1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include <drm/drm_cache.h> 8 9 #include "gt/intel_gt.h" 10 #include "gt/intel_gt_pm.h" 11 12 #include "i915_drv.h" 13 #include "i915_gem_object.h" 14 #include "i915_scatterlist.h" 15 #include "i915_gem_lmem.h" 16 #include "i915_gem_mman.h" 17 18 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 19 struct sg_table *pages) 20 { 21 struct drm_i915_private *i915 = to_i915(obj->base.dev); 22 unsigned long supported = RUNTIME_INFO(i915)->page_sizes; 23 bool shrinkable; 24 int i; 25 26 assert_object_held_shared(obj); 27 28 if (i915_gem_object_is_volatile(obj)) 29 obj->mm.madv = I915_MADV_DONTNEED; 30 31 /* Make the pages coherent with the GPU (flushing any swapin). */ 32 if (obj->cache_dirty) { 33 WARN_ON_ONCE(IS_DGFX(i915)); 34 obj->write_domain = 0; 35 if (i915_gem_object_has_struct_page(obj)) 36 drm_clflush_sg(pages); 37 obj->cache_dirty = false; 38 } 39 40 obj->mm.get_page.sg_pos = pages->sgl; 41 obj->mm.get_page.sg_idx = 0; 42 obj->mm.get_dma_page.sg_pos = pages->sgl; 43 obj->mm.get_dma_page.sg_idx = 0; 44 45 obj->mm.pages = pages; 46 47 obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl); 48 GEM_BUG_ON(!obj->mm.page_sizes.phys); 49 50 /* 51 * Calculate the supported page-sizes which fit into the given 52 * sg_page_sizes. This will give us the page-sizes which we may be able 53 * to use opportunistically when later inserting into the GTT. For 54 * example if phys=2G, then in theory we should be able to use 1G, 2M, 55 * 64K or 4K pages, although in practice this will depend on a number of 56 * other factors. 57 */ 58 obj->mm.page_sizes.sg = 0; 59 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 60 if (obj->mm.page_sizes.phys & ~0u << i) 61 obj->mm.page_sizes.sg |= BIT(i); 62 } 63 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 64 65 shrinkable = i915_gem_object_is_shrinkable(obj); 66 67 if (i915_gem_object_is_tiled(obj) && 68 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) { 69 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); 70 i915_gem_object_set_tiling_quirk(obj); 71 GEM_BUG_ON(!list_empty(&obj->mm.link)); 72 atomic_inc(&obj->mm.shrink_pin); 73 shrinkable = false; 74 } 75 76 if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) { 77 struct list_head *list; 78 unsigned long flags; 79 80 assert_object_held(obj); 81 spin_lock_irqsave(&i915->mm.obj_lock, flags); 82 83 i915->mm.shrink_count++; 84 i915->mm.shrink_memory += obj->base.size; 85 86 if (obj->mm.madv != I915_MADV_WILLNEED) 87 list = &i915->mm.purge_list; 88 else 89 list = &i915->mm.shrink_list; 90 list_add_tail(&obj->mm.link, list); 91 92 atomic_set(&obj->mm.shrink_pin, 0); 93 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 94 } 95 } 96 97 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 98 { 99 struct drm_i915_private *i915 = to_i915(obj->base.dev); 100 int err; 101 102 assert_object_held_shared(obj); 103 104 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 105 drm_dbg(&i915->drm, 106 "Attempting to obtain a purgeable object\n"); 107 return -EFAULT; 108 } 109 110 err = obj->ops->get_pages(obj); 111 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 112 113 return err; 114 } 115 116 /* Ensure that the associated pages are gathered from the backing storage 117 * and pinned into our object. i915_gem_object_pin_pages() may be called 118 * multiple times before they are released by a single call to 119 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 120 * either as a result of memory pressure (reaping pages under the shrinker) 121 * or as the object is itself released. 122 */ 123 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 124 { 125 int err; 126 127 assert_object_held(obj); 128 129 assert_object_held_shared(obj); 130 131 if (unlikely(!i915_gem_object_has_pages(obj))) { 132 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 133 134 err = ____i915_gem_object_get_pages(obj); 135 if (err) 136 return err; 137 138 smp_mb__before_atomic(); 139 } 140 atomic_inc(&obj->mm.pages_pin_count); 141 142 return 0; 143 } 144 145 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj) 146 { 147 struct i915_gem_ww_ctx ww; 148 int err; 149 150 i915_gem_ww_ctx_init(&ww, true); 151 retry: 152 err = i915_gem_object_lock(obj, &ww); 153 if (!err) 154 err = i915_gem_object_pin_pages(obj); 155 156 if (err == -EDEADLK) { 157 err = i915_gem_ww_ctx_backoff(&ww); 158 if (!err) 159 goto retry; 160 } 161 i915_gem_ww_ctx_fini(&ww); 162 return err; 163 } 164 165 /* Immediately discard the backing storage */ 166 int i915_gem_object_truncate(struct drm_i915_gem_object *obj) 167 { 168 if (obj->ops->truncate) 169 return obj->ops->truncate(obj); 170 171 return 0; 172 } 173 174 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 175 { 176 struct radix_tree_iter iter; 177 void __rcu **slot; 178 179 rcu_read_lock(); 180 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 181 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 182 radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0) 183 radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index); 184 rcu_read_unlock(); 185 } 186 187 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) 188 { 189 if (is_vmalloc_addr(ptr)) 190 vunmap(ptr); 191 } 192 193 static void flush_tlb_invalidate(struct drm_i915_gem_object *obj) 194 { 195 struct drm_i915_private *i915 = to_i915(obj->base.dev); 196 struct intel_gt *gt = to_gt(i915); 197 198 if (!obj->mm.tlb) 199 return; 200 201 intel_gt_invalidate_tlb(gt, obj->mm.tlb); 202 obj->mm.tlb = 0; 203 } 204 205 struct sg_table * 206 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) 207 { 208 struct sg_table *pages; 209 210 assert_object_held_shared(obj); 211 212 pages = fetch_and_zero(&obj->mm.pages); 213 if (IS_ERR_OR_NULL(pages)) 214 return pages; 215 216 if (i915_gem_object_is_volatile(obj)) 217 obj->mm.madv = I915_MADV_WILLNEED; 218 219 if (!i915_gem_object_has_self_managed_shrink_list(obj)) 220 i915_gem_object_make_unshrinkable(obj); 221 222 if (obj->mm.mapping) { 223 unmap_object(obj, page_mask_bits(obj->mm.mapping)); 224 obj->mm.mapping = NULL; 225 } 226 227 __i915_gem_object_reset_page_iter(obj); 228 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 229 230 flush_tlb_invalidate(obj); 231 232 return pages; 233 } 234 235 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 236 { 237 struct sg_table *pages; 238 239 if (i915_gem_object_has_pinned_pages(obj)) 240 return -EBUSY; 241 242 /* May be called by shrinker from within get_pages() (on another bo) */ 243 assert_object_held_shared(obj); 244 245 i915_gem_object_release_mmap_offset(obj); 246 247 /* 248 * ->put_pages might need to allocate memory for the bit17 swizzle 249 * array, hence protect them from being reaped by removing them from gtt 250 * lists early. 251 */ 252 pages = __i915_gem_object_unset_pages(obj); 253 254 /* 255 * XXX Temporary hijinx to avoid updating all backends to handle 256 * NULL pages. In the future, when we have more asynchronous 257 * get_pages backends we should be better able to handle the 258 * cancellation of the async task in a more uniform manner. 259 */ 260 if (!IS_ERR_OR_NULL(pages)) 261 obj->ops->put_pages(obj, pages); 262 263 return 0; 264 } 265 266 /* The 'mapping' part of i915_gem_object_pin_map() below */ 267 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj, 268 enum i915_map_type type) 269 { 270 unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i; 271 struct page *stack[32], **pages = stack, *page; 272 struct sgt_iter iter; 273 pgprot_t pgprot; 274 void *vaddr; 275 276 switch (type) { 277 default: 278 MISSING_CASE(type); 279 fallthrough; /* to use PAGE_KERNEL anyway */ 280 case I915_MAP_WB: 281 /* 282 * On 32b, highmem using a finite set of indirect PTE (i.e. 283 * vmap) to provide virtual mappings of the high pages. 284 * As these are finite, map_new_virtual() must wait for some 285 * other kmap() to finish when it runs out. If we map a large 286 * number of objects, there is no method for it to tell us 287 * to release the mappings, and we deadlock. 288 * 289 * However, if we make an explicit vmap of the page, that 290 * uses a larger vmalloc arena, and also has the ability 291 * to tell us to release unwanted mappings. Most importantly, 292 * it will fail and propagate an error instead of waiting 293 * forever. 294 * 295 * So if the page is beyond the 32b boundary, make an explicit 296 * vmap. 297 */ 298 if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl))) 299 return page_address(sg_page(obj->mm.pages->sgl)); 300 pgprot = PAGE_KERNEL; 301 break; 302 case I915_MAP_WC: 303 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 304 break; 305 } 306 307 if (n_pages > ARRAY_SIZE(stack)) { 308 /* Too big for stack -- allocate temporary array instead */ 309 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); 310 if (!pages) 311 return ERR_PTR(-ENOMEM); 312 } 313 314 i = 0; 315 for_each_sgt_page(page, iter, obj->mm.pages) 316 pages[i++] = page; 317 vaddr = vmap(pages, n_pages, 0, pgprot); 318 if (pages != stack) 319 kvfree(pages); 320 321 return vaddr ?: ERR_PTR(-ENOMEM); 322 } 323 324 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj, 325 enum i915_map_type type) 326 { 327 resource_size_t iomap = obj->mm.region->iomap.base - 328 obj->mm.region->region.start; 329 unsigned long n_pfn = obj->base.size >> PAGE_SHIFT; 330 unsigned long stack[32], *pfns = stack, i; 331 struct sgt_iter iter; 332 dma_addr_t addr; 333 void *vaddr; 334 335 GEM_BUG_ON(type != I915_MAP_WC); 336 337 if (n_pfn > ARRAY_SIZE(stack)) { 338 /* Too big for stack -- allocate temporary array instead */ 339 pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL); 340 if (!pfns) 341 return ERR_PTR(-ENOMEM); 342 } 343 344 i = 0; 345 for_each_sgt_daddr(addr, iter, obj->mm.pages) 346 pfns[i++] = (iomap + addr) >> PAGE_SHIFT; 347 vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO)); 348 if (pfns != stack) 349 kvfree(pfns); 350 351 return vaddr ?: ERR_PTR(-ENOMEM); 352 } 353 354 /* get, pin, and map the pages of the object into kernel space */ 355 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 356 enum i915_map_type type) 357 { 358 enum i915_map_type has_type; 359 bool pinned; 360 void *ptr; 361 int err; 362 363 if (!i915_gem_object_has_struct_page(obj) && 364 !i915_gem_object_has_iomem(obj)) 365 return ERR_PTR(-ENXIO); 366 367 if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 368 return ERR_PTR(-EINVAL); 369 370 assert_object_held(obj); 371 372 pinned = !(type & I915_MAP_OVERRIDE); 373 type &= ~I915_MAP_OVERRIDE; 374 375 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 376 if (unlikely(!i915_gem_object_has_pages(obj))) { 377 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 378 379 err = ____i915_gem_object_get_pages(obj); 380 if (err) 381 return ERR_PTR(err); 382 383 smp_mb__before_atomic(); 384 } 385 atomic_inc(&obj->mm.pages_pin_count); 386 pinned = false; 387 } 388 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 389 390 /* 391 * For discrete our CPU mappings needs to be consistent in order to 392 * function correctly on !x86. When mapping things through TTM, we use 393 * the same rules to determine the caching type. 394 * 395 * The caching rules, starting from DG1: 396 * 397 * - If the object can be placed in device local-memory, then the 398 * pages should be allocated and mapped as write-combined only. 399 * 400 * - Everything else is always allocated and mapped as write-back, 401 * with the guarantee that everything is also coherent with the 402 * GPU. 403 * 404 * Internal users of lmem are already expected to get this right, so no 405 * fudging needed there. 406 */ 407 if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) { 408 if (type != I915_MAP_WC && !obj->mm.n_placements) { 409 ptr = ERR_PTR(-ENODEV); 410 goto err_unpin; 411 } 412 413 type = I915_MAP_WC; 414 } else if (IS_DGFX(to_i915(obj->base.dev))) { 415 type = I915_MAP_WB; 416 } 417 418 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 419 if (ptr && has_type != type) { 420 if (pinned) { 421 ptr = ERR_PTR(-EBUSY); 422 goto err_unpin; 423 } 424 425 unmap_object(obj, ptr); 426 427 ptr = obj->mm.mapping = NULL; 428 } 429 430 if (!ptr) { 431 err = i915_gem_object_wait_moving_fence(obj, true); 432 if (err) { 433 ptr = ERR_PTR(err); 434 goto err_unpin; 435 } 436 437 if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled())) 438 ptr = ERR_PTR(-ENODEV); 439 else if (i915_gem_object_has_struct_page(obj)) 440 ptr = i915_gem_object_map_page(obj, type); 441 else 442 ptr = i915_gem_object_map_pfn(obj, type); 443 if (IS_ERR(ptr)) 444 goto err_unpin; 445 446 obj->mm.mapping = page_pack_bits(ptr, type); 447 } 448 449 return ptr; 450 451 err_unpin: 452 atomic_dec(&obj->mm.pages_pin_count); 453 return ptr; 454 } 455 456 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj, 457 enum i915_map_type type) 458 { 459 void *ret; 460 461 i915_gem_object_lock(obj, NULL); 462 ret = i915_gem_object_pin_map(obj, type); 463 i915_gem_object_unlock(obj); 464 465 return ret; 466 } 467 468 enum i915_map_type i915_coherent_map_type(struct drm_i915_private *i915, 469 struct drm_i915_gem_object *obj, 470 bool always_coherent) 471 { 472 if (i915_gem_object_is_lmem(obj)) 473 return I915_MAP_WC; 474 if (HAS_LLC(i915) || always_coherent) 475 return I915_MAP_WB; 476 else 477 return I915_MAP_WC; 478 } 479 480 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 481 unsigned long offset, 482 unsigned long size) 483 { 484 enum i915_map_type has_type; 485 void *ptr; 486 487 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 488 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), 489 offset, size, obj->base.size)); 490 491 wmb(); /* let all previous writes be visible to coherent partners */ 492 obj->mm.dirty = true; 493 494 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) 495 return; 496 497 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 498 if (has_type == I915_MAP_WC) 499 return; 500 501 drm_clflush_virt_range(ptr + offset, size); 502 if (size == obj->base.size) { 503 obj->write_domain &= ~I915_GEM_DOMAIN_CPU; 504 obj->cache_dirty = false; 505 } 506 } 507 508 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj) 509 { 510 GEM_BUG_ON(!obj->mm.mapping); 511 512 /* 513 * We allow removing the mapping from underneath pinned pages! 514 * 515 * Furthermore, since this is an unsafe operation reserved only 516 * for construction time manipulation, we ignore locking prudence. 517 */ 518 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping))); 519 520 i915_gem_object_unpin_map(obj); 521 } 522 523 struct scatterlist * 524 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 525 struct i915_gem_object_page_iter *iter, 526 unsigned int n, 527 unsigned int *offset, 528 bool dma) 529 { 530 struct scatterlist *sg; 531 unsigned int idx, count; 532 533 might_sleep(); 534 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 535 if (!i915_gem_object_has_pinned_pages(obj)) 536 assert_object_held(obj); 537 538 /* As we iterate forward through the sg, we record each entry in a 539 * radixtree for quick repeated (backwards) lookups. If we have seen 540 * this index previously, we will have an entry for it. 541 * 542 * Initial lookup is O(N), but this is amortized to O(1) for 543 * sequential page access (where each new request is consecutive 544 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 545 * i.e. O(1) with a large constant! 546 */ 547 if (n < READ_ONCE(iter->sg_idx)) 548 goto lookup; 549 550 mutex_lock(&iter->lock); 551 552 /* We prefer to reuse the last sg so that repeated lookup of this 553 * (or the subsequent) sg are fast - comparing against the last 554 * sg is faster than going through the radixtree. 555 */ 556 557 sg = iter->sg_pos; 558 idx = iter->sg_idx; 559 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); 560 561 while (idx + count <= n) { 562 void *entry; 563 unsigned long i; 564 int ret; 565 566 /* If we cannot allocate and insert this entry, or the 567 * individual pages from this range, cancel updating the 568 * sg_idx so that on this lookup we are forced to linearly 569 * scan onwards, but on future lookups we will try the 570 * insertion again (in which case we need to be careful of 571 * the error return reporting that we have already inserted 572 * this index). 573 */ 574 ret = radix_tree_insert(&iter->radix, idx, sg); 575 if (ret && ret != -EEXIST) 576 goto scan; 577 578 entry = xa_mk_value(idx); 579 for (i = 1; i < count; i++) { 580 ret = radix_tree_insert(&iter->radix, idx + i, entry); 581 if (ret && ret != -EEXIST) 582 goto scan; 583 } 584 585 idx += count; 586 sg = ____sg_next(sg); 587 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); 588 } 589 590 scan: 591 iter->sg_pos = sg; 592 iter->sg_idx = idx; 593 594 mutex_unlock(&iter->lock); 595 596 if (unlikely(n < idx)) /* insertion completed by another thread */ 597 goto lookup; 598 599 /* In case we failed to insert the entry into the radixtree, we need 600 * to look beyond the current sg. 601 */ 602 while (idx + count <= n) { 603 idx += count; 604 sg = ____sg_next(sg); 605 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); 606 } 607 608 *offset = n - idx; 609 return sg; 610 611 lookup: 612 rcu_read_lock(); 613 614 sg = radix_tree_lookup(&iter->radix, n); 615 GEM_BUG_ON(!sg); 616 617 /* If this index is in the middle of multi-page sg entry, 618 * the radix tree will contain a value entry that points 619 * to the start of that range. We will return the pointer to 620 * the base page and the offset of this page within the 621 * sg entry's range. 622 */ 623 *offset = 0; 624 if (unlikely(xa_is_value(sg))) { 625 unsigned long base = xa_to_value(sg); 626 627 sg = radix_tree_lookup(&iter->radix, base); 628 GEM_BUG_ON(!sg); 629 630 *offset = n - base; 631 } 632 633 rcu_read_unlock(); 634 635 return sg; 636 } 637 638 struct page * 639 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 640 { 641 struct scatterlist *sg; 642 unsigned int offset; 643 644 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 645 646 sg = i915_gem_object_get_sg(obj, n, &offset); 647 return nth_page(sg_page(sg), offset); 648 } 649 650 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 651 struct page * 652 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 653 unsigned int n) 654 { 655 struct page *page; 656 657 page = i915_gem_object_get_page(obj, n); 658 if (!obj->mm.dirty) 659 set_page_dirty(page); 660 661 return page; 662 } 663 664 dma_addr_t 665 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, 666 unsigned long n, 667 unsigned int *len) 668 { 669 struct scatterlist *sg; 670 unsigned int offset; 671 672 sg = i915_gem_object_get_sg_dma(obj, n, &offset); 673 674 if (len) 675 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); 676 677 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 678 } 679 680 dma_addr_t 681 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 682 unsigned long n) 683 { 684 return i915_gem_object_get_dma_address_len(obj, n, NULL); 685 } 686