1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include "i915_drv.h" 8 #include "i915_gem_object.h" 9 #include "i915_scatterlist.h" 10 #include "i915_gem_lmem.h" 11 #include "i915_gem_mman.h" 12 13 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 14 struct sg_table *pages, 15 unsigned int sg_page_sizes) 16 { 17 struct drm_i915_private *i915 = to_i915(obj->base.dev); 18 unsigned long supported = INTEL_INFO(i915)->page_sizes; 19 int i; 20 21 lockdep_assert_held(&obj->mm.lock); 22 23 if (i915_gem_object_is_volatile(obj)) 24 obj->mm.madv = I915_MADV_DONTNEED; 25 26 /* Make the pages coherent with the GPU (flushing any swapin). */ 27 if (obj->cache_dirty) { 28 obj->write_domain = 0; 29 if (i915_gem_object_has_struct_page(obj)) 30 drm_clflush_sg(pages); 31 obj->cache_dirty = false; 32 } 33 34 obj->mm.get_page.sg_pos = pages->sgl; 35 obj->mm.get_page.sg_idx = 0; 36 37 obj->mm.pages = pages; 38 39 if (i915_gem_object_is_tiled(obj) && 40 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 41 GEM_BUG_ON(obj->mm.quirked); 42 __i915_gem_object_pin_pages(obj); 43 obj->mm.quirked = true; 44 } 45 46 GEM_BUG_ON(!sg_page_sizes); 47 obj->mm.page_sizes.phys = sg_page_sizes; 48 49 /* 50 * Calculate the supported page-sizes which fit into the given 51 * sg_page_sizes. This will give us the page-sizes which we may be able 52 * to use opportunistically when later inserting into the GTT. For 53 * example if phys=2G, then in theory we should be able to use 1G, 2M, 54 * 64K or 4K pages, although in practice this will depend on a number of 55 * other factors. 56 */ 57 obj->mm.page_sizes.sg = 0; 58 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 59 if (obj->mm.page_sizes.phys & ~0u << i) 60 obj->mm.page_sizes.sg |= BIT(i); 61 } 62 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 63 64 if (i915_gem_object_is_shrinkable(obj)) { 65 struct list_head *list; 66 unsigned long flags; 67 68 spin_lock_irqsave(&i915->mm.obj_lock, flags); 69 70 i915->mm.shrink_count++; 71 i915->mm.shrink_memory += obj->base.size; 72 73 if (obj->mm.madv != I915_MADV_WILLNEED) 74 list = &i915->mm.purge_list; 75 else 76 list = &i915->mm.shrink_list; 77 list_add_tail(&obj->mm.link, list); 78 79 atomic_set(&obj->mm.shrink_pin, 0); 80 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 81 } 82 } 83 84 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 85 { 86 struct drm_i915_private *i915 = to_i915(obj->base.dev); 87 int err; 88 89 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 90 drm_dbg(&i915->drm, 91 "Attempting to obtain a purgeable object\n"); 92 return -EFAULT; 93 } 94 95 err = obj->ops->get_pages(obj); 96 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 97 98 return err; 99 } 100 101 /* Ensure that the associated pages are gathered from the backing storage 102 * and pinned into our object. i915_gem_object_pin_pages() may be called 103 * multiple times before they are released by a single call to 104 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 105 * either as a result of memory pressure (reaping pages under the shrinker) 106 * or as the object is itself released. 107 */ 108 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 109 { 110 int err; 111 112 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 113 if (err) 114 return err; 115 116 if (unlikely(!i915_gem_object_has_pages(obj))) { 117 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 118 119 err = ____i915_gem_object_get_pages(obj); 120 if (err) 121 goto unlock; 122 123 smp_mb__before_atomic(); 124 } 125 atomic_inc(&obj->mm.pages_pin_count); 126 127 unlock: 128 mutex_unlock(&obj->mm.lock); 129 return err; 130 } 131 132 /* Immediately discard the backing storage */ 133 void i915_gem_object_truncate(struct drm_i915_gem_object *obj) 134 { 135 drm_gem_free_mmap_offset(&obj->base); 136 if (obj->ops->truncate) 137 obj->ops->truncate(obj); 138 } 139 140 /* Try to discard unwanted pages */ 141 void i915_gem_object_writeback(struct drm_i915_gem_object *obj) 142 { 143 lockdep_assert_held(&obj->mm.lock); 144 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 145 146 if (obj->ops->writeback) 147 obj->ops->writeback(obj); 148 } 149 150 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 151 { 152 struct radix_tree_iter iter; 153 void __rcu **slot; 154 155 rcu_read_lock(); 156 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 157 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 158 rcu_read_unlock(); 159 } 160 161 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) 162 { 163 if (is_vmalloc_addr(ptr)) 164 vunmap(ptr); 165 else 166 kunmap(kmap_to_page(ptr)); 167 } 168 169 struct sg_table * 170 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) 171 { 172 struct sg_table *pages; 173 174 pages = fetch_and_zero(&obj->mm.pages); 175 if (IS_ERR_OR_NULL(pages)) 176 return pages; 177 178 if (i915_gem_object_is_volatile(obj)) 179 obj->mm.madv = I915_MADV_WILLNEED; 180 181 i915_gem_object_make_unshrinkable(obj); 182 183 if (obj->mm.mapping) { 184 unmap_object(obj, page_mask_bits(obj->mm.mapping)); 185 obj->mm.mapping = NULL; 186 } 187 188 __i915_gem_object_reset_page_iter(obj); 189 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 190 191 return pages; 192 } 193 194 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 195 { 196 struct sg_table *pages; 197 int err; 198 199 if (i915_gem_object_has_pinned_pages(obj)) 200 return -EBUSY; 201 202 /* May be called by shrinker from within get_pages() (on another bo) */ 203 mutex_lock(&obj->mm.lock); 204 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) { 205 err = -EBUSY; 206 goto unlock; 207 } 208 209 i915_gem_object_release_mmap_offset(obj); 210 211 /* 212 * ->put_pages might need to allocate memory for the bit17 swizzle 213 * array, hence protect them from being reaped by removing them from gtt 214 * lists early. 215 */ 216 pages = __i915_gem_object_unset_pages(obj); 217 218 /* 219 * XXX Temporary hijinx to avoid updating all backends to handle 220 * NULL pages. In the future, when we have more asynchronous 221 * get_pages backends we should be better able to handle the 222 * cancellation of the async task in a more uniform manner. 223 */ 224 if (!pages && !i915_gem_object_needs_async_cancel(obj)) 225 pages = ERR_PTR(-EINVAL); 226 227 if (!IS_ERR(pages)) 228 obj->ops->put_pages(obj, pages); 229 230 err = 0; 231 unlock: 232 mutex_unlock(&obj->mm.lock); 233 234 return err; 235 } 236 237 static inline pte_t iomap_pte(resource_size_t base, 238 dma_addr_t offset, 239 pgprot_t prot) 240 { 241 return pte_mkspecial(pfn_pte((base + offset) >> PAGE_SHIFT, prot)); 242 } 243 244 /* The 'mapping' part of i915_gem_object_pin_map() below */ 245 static void *i915_gem_object_map(struct drm_i915_gem_object *obj, 246 enum i915_map_type type) 247 { 248 unsigned long n_pte = obj->base.size >> PAGE_SHIFT; 249 struct sg_table *sgt = obj->mm.pages; 250 pte_t *stack[32], **mem; 251 struct vm_struct *area; 252 pgprot_t pgprot; 253 254 if (!i915_gem_object_has_struct_page(obj) && type != I915_MAP_WC) 255 return NULL; 256 257 if (GEM_WARN_ON(type == I915_MAP_WC && 258 !static_cpu_has(X86_FEATURE_PAT))) 259 return NULL; 260 261 /* A single page can always be kmapped */ 262 if (n_pte == 1 && type == I915_MAP_WB) { 263 struct page *page = sg_page(sgt->sgl); 264 265 /* 266 * On 32b, highmem using a finite set of indirect PTE (i.e. 267 * vmap) to provide virtual mappings of the high pages. 268 * As these are finite, map_new_virtual() must wait for some 269 * other kmap() to finish when it runs out. If we map a large 270 * number of objects, there is no method for it to tell us 271 * to release the mappings, and we deadlock. 272 * 273 * However, if we make an explicit vmap of the page, that 274 * uses a larger vmalloc arena, and also has the ability 275 * to tell us to release unwanted mappings. Most importantly, 276 * it will fail and propagate an error instead of waiting 277 * forever. 278 * 279 * So if the page is beyond the 32b boundary, make an explicit 280 * vmap. On 64b, this check will be optimised away as we can 281 * directly kmap any page on the system. 282 */ 283 if (!PageHighMem(page)) 284 return kmap(page); 285 } 286 287 mem = stack; 288 if (n_pte > ARRAY_SIZE(stack)) { 289 /* Too big for stack -- allocate temporary array instead */ 290 mem = kvmalloc_array(n_pte, sizeof(*mem), GFP_KERNEL); 291 if (!mem) 292 return NULL; 293 } 294 295 area = alloc_vm_area(obj->base.size, mem); 296 if (!area) { 297 if (mem != stack) 298 kvfree(mem); 299 return NULL; 300 } 301 302 switch (type) { 303 default: 304 MISSING_CASE(type); 305 fallthrough; /* to use PAGE_KERNEL anyway */ 306 case I915_MAP_WB: 307 pgprot = PAGE_KERNEL; 308 break; 309 case I915_MAP_WC: 310 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 311 break; 312 } 313 314 if (i915_gem_object_has_struct_page(obj)) { 315 struct sgt_iter iter; 316 struct page *page; 317 pte_t **ptes = mem; 318 319 for_each_sgt_page(page, iter, sgt) 320 **ptes++ = mk_pte(page, pgprot); 321 } else { 322 resource_size_t iomap; 323 struct sgt_iter iter; 324 pte_t **ptes = mem; 325 dma_addr_t addr; 326 327 iomap = obj->mm.region->iomap.base; 328 iomap -= obj->mm.region->region.start; 329 330 for_each_sgt_daddr(addr, iter, sgt) 331 **ptes++ = iomap_pte(iomap, addr, pgprot); 332 } 333 334 if (mem != stack) 335 kvfree(mem); 336 337 return area->addr; 338 } 339 340 /* get, pin, and map the pages of the object into kernel space */ 341 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 342 enum i915_map_type type) 343 { 344 enum i915_map_type has_type; 345 unsigned int flags; 346 bool pinned; 347 void *ptr; 348 int err; 349 350 flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_HAS_IOMEM; 351 if (!i915_gem_object_type_has(obj, flags)) 352 return ERR_PTR(-ENXIO); 353 354 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 355 if (err) 356 return ERR_PTR(err); 357 358 pinned = !(type & I915_MAP_OVERRIDE); 359 type &= ~I915_MAP_OVERRIDE; 360 361 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 362 if (unlikely(!i915_gem_object_has_pages(obj))) { 363 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 364 365 err = ____i915_gem_object_get_pages(obj); 366 if (err) 367 goto err_unlock; 368 369 smp_mb__before_atomic(); 370 } 371 atomic_inc(&obj->mm.pages_pin_count); 372 pinned = false; 373 } 374 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 375 376 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 377 if (ptr && has_type != type) { 378 if (pinned) { 379 err = -EBUSY; 380 goto err_unpin; 381 } 382 383 unmap_object(obj, ptr); 384 385 ptr = obj->mm.mapping = NULL; 386 } 387 388 if (!ptr) { 389 ptr = i915_gem_object_map(obj, type); 390 if (!ptr) { 391 err = -ENOMEM; 392 goto err_unpin; 393 } 394 395 obj->mm.mapping = page_pack_bits(ptr, type); 396 } 397 398 out_unlock: 399 mutex_unlock(&obj->mm.lock); 400 return ptr; 401 402 err_unpin: 403 atomic_dec(&obj->mm.pages_pin_count); 404 err_unlock: 405 ptr = ERR_PTR(err); 406 goto out_unlock; 407 } 408 409 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 410 unsigned long offset, 411 unsigned long size) 412 { 413 enum i915_map_type has_type; 414 void *ptr; 415 416 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 417 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), 418 offset, size, obj->base.size)); 419 420 wmb(); /* let all previous writes be visible to coherent partners */ 421 obj->mm.dirty = true; 422 423 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) 424 return; 425 426 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 427 if (has_type == I915_MAP_WC) 428 return; 429 430 drm_clflush_virt_range(ptr + offset, size); 431 if (size == obj->base.size) { 432 obj->write_domain &= ~I915_GEM_DOMAIN_CPU; 433 obj->cache_dirty = false; 434 } 435 } 436 437 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj) 438 { 439 GEM_BUG_ON(!obj->mm.mapping); 440 441 /* 442 * We allow removing the mapping from underneath pinned pages! 443 * 444 * Furthermore, since this is an unsafe operation reserved only 445 * for construction time manipulation, we ignore locking prudence. 446 */ 447 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping))); 448 449 i915_gem_object_unpin_map(obj); 450 } 451 452 struct scatterlist * 453 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 454 unsigned int n, 455 unsigned int *offset) 456 { 457 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 458 struct scatterlist *sg; 459 unsigned int idx, count; 460 461 might_sleep(); 462 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 463 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 464 465 /* As we iterate forward through the sg, we record each entry in a 466 * radixtree for quick repeated (backwards) lookups. If we have seen 467 * this index previously, we will have an entry for it. 468 * 469 * Initial lookup is O(N), but this is amortized to O(1) for 470 * sequential page access (where each new request is consecutive 471 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 472 * i.e. O(1) with a large constant! 473 */ 474 if (n < READ_ONCE(iter->sg_idx)) 475 goto lookup; 476 477 mutex_lock(&iter->lock); 478 479 /* We prefer to reuse the last sg so that repeated lookup of this 480 * (or the subsequent) sg are fast - comparing against the last 481 * sg is faster than going through the radixtree. 482 */ 483 484 sg = iter->sg_pos; 485 idx = iter->sg_idx; 486 count = __sg_page_count(sg); 487 488 while (idx + count <= n) { 489 void *entry; 490 unsigned long i; 491 int ret; 492 493 /* If we cannot allocate and insert this entry, or the 494 * individual pages from this range, cancel updating the 495 * sg_idx so that on this lookup we are forced to linearly 496 * scan onwards, but on future lookups we will try the 497 * insertion again (in which case we need to be careful of 498 * the error return reporting that we have already inserted 499 * this index). 500 */ 501 ret = radix_tree_insert(&iter->radix, idx, sg); 502 if (ret && ret != -EEXIST) 503 goto scan; 504 505 entry = xa_mk_value(idx); 506 for (i = 1; i < count; i++) { 507 ret = radix_tree_insert(&iter->radix, idx + i, entry); 508 if (ret && ret != -EEXIST) 509 goto scan; 510 } 511 512 idx += count; 513 sg = ____sg_next(sg); 514 count = __sg_page_count(sg); 515 } 516 517 scan: 518 iter->sg_pos = sg; 519 iter->sg_idx = idx; 520 521 mutex_unlock(&iter->lock); 522 523 if (unlikely(n < idx)) /* insertion completed by another thread */ 524 goto lookup; 525 526 /* In case we failed to insert the entry into the radixtree, we need 527 * to look beyond the current sg. 528 */ 529 while (idx + count <= n) { 530 idx += count; 531 sg = ____sg_next(sg); 532 count = __sg_page_count(sg); 533 } 534 535 *offset = n - idx; 536 return sg; 537 538 lookup: 539 rcu_read_lock(); 540 541 sg = radix_tree_lookup(&iter->radix, n); 542 GEM_BUG_ON(!sg); 543 544 /* If this index is in the middle of multi-page sg entry, 545 * the radix tree will contain a value entry that points 546 * to the start of that range. We will return the pointer to 547 * the base page and the offset of this page within the 548 * sg entry's range. 549 */ 550 *offset = 0; 551 if (unlikely(xa_is_value(sg))) { 552 unsigned long base = xa_to_value(sg); 553 554 sg = radix_tree_lookup(&iter->radix, base); 555 GEM_BUG_ON(!sg); 556 557 *offset = n - base; 558 } 559 560 rcu_read_unlock(); 561 562 return sg; 563 } 564 565 struct page * 566 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 567 { 568 struct scatterlist *sg; 569 unsigned int offset; 570 571 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 572 573 sg = i915_gem_object_get_sg(obj, n, &offset); 574 return nth_page(sg_page(sg), offset); 575 } 576 577 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 578 struct page * 579 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 580 unsigned int n) 581 { 582 struct page *page; 583 584 page = i915_gem_object_get_page(obj, n); 585 if (!obj->mm.dirty) 586 set_page_dirty(page); 587 588 return page; 589 } 590 591 dma_addr_t 592 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, 593 unsigned long n, 594 unsigned int *len) 595 { 596 struct scatterlist *sg; 597 unsigned int offset; 598 599 sg = i915_gem_object_get_sg(obj, n, &offset); 600 601 if (len) 602 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); 603 604 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 605 } 606 607 dma_addr_t 608 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 609 unsigned long n) 610 { 611 return i915_gem_object_get_dma_address_len(obj, n, NULL); 612 } 613