1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include "i915_drv.h" 8 #include "i915_gem_object.h" 9 #include "i915_scatterlist.h" 10 #include "i915_gem_lmem.h" 11 #include "i915_gem_mman.h" 12 13 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 14 struct sg_table *pages, 15 unsigned int sg_page_sizes) 16 { 17 struct drm_i915_private *i915 = to_i915(obj->base.dev); 18 unsigned long supported = INTEL_INFO(i915)->page_sizes; 19 int i; 20 21 lockdep_assert_held(&obj->mm.lock); 22 23 if (i915_gem_object_is_volatile(obj)) 24 obj->mm.madv = I915_MADV_DONTNEED; 25 26 /* Make the pages coherent with the GPU (flushing any swapin). */ 27 if (obj->cache_dirty) { 28 obj->write_domain = 0; 29 if (i915_gem_object_has_struct_page(obj)) 30 drm_clflush_sg(pages); 31 obj->cache_dirty = false; 32 } 33 34 obj->mm.get_page.sg_pos = pages->sgl; 35 obj->mm.get_page.sg_idx = 0; 36 37 obj->mm.pages = pages; 38 39 if (i915_gem_object_is_tiled(obj) && 40 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 41 GEM_BUG_ON(obj->mm.quirked); 42 __i915_gem_object_pin_pages(obj); 43 obj->mm.quirked = true; 44 } 45 46 GEM_BUG_ON(!sg_page_sizes); 47 obj->mm.page_sizes.phys = sg_page_sizes; 48 49 /* 50 * Calculate the supported page-sizes which fit into the given 51 * sg_page_sizes. This will give us the page-sizes which we may be able 52 * to use opportunistically when later inserting into the GTT. For 53 * example if phys=2G, then in theory we should be able to use 1G, 2M, 54 * 64K or 4K pages, although in practice this will depend on a number of 55 * other factors. 56 */ 57 obj->mm.page_sizes.sg = 0; 58 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 59 if (obj->mm.page_sizes.phys & ~0u << i) 60 obj->mm.page_sizes.sg |= BIT(i); 61 } 62 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 63 64 if (i915_gem_object_is_shrinkable(obj)) { 65 struct list_head *list; 66 unsigned long flags; 67 68 spin_lock_irqsave(&i915->mm.obj_lock, flags); 69 70 i915->mm.shrink_count++; 71 i915->mm.shrink_memory += obj->base.size; 72 73 if (obj->mm.madv != I915_MADV_WILLNEED) 74 list = &i915->mm.purge_list; 75 else 76 list = &i915->mm.shrink_list; 77 list_add_tail(&obj->mm.link, list); 78 79 atomic_set(&obj->mm.shrink_pin, 0); 80 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 81 } 82 } 83 84 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 85 { 86 int err; 87 88 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 89 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 90 return -EFAULT; 91 } 92 93 err = obj->ops->get_pages(obj); 94 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 95 96 return err; 97 } 98 99 /* Ensure that the associated pages are gathered from the backing storage 100 * and pinned into our object. i915_gem_object_pin_pages() may be called 101 * multiple times before they are released by a single call to 102 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 103 * either as a result of memory pressure (reaping pages under the shrinker) 104 * or as the object is itself released. 105 */ 106 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 107 { 108 int err; 109 110 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 111 if (err) 112 return err; 113 114 if (unlikely(!i915_gem_object_has_pages(obj))) { 115 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 116 117 err = ____i915_gem_object_get_pages(obj); 118 if (err) 119 goto unlock; 120 121 smp_mb__before_atomic(); 122 } 123 atomic_inc(&obj->mm.pages_pin_count); 124 125 unlock: 126 mutex_unlock(&obj->mm.lock); 127 return err; 128 } 129 130 /* Immediately discard the backing storage */ 131 void i915_gem_object_truncate(struct drm_i915_gem_object *obj) 132 { 133 drm_gem_free_mmap_offset(&obj->base); 134 if (obj->ops->truncate) 135 obj->ops->truncate(obj); 136 } 137 138 /* Try to discard unwanted pages */ 139 void i915_gem_object_writeback(struct drm_i915_gem_object *obj) 140 { 141 lockdep_assert_held(&obj->mm.lock); 142 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 143 144 if (obj->ops->writeback) 145 obj->ops->writeback(obj); 146 } 147 148 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 149 { 150 struct radix_tree_iter iter; 151 void __rcu **slot; 152 153 rcu_read_lock(); 154 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 155 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 156 rcu_read_unlock(); 157 } 158 159 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) 160 { 161 if (is_vmalloc_addr(ptr)) 162 vunmap(ptr); 163 else 164 kunmap(kmap_to_page(ptr)); 165 } 166 167 struct sg_table * 168 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) 169 { 170 struct sg_table *pages; 171 172 pages = fetch_and_zero(&obj->mm.pages); 173 if (IS_ERR_OR_NULL(pages)) 174 return pages; 175 176 if (i915_gem_object_is_volatile(obj)) 177 obj->mm.madv = I915_MADV_WILLNEED; 178 179 i915_gem_object_make_unshrinkable(obj); 180 181 if (obj->mm.mapping) { 182 unmap_object(obj, page_mask_bits(obj->mm.mapping)); 183 obj->mm.mapping = NULL; 184 } 185 186 __i915_gem_object_reset_page_iter(obj); 187 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 188 189 return pages; 190 } 191 192 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 193 { 194 struct sg_table *pages; 195 int err; 196 197 if (i915_gem_object_has_pinned_pages(obj)) 198 return -EBUSY; 199 200 GEM_BUG_ON(atomic_read(&obj->bind_count)); 201 202 /* May be called by shrinker from within get_pages() (on another bo) */ 203 mutex_lock(&obj->mm.lock); 204 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) { 205 err = -EBUSY; 206 goto unlock; 207 } 208 209 i915_gem_object_release_mmap_offset(obj); 210 211 /* 212 * ->put_pages might need to allocate memory for the bit17 swizzle 213 * array, hence protect them from being reaped by removing them from gtt 214 * lists early. 215 */ 216 pages = __i915_gem_object_unset_pages(obj); 217 218 /* 219 * XXX Temporary hijinx to avoid updating all backends to handle 220 * NULL pages. In the future, when we have more asynchronous 221 * get_pages backends we should be better able to handle the 222 * cancellation of the async task in a more uniform manner. 223 */ 224 if (!pages && !i915_gem_object_needs_async_cancel(obj)) 225 pages = ERR_PTR(-EINVAL); 226 227 if (!IS_ERR(pages)) 228 obj->ops->put_pages(obj, pages); 229 230 err = 0; 231 unlock: 232 mutex_unlock(&obj->mm.lock); 233 234 return err; 235 } 236 237 static inline pte_t iomap_pte(resource_size_t base, 238 dma_addr_t offset, 239 pgprot_t prot) 240 { 241 return pte_mkspecial(pfn_pte((base + offset) >> PAGE_SHIFT, prot)); 242 } 243 244 /* The 'mapping' part of i915_gem_object_pin_map() below */ 245 static void *i915_gem_object_map(struct drm_i915_gem_object *obj, 246 enum i915_map_type type) 247 { 248 unsigned long n_pte = obj->base.size >> PAGE_SHIFT; 249 struct sg_table *sgt = obj->mm.pages; 250 pte_t *stack[32], **mem; 251 struct vm_struct *area; 252 pgprot_t pgprot; 253 254 if (!i915_gem_object_has_struct_page(obj) && type != I915_MAP_WC) 255 return NULL; 256 257 /* A single page can always be kmapped */ 258 if (n_pte == 1 && type == I915_MAP_WB) 259 return kmap(sg_page(sgt->sgl)); 260 261 mem = stack; 262 if (n_pte > ARRAY_SIZE(stack)) { 263 /* Too big for stack -- allocate temporary array instead */ 264 mem = kvmalloc_array(n_pte, sizeof(*mem), GFP_KERNEL); 265 if (!mem) 266 return NULL; 267 } 268 269 area = alloc_vm_area(obj->base.size, mem); 270 if (!area) { 271 if (mem != stack) 272 kvfree(mem); 273 return NULL; 274 } 275 276 switch (type) { 277 default: 278 MISSING_CASE(type); 279 /* fallthrough - to use PAGE_KERNEL anyway */ 280 case I915_MAP_WB: 281 pgprot = PAGE_KERNEL; 282 break; 283 case I915_MAP_WC: 284 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 285 break; 286 } 287 288 if (i915_gem_object_has_struct_page(obj)) { 289 struct sgt_iter iter; 290 struct page *page; 291 pte_t **ptes = mem; 292 293 for_each_sgt_page(page, iter, sgt) 294 **ptes++ = mk_pte(page, pgprot); 295 } else { 296 resource_size_t iomap; 297 struct sgt_iter iter; 298 pte_t **ptes = mem; 299 dma_addr_t addr; 300 301 iomap = obj->mm.region->iomap.base; 302 iomap -= obj->mm.region->region.start; 303 304 for_each_sgt_daddr(addr, iter, sgt) 305 **ptes++ = iomap_pte(iomap, addr, pgprot); 306 } 307 308 if (mem != stack) 309 kvfree(mem); 310 311 return area->addr; 312 } 313 314 /* get, pin, and map the pages of the object into kernel space */ 315 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 316 enum i915_map_type type) 317 { 318 enum i915_map_type has_type; 319 unsigned int flags; 320 bool pinned; 321 void *ptr; 322 int err; 323 324 flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_HAS_IOMEM; 325 if (!i915_gem_object_type_has(obj, flags)) 326 return ERR_PTR(-ENXIO); 327 328 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 329 if (err) 330 return ERR_PTR(err); 331 332 pinned = !(type & I915_MAP_OVERRIDE); 333 type &= ~I915_MAP_OVERRIDE; 334 335 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 336 if (unlikely(!i915_gem_object_has_pages(obj))) { 337 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 338 339 err = ____i915_gem_object_get_pages(obj); 340 if (err) 341 goto err_unlock; 342 343 smp_mb__before_atomic(); 344 } 345 atomic_inc(&obj->mm.pages_pin_count); 346 pinned = false; 347 } 348 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 349 350 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 351 if (ptr && has_type != type) { 352 if (pinned) { 353 err = -EBUSY; 354 goto err_unpin; 355 } 356 357 unmap_object(obj, ptr); 358 359 ptr = obj->mm.mapping = NULL; 360 } 361 362 if (!ptr) { 363 ptr = i915_gem_object_map(obj, type); 364 if (!ptr) { 365 err = -ENOMEM; 366 goto err_unpin; 367 } 368 369 obj->mm.mapping = page_pack_bits(ptr, type); 370 } 371 372 out_unlock: 373 mutex_unlock(&obj->mm.lock); 374 return ptr; 375 376 err_unpin: 377 atomic_dec(&obj->mm.pages_pin_count); 378 err_unlock: 379 ptr = ERR_PTR(err); 380 goto out_unlock; 381 } 382 383 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 384 unsigned long offset, 385 unsigned long size) 386 { 387 enum i915_map_type has_type; 388 void *ptr; 389 390 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 391 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), 392 offset, size, obj->base.size)); 393 394 obj->mm.dirty = true; 395 396 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) 397 return; 398 399 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 400 if (has_type == I915_MAP_WC) 401 return; 402 403 drm_clflush_virt_range(ptr + offset, size); 404 if (size == obj->base.size) { 405 obj->write_domain &= ~I915_GEM_DOMAIN_CPU; 406 obj->cache_dirty = false; 407 } 408 } 409 410 struct scatterlist * 411 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 412 unsigned int n, 413 unsigned int *offset) 414 { 415 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 416 struct scatterlist *sg; 417 unsigned int idx, count; 418 419 might_sleep(); 420 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 421 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 422 423 /* As we iterate forward through the sg, we record each entry in a 424 * radixtree for quick repeated (backwards) lookups. If we have seen 425 * this index previously, we will have an entry for it. 426 * 427 * Initial lookup is O(N), but this is amortized to O(1) for 428 * sequential page access (where each new request is consecutive 429 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 430 * i.e. O(1) with a large constant! 431 */ 432 if (n < READ_ONCE(iter->sg_idx)) 433 goto lookup; 434 435 mutex_lock(&iter->lock); 436 437 /* We prefer to reuse the last sg so that repeated lookup of this 438 * (or the subsequent) sg are fast - comparing against the last 439 * sg is faster than going through the radixtree. 440 */ 441 442 sg = iter->sg_pos; 443 idx = iter->sg_idx; 444 count = __sg_page_count(sg); 445 446 while (idx + count <= n) { 447 void *entry; 448 unsigned long i; 449 int ret; 450 451 /* If we cannot allocate and insert this entry, or the 452 * individual pages from this range, cancel updating the 453 * sg_idx so that on this lookup we are forced to linearly 454 * scan onwards, but on future lookups we will try the 455 * insertion again (in which case we need to be careful of 456 * the error return reporting that we have already inserted 457 * this index). 458 */ 459 ret = radix_tree_insert(&iter->radix, idx, sg); 460 if (ret && ret != -EEXIST) 461 goto scan; 462 463 entry = xa_mk_value(idx); 464 for (i = 1; i < count; i++) { 465 ret = radix_tree_insert(&iter->radix, idx + i, entry); 466 if (ret && ret != -EEXIST) 467 goto scan; 468 } 469 470 idx += count; 471 sg = ____sg_next(sg); 472 count = __sg_page_count(sg); 473 } 474 475 scan: 476 iter->sg_pos = sg; 477 iter->sg_idx = idx; 478 479 mutex_unlock(&iter->lock); 480 481 if (unlikely(n < idx)) /* insertion completed by another thread */ 482 goto lookup; 483 484 /* In case we failed to insert the entry into the radixtree, we need 485 * to look beyond the current sg. 486 */ 487 while (idx + count <= n) { 488 idx += count; 489 sg = ____sg_next(sg); 490 count = __sg_page_count(sg); 491 } 492 493 *offset = n - idx; 494 return sg; 495 496 lookup: 497 rcu_read_lock(); 498 499 sg = radix_tree_lookup(&iter->radix, n); 500 GEM_BUG_ON(!sg); 501 502 /* If this index is in the middle of multi-page sg entry, 503 * the radix tree will contain a value entry that points 504 * to the start of that range. We will return the pointer to 505 * the base page and the offset of this page within the 506 * sg entry's range. 507 */ 508 *offset = 0; 509 if (unlikely(xa_is_value(sg))) { 510 unsigned long base = xa_to_value(sg); 511 512 sg = radix_tree_lookup(&iter->radix, base); 513 GEM_BUG_ON(!sg); 514 515 *offset = n - base; 516 } 517 518 rcu_read_unlock(); 519 520 return sg; 521 } 522 523 struct page * 524 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 525 { 526 struct scatterlist *sg; 527 unsigned int offset; 528 529 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 530 531 sg = i915_gem_object_get_sg(obj, n, &offset); 532 return nth_page(sg_page(sg), offset); 533 } 534 535 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 536 struct page * 537 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 538 unsigned int n) 539 { 540 struct page *page; 541 542 page = i915_gem_object_get_page(obj, n); 543 if (!obj->mm.dirty) 544 set_page_dirty(page); 545 546 return page; 547 } 548 549 dma_addr_t 550 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, 551 unsigned long n, 552 unsigned int *len) 553 { 554 struct scatterlist *sg; 555 unsigned int offset; 556 557 sg = i915_gem_object_get_sg(obj, n, &offset); 558 559 if (len) 560 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); 561 562 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 563 } 564 565 dma_addr_t 566 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 567 unsigned long n) 568 { 569 return i915_gem_object_get_dma_address_len(obj, n, NULL); 570 } 571