
192 	return ret;
193 }
194 
195 static int shmem_get_pages(struct drm_i915_gem_object *obj)
196 {
197 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
198 	struct intel_memory_region *mem = obj->mm.region;
199 	struct address_space *mapping = obj->base.filp->f_mapping;
200 	unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
201 	struct sg_table *st;
202 	struct sgt_iter sgt_iter;
203 	struct page *page;
204 	int ret;
205 
206 	/*
207 	 * Assert that the object is not currently in any GPU domain. As it
208 	 * wasn't in the GTT, there shouldn't be any way it could have been in
209 	 * a GPU cache
210 	 */
211 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
212 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
213 
214 rebuild_st:
215 	st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
216 	if (!st)
217 		return -ENOMEM;
218 
219 	ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
220 				   max_segment);
221 	if (ret)
222 		goto err_st;
223 
224 	ret = i915_gem_gtt_prepare_pages(obj, st);
225 	if (ret) {
226 		/*
227 		 * DMA remapping failed? One possible cause is that
228 		 * it could not reserve enough large entries, asking
229 		 * for PAGE_SIZE chunks instead may be helpful.
230 		 */
231 		if (max_segment > PAGE_SIZE) {
232 			for_each_sgt_page(page, sgt_iter, st)
233 				put_page(page);
234 			sg_free_table(st);
235 			kfree(st);
236 
237 			max_segment = PAGE_SIZE;
238 			goto rebuild_st;
239 		} else {
240 			dev_warn(i915->drm.dev,
241 				 "Failed to DMA remap %zu pages\n",
242 				 obj->base.size >> PAGE_SHIFT);
243 			goto err_pages;
244 		}
245 	}
246 
247 	if (i915_gem_object_needs_bit17_swizzle(obj))
248 		i915_gem_object_do_bit_17_swizzle(obj, st);
249 
250 	if (i915_gem_object_can_bypass_llc(obj))
251 		obj->cache_dirty = true;
252 
253 	__i915_gem_object_set_pages(obj, st);
254 
255 	return 0;
256 
257 err_pages:
258 	shmem_sg_free_table(st, mapping, false, false);
259 	/*
260 	 * shmemfs first checks if there is enough memory to allocate the page
261 	 * and reports ENOSPC should there be insufficient, along with the usual
262 	 * ENOMEM for a genuine allocation failure.
263 	 *
264 	 * We use ENOSPC in our driver to mean that we have run out of aperture
265 	 * space and so want to translate the error from shmemfs back to our
266 	 * usual understanding of ENOMEM.
267 	 */
268 err_st:
269 	if (ret == -ENOSPC)
270 		ret = -ENOMEM;
271 
272 	kfree(st);
273 
274 	return ret;
275 }
276 
277 static int
278 shmem_truncate(struct drm_i915_gem_object *obj)
279 {
280 	/*
281 	 * Our goal here is to return as much of the memory as
282 	 * is possible back to the system as we are called from OOM.
283 	 * To do this we must instruct the shmfs to drop all of its
284 	 * backing pages, *now*.
285 	 */
286 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
287 	obj->mm.madv = __I915_MADV_PURGED;
288 	obj->mm.pages = ERR_PTR(-EFAULT);
289 
290 	return 0;
291 }
292 
293 void __shmem_writeback(size_t size, struct address_space *mapping)
294 {
295 	struct writeback_control wbc = {
296 		.sync_mode = WB_SYNC_NONE,
297 		.nr_to_write = SWAP_CLUSTER_MAX,
298 		.range_start = 0,
299 		.range_end = LLONG_MAX,
300 		.for_reclaim = 1,
301 	};
302 	unsigned long i;
303 
304 	/*
305 	 * Leave mmapings intact (GTT will have been revoked on unbinding,
306 	 * leaving only CPU mmapings around) and add those pages to the LRU
307 	 * instead of invoking writeback so they are aged and paged out
308 	 * as normal.
309 	 */
310 
311 	/* Begin writeback on each dirty page */
312 	for (i = 0; i < size >> PAGE_SHIFT; i++) {
313 		struct page *page;
314 
315 		page = find_lock_page(mapping, i);
316 		if (!page)
317 			continue;
318 
319 		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
320 			int ret;
321 
322 			SetPageReclaim(page);
323 			ret = mapping->a_ops->writepage(page, &wbc);
324 			if (!PageWriteback(page))
325 				ClearPageReclaim(page);
326 			if (!ret)
327 				goto put;
328 		}
329 		unlock_page(page);
330 put:
331 		put_page(page);
332 	}
333 }
334 
335 static void
336 shmem_writeback(struct drm_i915_gem_object *obj)
337 {
338 	__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
339 }
340 
341 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
342 {
343 	switch (obj->mm.madv) {
344 	case I915_MADV_DONTNEED:
345 		return i915_gem_object_truncate(obj);
346 	case __I915_MADV_PURGED:
347 		return 0;
348 	}
349 
350 	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
351 		shmem_writeback(obj);
352 
353 	return 0;
354 }
355 
356 void
357 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
358 				struct sg_table *pages,
359 				bool needs_clflush)
360 {
361 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
362 
363 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
364 
365 	if (obj->mm.madv == I915_MADV_DONTNEED)
366 		obj->mm.dirty = false;
367 
368 	if (needs_clflush &&
369 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
370 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
371 		drm_clflush_sg(pages);
372 
373 	__start_cpu_write(obj);
374 	/*
375 	 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
376 	 * swapped-in. Our async flush path is not trust worthy enough yet(and
377 	 * happens in the wrong order), and with some tricks it's conceivable
378 	 * for userspace to change the cache-level to I915_CACHE_NONE after the
379 	 * pages are swapped-in, and since execbuf binds the object before doing
380 	 * the async flush, we have a race window.
381 	 */
382 	if (!HAS_LLC(i915) && !IS_DGFX(i915))
383 		obj->cache_dirty = true;
384 }
385 
386 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
387 {
388 	__i915_gem_object_release_shmem(obj, pages, true);
389 
390 	i915_gem_gtt_finish_pages(obj, pages);
391 
392 	if (i915_gem_object_needs_bit17_swizzle(obj))
393 		i915_gem_object_save_bit_17_swizzle(obj, pages);
394 
395 	shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
396 			    obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
397 	kfree(pages);
398 	obj->mm.dirty = false;
399 }
400 
401 static void
402 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
403 {
404 	if (likely(i915_gem_object_has_struct_page(obj)))
405 		i915_gem_object_put_pages_shmem(obj, pages);
406 	else
407 		i915_gem_object_put_pages_phys(obj, pages);
408 }
409 
410 static int
411 shmem_pwrite(struct drm_i915_gem_object *obj,
412 	     const struct drm_i915_gem_pwrite *arg)
413 {
414 	struct address_space *mapping = obj->base.filp->f_mapping;
415 	const struct address_space_operations *aops = mapping->a_ops;
416 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
417 	u64 remain, offset;
418 	unsigned int pg;
419 
420 	/* Caller already validated user args */
421 	GEM_BUG_ON(!access_ok(user_data, arg->size));
422 
423 	if (!i915_gem_object_has_struct_page(obj))
424 		return i915_gem_object_pwrite_phys(obj, arg);
425 
426 	/*
427 	 * Before we instantiate/pin the backing store for our use, we
428 	 * can prepopulate the shmemfs filp efficiently using a write into
429 	 * the pagecache. We avoid the penalty of instantiating all the
430 	 * pages, important if the user is just writing to a few and never
431 	 * uses the object on the GPU, and using a direct write into shmemfs
432 	 * allows it to avoid the cost of retrieving a page (either swapin
433 	 * or clearing-before-use) before it is overwritten.
434 	 */
435 	if (i915_gem_object_has_pages(obj))
436 		return -ENODEV;
437 
438 	if (obj->mm.madv != I915_MADV_WILLNEED)
439 		return -EFAULT;
440 
441 	/*
442 	 * Before the pages are instantiated the object is treated as being
443 	 * in the CPU domain. The pages will be clflushed as required before
444 	 * use, and we can freely write into the pages directly. If userspace
445 	 * races pwrite with any other operation; corruption will ensue -
446 	 * that is userspace's prerogative!
447 	 */
448 
449 	remain = arg->size;
450 	offset = arg->offset;
451 	pg = offset_in_page(offset);
452 
453 	do {
454 		unsigned int len, unwritten;
455 		struct page *page;
456 		void *data, *vaddr;
457 		int err;
458 		char c;
459 
460 		len = PAGE_SIZE - pg;
461 		if (len > remain)
462 			len = remain;
463 
464 		/* Prefault the user page to reduce potential recursion */
465 		err = __get_user(c, user_data);
466 		if (err)
467 			return err;
468 
469 		err = __get_user(c, user_data + len - 1);
470 		if (err)
471 			return err;
472 
473 		err = aops->write_begin(obj->base.filp, mapping, offset, len,
474 					&page, &data);
475 		if (err < 0)
476 			return err;
477 
478 		vaddr = kmap_atomic(page);
479 		unwritten = __copy_from_user_inatomic(vaddr + pg,
480 						      user_data,
481 						      len);
482 		kunmap_atomic(vaddr);
483 
484 		err = aops->write_end(obj->base.filp, mapping, offset, len,
485 				      len - unwritten, page, data);
486 		if (err < 0)
487 			return err;
488 
489 		/* We don't handle -EFAULT, leave it to the caller to check */
490 		if (unwritten)
491 			return -ENODEV;
492 
493 		remain -= len;
494 		user_data += len;
495 		offset += len;
496 		pg = 0;
497 	} while (remain);
498 
499 	return 0;
500 }
501 
502 static int
503 shmem_pread(struct drm_i915_gem_object *obj,
504 	    const struct drm_i915_gem_pread *arg)
505 {
506 	if (!i915_gem_object_has_struct_page(obj))
507 		return i915_gem_object_pread_phys(obj, arg);
508 
509 	return -ENODEV;
510 }
511 
512 static void shmem_release(struct drm_i915_gem_object *obj)
513 {
514 	if (i915_gem_object_has_struct_page(obj))
515 		i915_gem_object_release_memory_region(obj);
516 
517 	fput(obj->base.filp);
518 }
519 
520 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
521 	.name = "i915_gem_object_shmem",
522 	.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
523 
524 	.get_pages = shmem_get_pages,
525 	.put_pages = shmem_put_pages,
526 	.truncate = shmem_truncate,
527 	.shrink = shmem_shrink,
528 
529 	.pwrite = shmem_pwrite,
530 	.pread = shmem_pread,
531 
532 	.release = shmem_release,
533 };
534 
535 static int __create_shmem(struct drm_i915_private *i915,
536 			  struct drm_gem_object *obj,
537 			  resource_size_t size)
538 {
539 	unsigned long flags = VM_NORESERVE;
540 	struct file *filp;
541 
542 	drm_gem_private_object_init(&i915->drm, obj, size);
543 
544 	/* XXX: The __shmem_file_setup() function returns -EINVAL if size is
545 	 * greater than MAX_LFS_FILESIZE.
546 	 * To handle the same error as other code that returns -E2BIG when
547 	 * the size is too large, we add a code that returns -E2BIG when the
548 	 * size is larger than the size that can be handled.
549 	 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
550 	 * so we only needs to check when BITS_PER_LONG is 64.
551 	 * If BITS_PER_LONG is 32, E2BIG checks are processed when
552 	 * i915_gem_object_size_2big() is called before init_object() callback
553 	 * is called.
554 	 */
555 	if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
556 		return -E2BIG;
557 
558 	if (i915->mm.gemfs)
559 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
560 						 flags);
561 	else
562 		filp = shmem_file_setup("i915", size, flags);
563 	if (IS_ERR(filp))
564 		return PTR_ERR(filp);
565 
566 	obj->filp = filp;
567 	return 0;
568 }
569 
570 static int shmem_object_init(struct intel_memory_region *mem,
571 			     struct drm_i915_gem_object *obj,
572 			     resource_size_t offset,
573 			     resource_size_t size,
574 			     resource_size_t page_size,
575 			     unsigned int flags)
576 {
577 	static struct lock_class_key lock_class;
578 	struct drm_i915_private *i915 = mem->i915;
579 	struct address_space *mapping;
580 	unsigned int cache_level;
581 	gfp_t mask;
582 	int ret;
583 
584 	ret = __create_shmem(i915, &obj->base, size);
585 	if (ret)
586 		return ret;
587 
588 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
589 	if (IS_I965GM(i915) || IS_I965G(i915)) {
590 		/* 965gm cannot relocate objects above 4GiB. */
591 		mask &= ~__GFP_HIGHMEM;
592 		mask |= __GFP_DMA32;
593 	}
594 
595 	mapping = obj->base.filp->f_mapping;
596 	mapping_set_gfp_mask(mapping, mask);
597 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
598 
599 	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
600 	obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
601 	obj->write_domain = I915_GEM_DOMAIN_CPU;
602 	obj->read_domains = I915_GEM_DOMAIN_CPU;
603 
604 	if (HAS_LLC(i915))
605 		/* On some devices, we can have the GPU use the LLC (the CPU
606 		 * cache) for about a 10% performance improvement
607 		 * compared to uncached.  Graphics requests other than
608 		 * display scanout are coherent with the CPU in
609 		 * accessing this cache.  This means in this mode we
610 		 * don't need to clflush on the CPU side, and on the
611 		 * GPU side we only need to flush internal caches to
612 		 * get data visible to the CPU.
613 		 *
614 		 * However, we maintain the display planes as UC, and so
615 		 * need to rebind when first used as such.
616 		 */
617 		cache_level = I915_CACHE_LLC;
618 	else
619 		cache_level = I915_CACHE_NONE;
620 
621 	i915_gem_object_set_cache_coherency(obj, cache_level);
622 
623 	i915_gem_object_init_memory_region(obj, mem);
624 
625 	return 0;
626 }
627 
628 struct drm_i915_gem_object *
629 i915_gem_object_create_shmem(struct drm_i915_private *i915,
630 			     resource_size_t size)
631 {
632 	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
633 					     size, 0, 0);
634 }
635 
636 /* Allocate a new GEM object and fill it with the supplied data */
637 struct drm_i915_gem_object *
638 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
639 				       const void *data, resource_size_t size)
640 {
641 	struct drm_i915_gem_object *obj;
642 	struct file *file;
643 	const struct address_space_operations *aops;
644 	resource_size_t offset;
645 	int err;
646 
647 	GEM_WARN_ON(IS_DGFX(dev_priv));
648 	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
649 	if (IS_ERR(obj))
650 		return obj;
651 
652 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
653 
654 	file = obj->base.filp;
655 	aops = file->f_mapping->a_ops;
656 	offset = 0;
657 	do {
658 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
659 		struct page *page;
660 		void *pgdata, *vaddr;
661 
662 		err = aops->write_begin(file, file->f_mapping, offset, len,
663 					&page, &pgdata);
664 		if (err < 0)
665 			goto fail;
666 
667 		vaddr = kmap(page);
668 		memcpy(vaddr, data, len);
669 		kunmap(page);
670 
671 		err = aops->write_end(file, file->f_mapping, offset, len, len,
672 				      page, pgdata);
673 		if (err < 0)
674 			goto fail;
675 
676 		size -= len;
677 		data += len;
678 		offset += len;
679 	} while (size);
680 
681 	return obj;
682 
683 fail:
684 	i915_gem_object_put(obj);
685 	return ERR_PTR(err);
686 }
687 
688 static int init_shmem(struct intel_memory_region *mem)
689 {
690 	i915_gemfs_init(mem->i915);
691 	intel_memory_region_set_name(mem, "system");
692 
693 	return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
694 }
695 
696 static int release_shmem(struct intel_memory_region *mem)
697 {
698 	i915_gemfs_fini(mem->i915);
699 	return 0;
700 }
701 
702 static const struct intel_memory_region_ops shmem_region_ops = {
703 	.init = init_shmem,
704 	.release = release_shmem,
705 	.init_object = shmem_object_init,
706 };
707 
708 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
709 						 u16 type, u16 instance)
710 {
711 	return intel_memory_region_create(i915, 0,
712 					  totalram_pages() << PAGE_SHIFT,
713 					  PAGE_SIZE, 0, 0,
714 					  type, instance,
715 					  &shmem_region_ops);
716 }
717 
718 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
719 {
720 	return obj->ops == &i915_gem_shmem_ops;
721 }
722