1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include "i915_drv.h" 8 #include "i915_gem_object.h" 9 #include "i915_scatterlist.h" 10 #include "i915_gem_lmem.h" 11 #include "i915_gem_mman.h" 12 13 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 14 struct sg_table *pages, 15 unsigned int sg_page_sizes) 16 { 17 struct drm_i915_private *i915 = to_i915(obj->base.dev); 18 unsigned long supported = INTEL_INFO(i915)->page_sizes; 19 int i; 20 21 lockdep_assert_held(&obj->mm.lock); 22 23 if (i915_gem_object_is_volatile(obj)) 24 obj->mm.madv = I915_MADV_DONTNEED; 25 26 /* Make the pages coherent with the GPU (flushing any swapin). */ 27 if (obj->cache_dirty) { 28 obj->write_domain = 0; 29 if (i915_gem_object_has_struct_page(obj)) 30 drm_clflush_sg(pages); 31 obj->cache_dirty = false; 32 } 33 34 obj->mm.get_page.sg_pos = pages->sgl; 35 obj->mm.get_page.sg_idx = 0; 36 37 obj->mm.pages = pages; 38 39 if (i915_gem_object_is_tiled(obj) && 40 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 41 GEM_BUG_ON(obj->mm.quirked); 42 __i915_gem_object_pin_pages(obj); 43 obj->mm.quirked = true; 44 } 45 46 GEM_BUG_ON(!sg_page_sizes); 47 obj->mm.page_sizes.phys = sg_page_sizes; 48 49 /* 50 * Calculate the supported page-sizes which fit into the given 51 * sg_page_sizes. This will give us the page-sizes which we may be able 52 * to use opportunistically when later inserting into the GTT. For 53 * example if phys=2G, then in theory we should be able to use 1G, 2M, 54 * 64K or 4K pages, although in practice this will depend on a number of 55 * other factors. 56 */ 57 obj->mm.page_sizes.sg = 0; 58 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 59 if (obj->mm.page_sizes.phys & ~0u << i) 60 obj->mm.page_sizes.sg |= BIT(i); 61 } 62 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 63 64 if (i915_gem_object_is_shrinkable(obj)) { 65 struct list_head *list; 66 unsigned long flags; 67 68 spin_lock_irqsave(&i915->mm.obj_lock, flags); 69 70 i915->mm.shrink_count++; 71 i915->mm.shrink_memory += obj->base.size; 72 73 if (obj->mm.madv != I915_MADV_WILLNEED) 74 list = &i915->mm.purge_list; 75 else 76 list = &i915->mm.shrink_list; 77 list_add_tail(&obj->mm.link, list); 78 79 atomic_set(&obj->mm.shrink_pin, 0); 80 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 81 } 82 } 83 84 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 85 { 86 struct drm_i915_private *i915 = to_i915(obj->base.dev); 87 int err; 88 89 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 90 drm_dbg(&i915->drm, 91 "Attempting to obtain a purgeable object\n"); 92 return -EFAULT; 93 } 94 95 err = obj->ops->get_pages(obj); 96 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 97 98 return err; 99 } 100 101 /* Ensure that the associated pages are gathered from the backing storage 102 * and pinned into our object. i915_gem_object_pin_pages() may be called 103 * multiple times before they are released by a single call to 104 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 105 * either as a result of memory pressure (reaping pages under the shrinker) 106 * or as the object is itself released. 107 */ 108 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 109 { 110 int err; 111 112 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 113 if (err) 114 return err; 115 116 if (unlikely(!i915_gem_object_has_pages(obj))) { 117 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 118 119 err = ____i915_gem_object_get_pages(obj); 120 if (err) 121 goto unlock; 122 123 smp_mb__before_atomic(); 124 } 125 atomic_inc(&obj->mm.pages_pin_count); 126 127 unlock: 128 mutex_unlock(&obj->mm.lock); 129 return err; 130 } 131 132 /* Immediately discard the backing storage */ 133 void i915_gem_object_truncate(struct drm_i915_gem_object *obj) 134 { 135 drm_gem_free_mmap_offset(&obj->base); 136 if (obj->ops->truncate) 137 obj->ops->truncate(obj); 138 } 139 140 /* Try to discard unwanted pages */ 141 void i915_gem_object_writeback(struct drm_i915_gem_object *obj) 142 { 143 lockdep_assert_held(&obj->mm.lock); 144 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 145 146 if (obj->ops->writeback) 147 obj->ops->writeback(obj); 148 } 149 150 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 151 { 152 struct radix_tree_iter iter; 153 void __rcu **slot; 154 155 rcu_read_lock(); 156 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 157 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 158 rcu_read_unlock(); 159 } 160 161 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) 162 { 163 if (is_vmalloc_addr(ptr)) 164 vunmap(ptr); 165 else 166 kunmap(kmap_to_page(ptr)); 167 } 168 169 struct sg_table * 170 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) 171 { 172 struct sg_table *pages; 173 174 pages = fetch_and_zero(&obj->mm.pages); 175 if (IS_ERR_OR_NULL(pages)) 176 return pages; 177 178 if (i915_gem_object_is_volatile(obj)) 179 obj->mm.madv = I915_MADV_WILLNEED; 180 181 i915_gem_object_make_unshrinkable(obj); 182 183 if (obj->mm.mapping) { 184 unmap_object(obj, page_mask_bits(obj->mm.mapping)); 185 obj->mm.mapping = NULL; 186 } 187 188 __i915_gem_object_reset_page_iter(obj); 189 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 190 191 return pages; 192 } 193 194 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 195 { 196 struct sg_table *pages; 197 int err; 198 199 if (i915_gem_object_has_pinned_pages(obj)) 200 return -EBUSY; 201 202 /* May be called by shrinker from within get_pages() (on another bo) */ 203 mutex_lock(&obj->mm.lock); 204 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) { 205 err = -EBUSY; 206 goto unlock; 207 } 208 209 i915_gem_object_release_mmap_offset(obj); 210 211 /* 212 * ->put_pages might need to allocate memory for the bit17 swizzle 213 * array, hence protect them from being reaped by removing them from gtt 214 * lists early. 215 */ 216 pages = __i915_gem_object_unset_pages(obj); 217 218 /* 219 * XXX Temporary hijinx to avoid updating all backends to handle 220 * NULL pages. In the future, when we have more asynchronous 221 * get_pages backends we should be better able to handle the 222 * cancellation of the async task in a more uniform manner. 223 */ 224 if (!pages && !i915_gem_object_needs_async_cancel(obj)) 225 pages = ERR_PTR(-EINVAL); 226 227 if (!IS_ERR(pages)) 228 obj->ops->put_pages(obj, pages); 229 230 err = 0; 231 unlock: 232 mutex_unlock(&obj->mm.lock); 233 234 return err; 235 } 236 237 static inline pte_t iomap_pte(resource_size_t base, 238 dma_addr_t offset, 239 pgprot_t prot) 240 { 241 return pte_mkspecial(pfn_pte((base + offset) >> PAGE_SHIFT, prot)); 242 } 243 244 /* The 'mapping' part of i915_gem_object_pin_map() below */ 245 static void *i915_gem_object_map(struct drm_i915_gem_object *obj, 246 enum i915_map_type type) 247 { 248 unsigned long n_pte = obj->base.size >> PAGE_SHIFT; 249 struct sg_table *sgt = obj->mm.pages; 250 pte_t *stack[32], **mem; 251 struct vm_struct *area; 252 pgprot_t pgprot; 253 254 if (!i915_gem_object_has_struct_page(obj) && type != I915_MAP_WC) 255 return NULL; 256 257 /* A single page can always be kmapped */ 258 if (n_pte == 1 && type == I915_MAP_WB) 259 return kmap(sg_page(sgt->sgl)); 260 261 mem = stack; 262 if (n_pte > ARRAY_SIZE(stack)) { 263 /* Too big for stack -- allocate temporary array instead */ 264 mem = kvmalloc_array(n_pte, sizeof(*mem), GFP_KERNEL); 265 if (!mem) 266 return NULL; 267 } 268 269 area = alloc_vm_area(obj->base.size, mem); 270 if (!area) { 271 if (mem != stack) 272 kvfree(mem); 273 return NULL; 274 } 275 276 switch (type) { 277 default: 278 MISSING_CASE(type); 279 /* fallthrough - to use PAGE_KERNEL anyway */ 280 case I915_MAP_WB: 281 pgprot = PAGE_KERNEL; 282 break; 283 case I915_MAP_WC: 284 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 285 break; 286 } 287 288 if (i915_gem_object_has_struct_page(obj)) { 289 struct sgt_iter iter; 290 struct page *page; 291 pte_t **ptes = mem; 292 293 for_each_sgt_page(page, iter, sgt) 294 **ptes++ = mk_pte(page, pgprot); 295 } else { 296 resource_size_t iomap; 297 struct sgt_iter iter; 298 pte_t **ptes = mem; 299 dma_addr_t addr; 300 301 iomap = obj->mm.region->iomap.base; 302 iomap -= obj->mm.region->region.start; 303 304 for_each_sgt_daddr(addr, iter, sgt) 305 **ptes++ = iomap_pte(iomap, addr, pgprot); 306 } 307 308 if (mem != stack) 309 kvfree(mem); 310 311 return area->addr; 312 } 313 314 /* get, pin, and map the pages of the object into kernel space */ 315 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 316 enum i915_map_type type) 317 { 318 enum i915_map_type has_type; 319 unsigned int flags; 320 bool pinned; 321 void *ptr; 322 int err; 323 324 flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_HAS_IOMEM; 325 if (!i915_gem_object_type_has(obj, flags)) 326 return ERR_PTR(-ENXIO); 327 328 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 329 if (err) 330 return ERR_PTR(err); 331 332 pinned = !(type & I915_MAP_OVERRIDE); 333 type &= ~I915_MAP_OVERRIDE; 334 335 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 336 if (unlikely(!i915_gem_object_has_pages(obj))) { 337 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 338 339 err = ____i915_gem_object_get_pages(obj); 340 if (err) 341 goto err_unlock; 342 343 smp_mb__before_atomic(); 344 } 345 atomic_inc(&obj->mm.pages_pin_count); 346 pinned = false; 347 } 348 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 349 350 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 351 if (ptr && has_type != type) { 352 if (pinned) { 353 err = -EBUSY; 354 goto err_unpin; 355 } 356 357 unmap_object(obj, ptr); 358 359 ptr = obj->mm.mapping = NULL; 360 } 361 362 if (!ptr) { 363 ptr = i915_gem_object_map(obj, type); 364 if (!ptr) { 365 err = -ENOMEM; 366 goto err_unpin; 367 } 368 369 obj->mm.mapping = page_pack_bits(ptr, type); 370 } 371 372 out_unlock: 373 mutex_unlock(&obj->mm.lock); 374 return ptr; 375 376 err_unpin: 377 atomic_dec(&obj->mm.pages_pin_count); 378 err_unlock: 379 ptr = ERR_PTR(err); 380 goto out_unlock; 381 } 382 383 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 384 unsigned long offset, 385 unsigned long size) 386 { 387 enum i915_map_type has_type; 388 void *ptr; 389 390 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 391 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), 392 offset, size, obj->base.size)); 393 394 wmb(); /* let all previous writes be visible to coherent partners */ 395 obj->mm.dirty = true; 396 397 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) 398 return; 399 400 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 401 if (has_type == I915_MAP_WC) 402 return; 403 404 drm_clflush_virt_range(ptr + offset, size); 405 if (size == obj->base.size) { 406 obj->write_domain &= ~I915_GEM_DOMAIN_CPU; 407 obj->cache_dirty = false; 408 } 409 } 410 411 struct scatterlist * 412 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 413 unsigned int n, 414 unsigned int *offset) 415 { 416 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 417 struct scatterlist *sg; 418 unsigned int idx, count; 419 420 might_sleep(); 421 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 422 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 423 424 /* As we iterate forward through the sg, we record each entry in a 425 * radixtree for quick repeated (backwards) lookups. If we have seen 426 * this index previously, we will have an entry for it. 427 * 428 * Initial lookup is O(N), but this is amortized to O(1) for 429 * sequential page access (where each new request is consecutive 430 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 431 * i.e. O(1) with a large constant! 432 */ 433 if (n < READ_ONCE(iter->sg_idx)) 434 goto lookup; 435 436 mutex_lock(&iter->lock); 437 438 /* We prefer to reuse the last sg so that repeated lookup of this 439 * (or the subsequent) sg are fast - comparing against the last 440 * sg is faster than going through the radixtree. 441 */ 442 443 sg = iter->sg_pos; 444 idx = iter->sg_idx; 445 count = __sg_page_count(sg); 446 447 while (idx + count <= n) { 448 void *entry; 449 unsigned long i; 450 int ret; 451 452 /* If we cannot allocate and insert this entry, or the 453 * individual pages from this range, cancel updating the 454 * sg_idx so that on this lookup we are forced to linearly 455 * scan onwards, but on future lookups we will try the 456 * insertion again (in which case we need to be careful of 457 * the error return reporting that we have already inserted 458 * this index). 459 */ 460 ret = radix_tree_insert(&iter->radix, idx, sg); 461 if (ret && ret != -EEXIST) 462 goto scan; 463 464 entry = xa_mk_value(idx); 465 for (i = 1; i < count; i++) { 466 ret = radix_tree_insert(&iter->radix, idx + i, entry); 467 if (ret && ret != -EEXIST) 468 goto scan; 469 } 470 471 idx += count; 472 sg = ____sg_next(sg); 473 count = __sg_page_count(sg); 474 } 475 476 scan: 477 iter->sg_pos = sg; 478 iter->sg_idx = idx; 479 480 mutex_unlock(&iter->lock); 481 482 if (unlikely(n < idx)) /* insertion completed by another thread */ 483 goto lookup; 484 485 /* In case we failed to insert the entry into the radixtree, we need 486 * to look beyond the current sg. 487 */ 488 while (idx + count <= n) { 489 idx += count; 490 sg = ____sg_next(sg); 491 count = __sg_page_count(sg); 492 } 493 494 *offset = n - idx; 495 return sg; 496 497 lookup: 498 rcu_read_lock(); 499 500 sg = radix_tree_lookup(&iter->radix, n); 501 GEM_BUG_ON(!sg); 502 503 /* If this index is in the middle of multi-page sg entry, 504 * the radix tree will contain a value entry that points 505 * to the start of that range. We will return the pointer to 506 * the base page and the offset of this page within the 507 * sg entry's range. 508 */ 509 *offset = 0; 510 if (unlikely(xa_is_value(sg))) { 511 unsigned long base = xa_to_value(sg); 512 513 sg = radix_tree_lookup(&iter->radix, base); 514 GEM_BUG_ON(!sg); 515 516 *offset = n - base; 517 } 518 519 rcu_read_unlock(); 520 521 return sg; 522 } 523 524 struct page * 525 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 526 { 527 struct scatterlist *sg; 528 unsigned int offset; 529 530 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 531 532 sg = i915_gem_object_get_sg(obj, n, &offset); 533 return nth_page(sg_page(sg), offset); 534 } 535 536 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 537 struct page * 538 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 539 unsigned int n) 540 { 541 struct page *page; 542 543 page = i915_gem_object_get_page(obj, n); 544 if (!obj->mm.dirty) 545 set_page_dirty(page); 546 547 return page; 548 } 549 550 dma_addr_t 551 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, 552 unsigned long n, 553 unsigned int *len) 554 { 555 struct scatterlist *sg; 556 unsigned int offset; 557 558 sg = i915_gem_object_get_sg(obj, n, &offset); 559 560 if (len) 561 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); 562 563 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 564 } 565 566 dma_addr_t 567 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 568 unsigned long n) 569 { 570 return i915_gem_object_get_dma_address_len(obj, n, NULL); 571 } 572