1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 #include "i915_gem_object.h"
9 #include "i915_scatterlist.h"
10 #include "i915_gem_lmem.h"
11 #include "i915_gem_mman.h"
12 
13 #include "gt/intel_gt.h"
14 
15 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
16 				 struct sg_table *pages,
17 				 unsigned int sg_page_sizes)
18 {
19 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
20 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
21 	bool shrinkable;
22 	int i;
23 
24 	assert_object_held_shared(obj);
25 
26 	if (i915_gem_object_is_volatile(obj))
27 		obj->mm.madv = I915_MADV_DONTNEED;
28 
29 	/* Make the pages coherent with the GPU (flushing any swapin). */
30 	if (obj->cache_dirty) {
31 		WARN_ON_ONCE(IS_DGFX(i915));
32 		obj->write_domain = 0;
33 		if (i915_gem_object_has_struct_page(obj))
34 			drm_clflush_sg(pages);
35 		obj->cache_dirty = false;
36 	}
37 
38 	obj->mm.get_page.sg_pos = pages->sgl;
39 	obj->mm.get_page.sg_idx = 0;
40 	obj->mm.get_dma_page.sg_pos = pages->sgl;
41 	obj->mm.get_dma_page.sg_idx = 0;
42 
43 	obj->mm.pages = pages;
44 
45 	GEM_BUG_ON(!sg_page_sizes);
46 	obj->mm.page_sizes.phys = sg_page_sizes;
47 
48 	/*
49 	 * Calculate the supported page-sizes which fit into the given
50 	 * sg_page_sizes. This will give us the page-sizes which we may be able
51 	 * to use opportunistically when later inserting into the GTT. For
52 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
53 	 * 64K or 4K pages, although in practice this will depend on a number of
54 	 * other factors.
55 	 */
56 	obj->mm.page_sizes.sg = 0;
57 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
58 		if (obj->mm.page_sizes.phys & ~0u << i)
59 			obj->mm.page_sizes.sg |= BIT(i);
60 	}
61 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
62 
63 	shrinkable = i915_gem_object_is_shrinkable(obj);
64 
65 	if (i915_gem_object_is_tiled(obj) &&
66 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
67 		GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
68 		i915_gem_object_set_tiling_quirk(obj);
69 		GEM_BUG_ON(!list_empty(&obj->mm.link));
70 		atomic_inc(&obj->mm.shrink_pin);
71 		shrinkable = false;
72 	}
73 
74 	if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
75 		struct list_head *list;
76 		unsigned long flags;
77 
78 		assert_object_held(obj);
79 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
80 
81 		i915->mm.shrink_count++;
82 		i915->mm.shrink_memory += obj->base.size;
83 
84 		if (obj->mm.madv != I915_MADV_WILLNEED)
85 			list = &i915->mm.purge_list;
86 		else
87 			list = &i915->mm.shrink_list;
88 		list_add_tail(&obj->mm.link, list);
89 
90 		atomic_set(&obj->mm.shrink_pin, 0);
91 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
92 	}
93 }
94 
95 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
96 {
97 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
98 	int err;
99 
100 	assert_object_held_shared(obj);
101 
102 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
103 		drm_dbg(&i915->drm,
104 			"Attempting to obtain a purgeable object\n");
105 		return -EFAULT;
106 	}
107 
108 	err = obj->ops->get_pages(obj);
109 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
110 
111 	return err;
112 }
113 
114 /* Ensure that the associated pages are gathered from the backing storage
115  * and pinned into our object. i915_gem_object_pin_pages() may be called
116  * multiple times before they are released by a single call to
117  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
118  * either as a result of memory pressure (reaping pages under the shrinker)
119  * or as the object is itself released.
120  */
121 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
122 {
123 	int err;
124 
125 	assert_object_held(obj);
126 
127 	assert_object_held_shared(obj);
128 
129 	if (unlikely(!i915_gem_object_has_pages(obj))) {
130 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
131 
132 		err = ____i915_gem_object_get_pages(obj);
133 		if (err)
134 			return err;
135 
136 		smp_mb__before_atomic();
137 	}
138 	atomic_inc(&obj->mm.pages_pin_count);
139 
140 	return 0;
141 }
142 
143 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
144 {
145 	struct i915_gem_ww_ctx ww;
146 	int err;
147 
148 	i915_gem_ww_ctx_init(&ww, true);
149 retry:
150 	err = i915_gem_object_lock(obj, &ww);
151 	if (!err)
152 		err = i915_gem_object_pin_pages(obj);
153 
154 	if (err == -EDEADLK) {
155 		err = i915_gem_ww_ctx_backoff(&ww);
156 		if (!err)
157 			goto retry;
158 	}
159 	i915_gem_ww_ctx_fini(&ww);
160 	return err;
161 }
162 
163 /* Immediately discard the backing storage */
164 int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
165 {
166 	if (obj->ops->truncate)
167 		return obj->ops->truncate(obj);
168 
169 	return 0;
170 }
171 
172 /* Try to discard unwanted pages */
173 void i915_gem_object_writeback(struct drm_i915_gem_object *obj)
174 {
175 	assert_object_held_shared(obj);
176 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
177 
178 	if (obj->ops->writeback)
179 		obj->ops->writeback(obj);
180 }
181 
182 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
183 {
184 	struct radix_tree_iter iter;
185 	void __rcu **slot;
186 
187 	rcu_read_lock();
188 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
189 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
190 	radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
191 		radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
192 	rcu_read_unlock();
193 }
194 
195 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
196 {
197 	if (is_vmalloc_addr(ptr))
198 		vunmap(ptr);
199 }
200 
201 struct sg_table *
202 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
203 {
204 	struct sg_table *pages;
205 
206 	assert_object_held_shared(obj);
207 
208 	pages = fetch_and_zero(&obj->mm.pages);
209 	if (IS_ERR_OR_NULL(pages))
210 		return pages;
211 
212 	if (i915_gem_object_is_volatile(obj))
213 		obj->mm.madv = I915_MADV_WILLNEED;
214 
215 	if (!i915_gem_object_has_self_managed_shrink_list(obj))
216 		i915_gem_object_make_unshrinkable(obj);
217 
218 	if (obj->mm.mapping) {
219 		unmap_object(obj, page_mask_bits(obj->mm.mapping));
220 		obj->mm.mapping = NULL;
221 	}
222 
223 	__i915_gem_object_reset_page_iter(obj);
224 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
225 
226 	if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) {
227 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
228 		intel_wakeref_t wakeref;
229 
230 		with_intel_runtime_pm_if_active(&i915->runtime_pm, wakeref)
231 			intel_gt_invalidate_tlbs(to_gt(i915));
232 	}
233 
234 	return pages;
235 }
236 
237 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
238 {
239 	struct sg_table *pages;
240 
241 	if (i915_gem_object_has_pinned_pages(obj))
242 		return -EBUSY;
243 
244 	/* May be called by shrinker from within get_pages() (on another bo) */
245 	assert_object_held_shared(obj);
246 
247 	i915_gem_object_release_mmap_offset(obj);
248 
249 	/*
250 	 * ->put_pages might need to allocate memory for the bit17 swizzle
251 	 * array, hence protect them from being reaped by removing them from gtt
252 	 * lists early.
253 	 */
254 	pages = __i915_gem_object_unset_pages(obj);
255 
256 	/*
257 	 * XXX Temporary hijinx to avoid updating all backends to handle
258 	 * NULL pages. In the future, when we have more asynchronous
259 	 * get_pages backends we should be better able to handle the
260 	 * cancellation of the async task in a more uniform manner.
261 	 */
262 	if (!IS_ERR_OR_NULL(pages))
263 		obj->ops->put_pages(obj, pages);
264 
265 	return 0;
266 }
267 
268 /* The 'mapping' part of i915_gem_object_pin_map() below */
269 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
270 				      enum i915_map_type type)
271 {
272 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
273 	struct page *stack[32], **pages = stack, *page;
274 	struct sgt_iter iter;
275 	pgprot_t pgprot;
276 	void *vaddr;
277 
278 	switch (type) {
279 	default:
280 		MISSING_CASE(type);
281 		fallthrough;	/* to use PAGE_KERNEL anyway */
282 	case I915_MAP_WB:
283 		/*
284 		 * On 32b, highmem using a finite set of indirect PTE (i.e.
285 		 * vmap) to provide virtual mappings of the high pages.
286 		 * As these are finite, map_new_virtual() must wait for some
287 		 * other kmap() to finish when it runs out. If we map a large
288 		 * number of objects, there is no method for it to tell us
289 		 * to release the mappings, and we deadlock.
290 		 *
291 		 * However, if we make an explicit vmap of the page, that
292 		 * uses a larger vmalloc arena, and also has the ability
293 		 * to tell us to release unwanted mappings. Most importantly,
294 		 * it will fail and propagate an error instead of waiting
295 		 * forever.
296 		 *
297 		 * So if the page is beyond the 32b boundary, make an explicit
298 		 * vmap.
299 		 */
300 		if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
301 			return page_address(sg_page(obj->mm.pages->sgl));
302 		pgprot = PAGE_KERNEL;
303 		break;
304 	case I915_MAP_WC:
305 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
306 		break;
307 	}
308 
309 	if (n_pages > ARRAY_SIZE(stack)) {
310 		/* Too big for stack -- allocate temporary array instead */
311 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
312 		if (!pages)
313 			return ERR_PTR(-ENOMEM);
314 	}
315 
316 	i = 0;
317 	for_each_sgt_page(page, iter, obj->mm.pages)
318 		pages[i++] = page;
319 	vaddr = vmap(pages, n_pages, 0, pgprot);
320 	if (pages != stack)
321 		kvfree(pages);
322 
323 	return vaddr ?: ERR_PTR(-ENOMEM);
324 }
325 
326 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
327 				     enum i915_map_type type)
328 {
329 	resource_size_t iomap = obj->mm.region->iomap.base -
330 		obj->mm.region->region.start;
331 	unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
332 	unsigned long stack[32], *pfns = stack, i;
333 	struct sgt_iter iter;
334 	dma_addr_t addr;
335 	void *vaddr;
336 
337 	GEM_BUG_ON(type != I915_MAP_WC);
338 
339 	if (n_pfn > ARRAY_SIZE(stack)) {
340 		/* Too big for stack -- allocate temporary array instead */
341 		pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
342 		if (!pfns)
343 			return ERR_PTR(-ENOMEM);
344 	}
345 
346 	i = 0;
347 	for_each_sgt_daddr(addr, iter, obj->mm.pages)
348 		pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
349 	vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
350 	if (pfns != stack)
351 		kvfree(pfns);
352 
353 	return vaddr ?: ERR_PTR(-ENOMEM);
354 }
355 
356 /* get, pin, and map the pages of the object into kernel space */
357 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
358 			      enum i915_map_type type)
359 {
360 	enum i915_map_type has_type;
361 	bool pinned;
362 	void *ptr;
363 	int err;
364 
365 	if (!i915_gem_object_has_struct_page(obj) &&
366 	    !i915_gem_object_has_iomem(obj))
367 		return ERR_PTR(-ENXIO);
368 
369 	assert_object_held(obj);
370 
371 	pinned = !(type & I915_MAP_OVERRIDE);
372 	type &= ~I915_MAP_OVERRIDE;
373 
374 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
375 		if (unlikely(!i915_gem_object_has_pages(obj))) {
376 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
377 
378 			err = ____i915_gem_object_get_pages(obj);
379 			if (err)
380 				return ERR_PTR(err);
381 
382 			smp_mb__before_atomic();
383 		}
384 		atomic_inc(&obj->mm.pages_pin_count);
385 		pinned = false;
386 	}
387 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
388 
389 	/*
390 	 * For discrete our CPU mappings needs to be consistent in order to
391 	 * function correctly on !x86. When mapping things through TTM, we use
392 	 * the same rules to determine the caching type.
393 	 *
394 	 * The caching rules, starting from DG1:
395 	 *
396 	 *	- If the object can be placed in device local-memory, then the
397 	 *	  pages should be allocated and mapped as write-combined only.
398 	 *
399 	 *	- Everything else is always allocated and mapped as write-back,
400 	 *	  with the guarantee that everything is also coherent with the
401 	 *	  GPU.
402 	 *
403 	 * Internal users of lmem are already expected to get this right, so no
404 	 * fudging needed there.
405 	 */
406 	if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
407 		if (type != I915_MAP_WC && !obj->mm.n_placements) {
408 			ptr = ERR_PTR(-ENODEV);
409 			goto err_unpin;
410 		}
411 
412 		type = I915_MAP_WC;
413 	} else if (IS_DGFX(to_i915(obj->base.dev))) {
414 		type = I915_MAP_WB;
415 	}
416 
417 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
418 	if (ptr && has_type != type) {
419 		if (pinned) {
420 			ptr = ERR_PTR(-EBUSY);
421 			goto err_unpin;
422 		}
423 
424 		unmap_object(obj, ptr);
425 
426 		ptr = obj->mm.mapping = NULL;
427 	}
428 
429 	if (!ptr) {
430 		err = i915_gem_object_wait_moving_fence(obj, true);
431 		if (err) {
432 			ptr = ERR_PTR(err);
433 			goto err_unpin;
434 		}
435 
436 		if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
437 			ptr = ERR_PTR(-ENODEV);
438 		else if (i915_gem_object_has_struct_page(obj))
439 			ptr = i915_gem_object_map_page(obj, type);
440 		else
441 			ptr = i915_gem_object_map_pfn(obj, type);
442 		if (IS_ERR(ptr))
443 			goto err_unpin;
444 
445 		obj->mm.mapping = page_pack_bits(ptr, type);
446 	}
447 
448 	return ptr;
449 
450 err_unpin:
451 	atomic_dec(&obj->mm.pages_pin_count);
452 	return ptr;
453 }
454 
455 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
456 				       enum i915_map_type type)
457 {
458 	void *ret;
459 
460 	i915_gem_object_lock(obj, NULL);
461 	ret = i915_gem_object_pin_map(obj, type);
462 	i915_gem_object_unlock(obj);
463 
464 	return ret;
465 }
466 
467 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
468 				 unsigned long offset,
469 				 unsigned long size)
470 {
471 	enum i915_map_type has_type;
472 	void *ptr;
473 
474 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
475 	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
476 				     offset, size, obj->base.size));
477 
478 	wmb(); /* let all previous writes be visible to coherent partners */
479 	obj->mm.dirty = true;
480 
481 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
482 		return;
483 
484 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
485 	if (has_type == I915_MAP_WC)
486 		return;
487 
488 	drm_clflush_virt_range(ptr + offset, size);
489 	if (size == obj->base.size) {
490 		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
491 		obj->cache_dirty = false;
492 	}
493 }
494 
495 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
496 {
497 	GEM_BUG_ON(!obj->mm.mapping);
498 
499 	/*
500 	 * We allow removing the mapping from underneath pinned pages!
501 	 *
502 	 * Furthermore, since this is an unsafe operation reserved only
503 	 * for construction time manipulation, we ignore locking prudence.
504 	 */
505 	unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
506 
507 	i915_gem_object_unpin_map(obj);
508 }
509 
510 struct scatterlist *
511 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
512 			 struct i915_gem_object_page_iter *iter,
513 			 unsigned int n,
514 			 unsigned int *offset,
515 			 bool dma)
516 {
517 	struct scatterlist *sg;
518 	unsigned int idx, count;
519 
520 	might_sleep();
521 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
522 	if (!i915_gem_object_has_pinned_pages(obj))
523 		assert_object_held(obj);
524 
525 	/* As we iterate forward through the sg, we record each entry in a
526 	 * radixtree for quick repeated (backwards) lookups. If we have seen
527 	 * this index previously, we will have an entry for it.
528 	 *
529 	 * Initial lookup is O(N), but this is amortized to O(1) for
530 	 * sequential page access (where each new request is consecutive
531 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
532 	 * i.e. O(1) with a large constant!
533 	 */
534 	if (n < READ_ONCE(iter->sg_idx))
535 		goto lookup;
536 
537 	mutex_lock(&iter->lock);
538 
539 	/* We prefer to reuse the last sg so that repeated lookup of this
540 	 * (or the subsequent) sg are fast - comparing against the last
541 	 * sg is faster than going through the radixtree.
542 	 */
543 
544 	sg = iter->sg_pos;
545 	idx = iter->sg_idx;
546 	count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
547 
548 	while (idx + count <= n) {
549 		void *entry;
550 		unsigned long i;
551 		int ret;
552 
553 		/* If we cannot allocate and insert this entry, or the
554 		 * individual pages from this range, cancel updating the
555 		 * sg_idx so that on this lookup we are forced to linearly
556 		 * scan onwards, but on future lookups we will try the
557 		 * insertion again (in which case we need to be careful of
558 		 * the error return reporting that we have already inserted
559 		 * this index).
560 		 */
561 		ret = radix_tree_insert(&iter->radix, idx, sg);
562 		if (ret && ret != -EEXIST)
563 			goto scan;
564 
565 		entry = xa_mk_value(idx);
566 		for (i = 1; i < count; i++) {
567 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
568 			if (ret && ret != -EEXIST)
569 				goto scan;
570 		}
571 
572 		idx += count;
573 		sg = ____sg_next(sg);
574 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
575 	}
576 
577 scan:
578 	iter->sg_pos = sg;
579 	iter->sg_idx = idx;
580 
581 	mutex_unlock(&iter->lock);
582 
583 	if (unlikely(n < idx)) /* insertion completed by another thread */
584 		goto lookup;
585 
586 	/* In case we failed to insert the entry into the radixtree, we need
587 	 * to look beyond the current sg.
588 	 */
589 	while (idx + count <= n) {
590 		idx += count;
591 		sg = ____sg_next(sg);
592 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
593 	}
594 
595 	*offset = n - idx;
596 	return sg;
597 
598 lookup:
599 	rcu_read_lock();
600 
601 	sg = radix_tree_lookup(&iter->radix, n);
602 	GEM_BUG_ON(!sg);
603 
604 	/* If this index is in the middle of multi-page sg entry,
605 	 * the radix tree will contain a value entry that points
606 	 * to the start of that range. We will return the pointer to
607 	 * the base page and the offset of this page within the
608 	 * sg entry's range.
609 	 */
610 	*offset = 0;
611 	if (unlikely(xa_is_value(sg))) {
612 		unsigned long base = xa_to_value(sg);
613 
614 		sg = radix_tree_lookup(&iter->radix, base);
615 		GEM_BUG_ON(!sg);
616 
617 		*offset = n - base;
618 	}
619 
620 	rcu_read_unlock();
621 
622 	return sg;
623 }
624 
625 struct page *
626 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
627 {
628 	struct scatterlist *sg;
629 	unsigned int offset;
630 
631 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
632 
633 	sg = i915_gem_object_get_sg(obj, n, &offset);
634 	return nth_page(sg_page(sg), offset);
635 }
636 
637 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
638 struct page *
639 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
640 			       unsigned int n)
641 {
642 	struct page *page;
643 
644 	page = i915_gem_object_get_page(obj, n);
645 	if (!obj->mm.dirty)
646 		set_page_dirty(page);
647 
648 	return page;
649 }
650 
651 dma_addr_t
652 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
653 				    unsigned long n,
654 				    unsigned int *len)
655 {
656 	struct scatterlist *sg;
657 	unsigned int offset;
658 
659 	sg = i915_gem_object_get_sg_dma(obj, n, &offset);
660 
661 	if (len)
662 		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
663 
664 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
665 }
666 
667 dma_addr_t
668 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
669 				unsigned long n)
670 {
671 	return i915_gem_object_get_dma_address_len(obj, n, NULL);
672 }
673