1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 #include "i915_gem_object.h"
9 #include "i915_scatterlist.h"
10 
11 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
12 				 struct sg_table *pages,
13 				 unsigned int sg_page_sizes)
14 {
15 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
16 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
17 	int i;
18 
19 	lockdep_assert_held(&obj->mm.lock);
20 
21 	/* Make the pages coherent with the GPU (flushing any swapin). */
22 	if (obj->cache_dirty) {
23 		obj->write_domain = 0;
24 		if (i915_gem_object_has_struct_page(obj))
25 			drm_clflush_sg(pages);
26 		obj->cache_dirty = false;
27 	}
28 
29 	obj->mm.get_page.sg_pos = pages->sgl;
30 	obj->mm.get_page.sg_idx = 0;
31 
32 	obj->mm.pages = pages;
33 
34 	if (i915_gem_object_is_tiled(obj) &&
35 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
36 		GEM_BUG_ON(obj->mm.quirked);
37 		__i915_gem_object_pin_pages(obj);
38 		obj->mm.quirked = true;
39 	}
40 
41 	GEM_BUG_ON(!sg_page_sizes);
42 	obj->mm.page_sizes.phys = sg_page_sizes;
43 
44 	/*
45 	 * Calculate the supported page-sizes which fit into the given
46 	 * sg_page_sizes. This will give us the page-sizes which we may be able
47 	 * to use opportunistically when later inserting into the GTT. For
48 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
49 	 * 64K or 4K pages, although in practice this will depend on a number of
50 	 * other factors.
51 	 */
52 	obj->mm.page_sizes.sg = 0;
53 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
54 		if (obj->mm.page_sizes.phys & ~0u << i)
55 			obj->mm.page_sizes.sg |= BIT(i);
56 	}
57 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
58 
59 	if (i915_gem_object_is_shrinkable(obj)) {
60 		struct list_head *list;
61 		unsigned long flags;
62 
63 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
64 
65 		i915->mm.shrink_count++;
66 		i915->mm.shrink_memory += obj->base.size;
67 
68 		if (obj->mm.madv != I915_MADV_WILLNEED)
69 			list = &i915->mm.purge_list;
70 		else
71 			list = &i915->mm.shrink_list;
72 		list_add_tail(&obj->mm.link, list);
73 
74 		atomic_set(&obj->mm.shrink_pin, 0);
75 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
76 	}
77 }
78 
79 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
80 {
81 	int err;
82 
83 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
84 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
85 		return -EFAULT;
86 	}
87 
88 	err = obj->ops->get_pages(obj);
89 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
90 
91 	return err;
92 }
93 
94 /* Ensure that the associated pages are gathered from the backing storage
95  * and pinned into our object. i915_gem_object_pin_pages() may be called
96  * multiple times before they are released by a single call to
97  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
98  * either as a result of memory pressure (reaping pages under the shrinker)
99  * or as the object is itself released.
100  */
101 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
102 {
103 	int err;
104 
105 	err = mutex_lock_interruptible(&obj->mm.lock);
106 	if (err)
107 		return err;
108 
109 	if (unlikely(!i915_gem_object_has_pages(obj))) {
110 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
111 
112 		err = ____i915_gem_object_get_pages(obj);
113 		if (err)
114 			goto unlock;
115 
116 		smp_mb__before_atomic();
117 	}
118 	atomic_inc(&obj->mm.pages_pin_count);
119 
120 unlock:
121 	mutex_unlock(&obj->mm.lock);
122 	return err;
123 }
124 
125 /* Immediately discard the backing storage */
126 void i915_gem_object_truncate(struct drm_i915_gem_object *obj)
127 {
128 	drm_gem_free_mmap_offset(&obj->base);
129 	if (obj->ops->truncate)
130 		obj->ops->truncate(obj);
131 }
132 
133 /* Try to discard unwanted pages */
134 void i915_gem_object_writeback(struct drm_i915_gem_object *obj)
135 {
136 	lockdep_assert_held(&obj->mm.lock);
137 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
138 
139 	if (obj->ops->writeback)
140 		obj->ops->writeback(obj);
141 }
142 
143 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
144 {
145 	struct radix_tree_iter iter;
146 	void __rcu **slot;
147 
148 	rcu_read_lock();
149 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
150 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
151 	rcu_read_unlock();
152 }
153 
154 struct sg_table *
155 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
156 {
157 	struct sg_table *pages;
158 
159 	pages = fetch_and_zero(&obj->mm.pages);
160 	if (IS_ERR_OR_NULL(pages))
161 		return pages;
162 
163 	i915_gem_object_make_unshrinkable(obj);
164 
165 	if (obj->mm.mapping) {
166 		void *ptr;
167 
168 		ptr = page_mask_bits(obj->mm.mapping);
169 		if (is_vmalloc_addr(ptr))
170 			vunmap(ptr);
171 		else
172 			kunmap(kmap_to_page(ptr));
173 
174 		obj->mm.mapping = NULL;
175 	}
176 
177 	__i915_gem_object_reset_page_iter(obj);
178 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
179 
180 	return pages;
181 }
182 
183 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
184 				enum i915_mm_subclass subclass)
185 {
186 	struct sg_table *pages;
187 	int err;
188 
189 	if (i915_gem_object_has_pinned_pages(obj))
190 		return -EBUSY;
191 
192 	GEM_BUG_ON(atomic_read(&obj->bind_count));
193 
194 	/* May be called by shrinker from within get_pages() (on another bo) */
195 	mutex_lock_nested(&obj->mm.lock, subclass);
196 	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
197 		err = -EBUSY;
198 		goto unlock;
199 	}
200 
201 	/*
202 	 * ->put_pages might need to allocate memory for the bit17 swizzle
203 	 * array, hence protect them from being reaped by removing them from gtt
204 	 * lists early.
205 	 */
206 	pages = __i915_gem_object_unset_pages(obj);
207 
208 	/*
209 	 * XXX Temporary hijinx to avoid updating all backends to handle
210 	 * NULL pages. In the future, when we have more asynchronous
211 	 * get_pages backends we should be better able to handle the
212 	 * cancellation of the async task in a more uniform manner.
213 	 */
214 	if (!pages && !i915_gem_object_needs_async_cancel(obj))
215 		pages = ERR_PTR(-EINVAL);
216 
217 	if (!IS_ERR(pages))
218 		obj->ops->put_pages(obj, pages);
219 
220 	err = 0;
221 unlock:
222 	mutex_unlock(&obj->mm.lock);
223 
224 	return err;
225 }
226 
227 /* The 'mapping' part of i915_gem_object_pin_map() below */
228 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
229 				 enum i915_map_type type)
230 {
231 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
232 	struct sg_table *sgt = obj->mm.pages;
233 	struct sgt_iter sgt_iter;
234 	struct page *page;
235 	struct page *stack_pages[32];
236 	struct page **pages = stack_pages;
237 	unsigned long i = 0;
238 	pgprot_t pgprot;
239 	void *addr;
240 
241 	/* A single page can always be kmapped */
242 	if (n_pages == 1 && type == I915_MAP_WB)
243 		return kmap(sg_page(sgt->sgl));
244 
245 	if (n_pages > ARRAY_SIZE(stack_pages)) {
246 		/* Too big for stack -- allocate temporary array instead */
247 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
248 		if (!pages)
249 			return NULL;
250 	}
251 
252 	for_each_sgt_page(page, sgt_iter, sgt)
253 		pages[i++] = page;
254 
255 	/* Check that we have the expected number of pages */
256 	GEM_BUG_ON(i != n_pages);
257 
258 	switch (type) {
259 	default:
260 		MISSING_CASE(type);
261 		/* fallthrough - to use PAGE_KERNEL anyway */
262 	case I915_MAP_WB:
263 		pgprot = PAGE_KERNEL;
264 		break;
265 	case I915_MAP_WC:
266 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
267 		break;
268 	}
269 	addr = vmap(pages, n_pages, 0, pgprot);
270 
271 	if (pages != stack_pages)
272 		kvfree(pages);
273 
274 	return addr;
275 }
276 
277 /* get, pin, and map the pages of the object into kernel space */
278 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
279 			      enum i915_map_type type)
280 {
281 	enum i915_map_type has_type;
282 	bool pinned;
283 	void *ptr;
284 	int err;
285 
286 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
287 		return ERR_PTR(-ENXIO);
288 
289 	err = mutex_lock_interruptible(&obj->mm.lock);
290 	if (err)
291 		return ERR_PTR(err);
292 
293 	pinned = !(type & I915_MAP_OVERRIDE);
294 	type &= ~I915_MAP_OVERRIDE;
295 
296 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
297 		if (unlikely(!i915_gem_object_has_pages(obj))) {
298 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
299 
300 			err = ____i915_gem_object_get_pages(obj);
301 			if (err)
302 				goto err_unlock;
303 
304 			smp_mb__before_atomic();
305 		}
306 		atomic_inc(&obj->mm.pages_pin_count);
307 		pinned = false;
308 	}
309 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
310 
311 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
312 	if (ptr && has_type != type) {
313 		if (pinned) {
314 			err = -EBUSY;
315 			goto err_unpin;
316 		}
317 
318 		if (is_vmalloc_addr(ptr))
319 			vunmap(ptr);
320 		else
321 			kunmap(kmap_to_page(ptr));
322 
323 		ptr = obj->mm.mapping = NULL;
324 	}
325 
326 	if (!ptr) {
327 		ptr = i915_gem_object_map(obj, type);
328 		if (!ptr) {
329 			err = -ENOMEM;
330 			goto err_unpin;
331 		}
332 
333 		obj->mm.mapping = page_pack_bits(ptr, type);
334 	}
335 
336 out_unlock:
337 	mutex_unlock(&obj->mm.lock);
338 	return ptr;
339 
340 err_unpin:
341 	atomic_dec(&obj->mm.pages_pin_count);
342 err_unlock:
343 	ptr = ERR_PTR(err);
344 	goto out_unlock;
345 }
346 
347 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
348 				 unsigned long offset,
349 				 unsigned long size)
350 {
351 	enum i915_map_type has_type;
352 	void *ptr;
353 
354 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
355 	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
356 				     offset, size, obj->base.size));
357 
358 	obj->mm.dirty = true;
359 
360 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
361 		return;
362 
363 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
364 	if (has_type == I915_MAP_WC)
365 		return;
366 
367 	drm_clflush_virt_range(ptr + offset, size);
368 	if (size == obj->base.size) {
369 		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
370 		obj->cache_dirty = false;
371 	}
372 }
373 
374 struct scatterlist *
375 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
376 		       unsigned int n,
377 		       unsigned int *offset)
378 {
379 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
380 	struct scatterlist *sg;
381 	unsigned int idx, count;
382 
383 	might_sleep();
384 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
385 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
386 
387 	/* As we iterate forward through the sg, we record each entry in a
388 	 * radixtree for quick repeated (backwards) lookups. If we have seen
389 	 * this index previously, we will have an entry for it.
390 	 *
391 	 * Initial lookup is O(N), but this is amortized to O(1) for
392 	 * sequential page access (where each new request is consecutive
393 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
394 	 * i.e. O(1) with a large constant!
395 	 */
396 	if (n < READ_ONCE(iter->sg_idx))
397 		goto lookup;
398 
399 	mutex_lock(&iter->lock);
400 
401 	/* We prefer to reuse the last sg so that repeated lookup of this
402 	 * (or the subsequent) sg are fast - comparing against the last
403 	 * sg is faster than going through the radixtree.
404 	 */
405 
406 	sg = iter->sg_pos;
407 	idx = iter->sg_idx;
408 	count = __sg_page_count(sg);
409 
410 	while (idx + count <= n) {
411 		void *entry;
412 		unsigned long i;
413 		int ret;
414 
415 		/* If we cannot allocate and insert this entry, or the
416 		 * individual pages from this range, cancel updating the
417 		 * sg_idx so that on this lookup we are forced to linearly
418 		 * scan onwards, but on future lookups we will try the
419 		 * insertion again (in which case we need to be careful of
420 		 * the error return reporting that we have already inserted
421 		 * this index).
422 		 */
423 		ret = radix_tree_insert(&iter->radix, idx, sg);
424 		if (ret && ret != -EEXIST)
425 			goto scan;
426 
427 		entry = xa_mk_value(idx);
428 		for (i = 1; i < count; i++) {
429 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
430 			if (ret && ret != -EEXIST)
431 				goto scan;
432 		}
433 
434 		idx += count;
435 		sg = ____sg_next(sg);
436 		count = __sg_page_count(sg);
437 	}
438 
439 scan:
440 	iter->sg_pos = sg;
441 	iter->sg_idx = idx;
442 
443 	mutex_unlock(&iter->lock);
444 
445 	if (unlikely(n < idx)) /* insertion completed by another thread */
446 		goto lookup;
447 
448 	/* In case we failed to insert the entry into the radixtree, we need
449 	 * to look beyond the current sg.
450 	 */
451 	while (idx + count <= n) {
452 		idx += count;
453 		sg = ____sg_next(sg);
454 		count = __sg_page_count(sg);
455 	}
456 
457 	*offset = n - idx;
458 	return sg;
459 
460 lookup:
461 	rcu_read_lock();
462 
463 	sg = radix_tree_lookup(&iter->radix, n);
464 	GEM_BUG_ON(!sg);
465 
466 	/* If this index is in the middle of multi-page sg entry,
467 	 * the radix tree will contain a value entry that points
468 	 * to the start of that range. We will return the pointer to
469 	 * the base page and the offset of this page within the
470 	 * sg entry's range.
471 	 */
472 	*offset = 0;
473 	if (unlikely(xa_is_value(sg))) {
474 		unsigned long base = xa_to_value(sg);
475 
476 		sg = radix_tree_lookup(&iter->radix, base);
477 		GEM_BUG_ON(!sg);
478 
479 		*offset = n - base;
480 	}
481 
482 	rcu_read_unlock();
483 
484 	return sg;
485 }
486 
487 struct page *
488 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
489 {
490 	struct scatterlist *sg;
491 	unsigned int offset;
492 
493 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
494 
495 	sg = i915_gem_object_get_sg(obj, n, &offset);
496 	return nth_page(sg_page(sg), offset);
497 }
498 
499 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
500 struct page *
501 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
502 			       unsigned int n)
503 {
504 	struct page *page;
505 
506 	page = i915_gem_object_get_page(obj, n);
507 	if (!obj->mm.dirty)
508 		set_page_dirty(page);
509 
510 	return page;
511 }
512 
513 dma_addr_t
514 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
515 				    unsigned long n,
516 				    unsigned int *len)
517 {
518 	struct scatterlist *sg;
519 	unsigned int offset;
520 
521 	sg = i915_gem_object_get_sg(obj, n, &offset);
522 
523 	if (len)
524 		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
525 
526 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
527 }
528 
529 dma_addr_t
530 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
531 				unsigned long n)
532 {
533 	return i915_gem_object_get_dma_address_len(obj, n, NULL);
534 }
535