1 /* 2 * Copyright © 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/highmem.h> 26 #include <linux/sched/mm.h> 27 28 #include <drm/drm_cache.h> 29 30 #include "display/intel_frontbuffer.h" 31 #include "pxp/intel_pxp.h" 32 33 #include "i915_drv.h" 34 #include "i915_file_private.h" 35 #include "i915_gem_clflush.h" 36 #include "i915_gem_context.h" 37 #include "i915_gem_dmabuf.h" 38 #include "i915_gem_mman.h" 39 #include "i915_gem_object.h" 40 #include "i915_gem_ttm.h" 41 #include "i915_memcpy.h" 42 #include "i915_trace.h" 43 44 static struct kmem_cache *slab_objects; 45 46 static const struct drm_gem_object_funcs i915_gem_object_funcs; 47 48 struct drm_i915_gem_object *i915_gem_object_alloc(void) 49 { 50 struct drm_i915_gem_object *obj; 51 52 obj = kmem_cache_zalloc(slab_objects, GFP_KERNEL); 53 if (!obj) 54 return NULL; 55 obj->base.funcs = &i915_gem_object_funcs; 56 57 return obj; 58 } 59 60 void i915_gem_object_free(struct drm_i915_gem_object *obj) 61 { 62 return kmem_cache_free(slab_objects, obj); 63 } 64 65 void i915_gem_object_init(struct drm_i915_gem_object *obj, 66 const struct drm_i915_gem_object_ops *ops, 67 struct lock_class_key *key, unsigned flags) 68 { 69 /* 70 * A gem object is embedded both in a struct ttm_buffer_object :/ and 71 * in a drm_i915_gem_object. Make sure they are aliased. 72 */ 73 BUILD_BUG_ON(offsetof(typeof(*obj), base) != 74 offsetof(typeof(*obj), __do_not_access.base)); 75 76 spin_lock_init(&obj->vma.lock); 77 INIT_LIST_HEAD(&obj->vma.list); 78 79 INIT_LIST_HEAD(&obj->mm.link); 80 81 INIT_LIST_HEAD(&obj->lut_list); 82 spin_lock_init(&obj->lut_lock); 83 84 spin_lock_init(&obj->mmo.lock); 85 obj->mmo.offsets = RB_ROOT; 86 87 init_rcu_head(&obj->rcu); 88 89 obj->ops = ops; 90 GEM_BUG_ON(flags & ~I915_BO_ALLOC_FLAGS); 91 obj->flags = flags; 92 93 obj->mm.madv = I915_MADV_WILLNEED; 94 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 95 mutex_init(&obj->mm.get_page.lock); 96 INIT_RADIX_TREE(&obj->mm.get_dma_page.radix, GFP_KERNEL | __GFP_NOWARN); 97 mutex_init(&obj->mm.get_dma_page.lock); 98 } 99 100 /** 101 * __i915_gem_object_fini - Clean up a GEM object initialization 102 * @obj: The gem object to cleanup 103 * 104 * This function cleans up gem object fields that are set up by 105 * drm_gem_private_object_init() and i915_gem_object_init(). 106 * It's primarily intended as a helper for backends that need to 107 * clean up the gem object in separate steps. 108 */ 109 void __i915_gem_object_fini(struct drm_i915_gem_object *obj) 110 { 111 mutex_destroy(&obj->mm.get_page.lock); 112 mutex_destroy(&obj->mm.get_dma_page.lock); 113 dma_resv_fini(&obj->base._resv); 114 } 115 116 /** 117 * i915_gem_object_set_cache_coherency - Mark up the object's coherency levels 118 * for a given cache_level 119 * @obj: #drm_i915_gem_object 120 * @cache_level: cache level 121 */ 122 void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj, 123 unsigned int cache_level) 124 { 125 struct drm_i915_private *i915 = to_i915(obj->base.dev); 126 127 obj->cache_level = cache_level; 128 129 if (cache_level != I915_CACHE_NONE) 130 obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ | 131 I915_BO_CACHE_COHERENT_FOR_WRITE); 132 else if (HAS_LLC(i915)) 133 obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ; 134 else 135 obj->cache_coherent = 0; 136 137 obj->cache_dirty = 138 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) && 139 !IS_DGFX(i915); 140 } 141 142 bool i915_gem_object_can_bypass_llc(struct drm_i915_gem_object *obj) 143 { 144 struct drm_i915_private *i915 = to_i915(obj->base.dev); 145 146 /* 147 * This is purely from a security perspective, so we simply don't care 148 * about non-userspace objects being able to bypass the LLC. 149 */ 150 if (!(obj->flags & I915_BO_ALLOC_USER)) 151 return false; 152 153 /* 154 * EHL and JSL add the 'Bypass LLC' MOCS entry, which should make it 155 * possible for userspace to bypass the GTT caching bits set by the 156 * kernel, as per the given object cache_level. This is troublesome 157 * since the heavy flush we apply when first gathering the pages is 158 * skipped if the kernel thinks the object is coherent with the GPU. As 159 * a result it might be possible to bypass the cache and read the 160 * contents of the page directly, which could be stale data. If it's 161 * just a case of userspace shooting themselves in the foot then so be 162 * it, but since i915 takes the stance of always zeroing memory before 163 * handing it to userspace, we need to prevent this. 164 */ 165 return IS_JSL_EHL(i915); 166 } 167 168 static void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 169 { 170 struct drm_i915_gem_object *obj = to_intel_bo(gem); 171 struct drm_i915_file_private *fpriv = file->driver_priv; 172 struct i915_lut_handle bookmark = {}; 173 struct i915_mmap_offset *mmo, *mn; 174 struct i915_lut_handle *lut, *ln; 175 LIST_HEAD(close); 176 177 spin_lock(&obj->lut_lock); 178 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 179 struct i915_gem_context *ctx = lut->ctx; 180 181 if (ctx && ctx->file_priv == fpriv) { 182 i915_gem_context_get(ctx); 183 list_move(&lut->obj_link, &close); 184 } 185 186 /* Break long locks, and carefully continue on from this spot */ 187 if (&ln->obj_link != &obj->lut_list) { 188 list_add_tail(&bookmark.obj_link, &ln->obj_link); 189 if (cond_resched_lock(&obj->lut_lock)) 190 list_safe_reset_next(&bookmark, ln, obj_link); 191 __list_del_entry(&bookmark.obj_link); 192 } 193 } 194 spin_unlock(&obj->lut_lock); 195 196 spin_lock(&obj->mmo.lock); 197 rbtree_postorder_for_each_entry_safe(mmo, mn, &obj->mmo.offsets, offset) 198 drm_vma_node_revoke(&mmo->vma_node, file); 199 spin_unlock(&obj->mmo.lock); 200 201 list_for_each_entry_safe(lut, ln, &close, obj_link) { 202 struct i915_gem_context *ctx = lut->ctx; 203 struct i915_vma *vma; 204 205 /* 206 * We allow the process to have multiple handles to the same 207 * vma, in the same fd namespace, by virtue of flink/open. 208 */ 209 210 mutex_lock(&ctx->lut_mutex); 211 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 212 if (vma) { 213 GEM_BUG_ON(vma->obj != obj); 214 GEM_BUG_ON(!atomic_read(&vma->open_count)); 215 i915_vma_close(vma); 216 } 217 mutex_unlock(&ctx->lut_mutex); 218 219 i915_gem_context_put(lut->ctx); 220 i915_lut_handle_free(lut); 221 i915_gem_object_put(obj); 222 } 223 } 224 225 void __i915_gem_free_object_rcu(struct rcu_head *head) 226 { 227 struct drm_i915_gem_object *obj = 228 container_of(head, typeof(*obj), rcu); 229 struct drm_i915_private *i915 = to_i915(obj->base.dev); 230 231 i915_gem_object_free(obj); 232 233 GEM_BUG_ON(!atomic_read(&i915->mm.free_count)); 234 atomic_dec(&i915->mm.free_count); 235 } 236 237 static void __i915_gem_object_free_mmaps(struct drm_i915_gem_object *obj) 238 { 239 /* Skip serialisation and waking the device if known to be not used. */ 240 241 if (obj->userfault_count && !IS_DGFX(to_i915(obj->base.dev))) 242 i915_gem_object_release_mmap_gtt(obj); 243 244 if (!RB_EMPTY_ROOT(&obj->mmo.offsets)) { 245 struct i915_mmap_offset *mmo, *mn; 246 247 i915_gem_object_release_mmap_offset(obj); 248 249 rbtree_postorder_for_each_entry_safe(mmo, mn, 250 &obj->mmo.offsets, 251 offset) { 252 drm_vma_offset_remove(obj->base.dev->vma_offset_manager, 253 &mmo->vma_node); 254 kfree(mmo); 255 } 256 obj->mmo.offsets = RB_ROOT; 257 } 258 } 259 260 /** 261 * __i915_gem_object_pages_fini - Clean up pages use of a gem object 262 * @obj: The gem object to clean up 263 * 264 * This function cleans up usage of the object mm.pages member. It 265 * is intended for backends that need to clean up a gem object in 266 * separate steps and needs to be called when the object is idle before 267 * the object's backing memory is freed. 268 */ 269 void __i915_gem_object_pages_fini(struct drm_i915_gem_object *obj) 270 { 271 assert_object_held_shared(obj); 272 273 if (!list_empty(&obj->vma.list)) { 274 struct i915_vma *vma; 275 276 spin_lock(&obj->vma.lock); 277 while ((vma = list_first_entry_or_null(&obj->vma.list, 278 struct i915_vma, 279 obj_link))) { 280 GEM_BUG_ON(vma->obj != obj); 281 spin_unlock(&obj->vma.lock); 282 283 i915_vma_destroy(vma); 284 285 spin_lock(&obj->vma.lock); 286 } 287 spin_unlock(&obj->vma.lock); 288 } 289 290 __i915_gem_object_free_mmaps(obj); 291 292 atomic_set(&obj->mm.pages_pin_count, 0); 293 __i915_gem_object_put_pages(obj); 294 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 295 } 296 297 void __i915_gem_free_object(struct drm_i915_gem_object *obj) 298 { 299 trace_i915_gem_object_destroy(obj); 300 301 GEM_BUG_ON(!list_empty(&obj->lut_list)); 302 303 bitmap_free(obj->bit_17); 304 305 if (obj->base.import_attach) 306 drm_prime_gem_destroy(&obj->base, NULL); 307 308 drm_gem_free_mmap_offset(&obj->base); 309 310 if (obj->ops->release) 311 obj->ops->release(obj); 312 313 if (obj->mm.n_placements > 1) 314 kfree(obj->mm.placements); 315 316 if (obj->shares_resv_from) 317 i915_vm_resv_put(obj->shares_resv_from); 318 319 __i915_gem_object_fini(obj); 320 } 321 322 static void __i915_gem_free_objects(struct drm_i915_private *i915, 323 struct llist_node *freed) 324 { 325 struct drm_i915_gem_object *obj, *on; 326 327 llist_for_each_entry_safe(obj, on, freed, freed) { 328 might_sleep(); 329 if (obj->ops->delayed_free) { 330 obj->ops->delayed_free(obj); 331 continue; 332 } 333 334 __i915_gem_object_pages_fini(obj); 335 __i915_gem_free_object(obj); 336 337 /* But keep the pointer alive for RCU-protected lookups */ 338 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 339 cond_resched(); 340 } 341 } 342 343 void i915_gem_flush_free_objects(struct drm_i915_private *i915) 344 { 345 struct llist_node *freed = llist_del_all(&i915->mm.free_list); 346 347 if (unlikely(freed)) 348 __i915_gem_free_objects(i915, freed); 349 } 350 351 static void __i915_gem_free_work(struct work_struct *work) 352 { 353 struct drm_i915_private *i915 = 354 container_of(work, struct drm_i915_private, mm.free_work); 355 356 i915_gem_flush_free_objects(i915); 357 } 358 359 static void i915_gem_free_object(struct drm_gem_object *gem_obj) 360 { 361 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 362 struct drm_i915_private *i915 = to_i915(obj->base.dev); 363 364 GEM_BUG_ON(i915_gem_object_is_framebuffer(obj)); 365 366 /* 367 * Before we free the object, make sure any pure RCU-only 368 * read-side critical sections are complete, e.g. 369 * i915_gem_busy_ioctl(). For the corresponding synchronized 370 * lookup see i915_gem_object_lookup_rcu(). 371 */ 372 atomic_inc(&i915->mm.free_count); 373 374 /* 375 * Since we require blocking on struct_mutex to unbind the freed 376 * object from the GPU before releasing resources back to the 377 * system, we can not do that directly from the RCU callback (which may 378 * be a softirq context), but must instead then defer that work onto a 379 * kthread. We use the RCU callback rather than move the freed object 380 * directly onto the work queue so that we can mix between using the 381 * worker and performing frees directly from subsequent allocations for 382 * crude but effective memory throttling. 383 */ 384 385 if (llist_add(&obj->freed, &i915->mm.free_list)) 386 queue_work(i915->wq, &i915->mm.free_work); 387 } 388 389 void __i915_gem_object_flush_frontbuffer(struct drm_i915_gem_object *obj, 390 enum fb_op_origin origin) 391 { 392 struct intel_frontbuffer *front; 393 394 front = __intel_frontbuffer_get(obj); 395 if (front) { 396 intel_frontbuffer_flush(front, origin); 397 intel_frontbuffer_put(front); 398 } 399 } 400 401 void __i915_gem_object_invalidate_frontbuffer(struct drm_i915_gem_object *obj, 402 enum fb_op_origin origin) 403 { 404 struct intel_frontbuffer *front; 405 406 front = __intel_frontbuffer_get(obj); 407 if (front) { 408 intel_frontbuffer_invalidate(front, origin); 409 intel_frontbuffer_put(front); 410 } 411 } 412 413 static void 414 i915_gem_object_read_from_page_kmap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 415 { 416 void *src_map; 417 void *src_ptr; 418 419 src_map = kmap_atomic(i915_gem_object_get_page(obj, offset >> PAGE_SHIFT)); 420 421 src_ptr = src_map + offset_in_page(offset); 422 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 423 drm_clflush_virt_range(src_ptr, size); 424 memcpy(dst, src_ptr, size); 425 426 kunmap_atomic(src_map); 427 } 428 429 static void 430 i915_gem_object_read_from_page_iomap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 431 { 432 void __iomem *src_map; 433 void __iomem *src_ptr; 434 dma_addr_t dma = i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT); 435 436 src_map = io_mapping_map_wc(&obj->mm.region->iomap, 437 dma - obj->mm.region->region.start, 438 PAGE_SIZE); 439 440 src_ptr = src_map + offset_in_page(offset); 441 if (!i915_memcpy_from_wc(dst, (void __force *)src_ptr, size)) 442 memcpy_fromio(dst, src_ptr, size); 443 444 io_mapping_unmap(src_map); 445 } 446 447 /** 448 * i915_gem_object_read_from_page - read data from the page of a GEM object 449 * @obj: GEM object to read from 450 * @offset: offset within the object 451 * @dst: buffer to store the read data 452 * @size: size to read 453 * 454 * Reads data from @obj at the specified offset. The requested region to read 455 * from can't cross a page boundary. The caller must ensure that @obj pages 456 * are pinned and that @obj is synced wrt. any related writes. 457 * 458 * Return: %0 on success or -ENODEV if the type of @obj's backing store is 459 * unsupported. 460 */ 461 int i915_gem_object_read_from_page(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size) 462 { 463 GEM_BUG_ON(offset >= obj->base.size); 464 GEM_BUG_ON(offset_in_page(offset) > PAGE_SIZE - size); 465 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 466 467 if (i915_gem_object_has_struct_page(obj)) 468 i915_gem_object_read_from_page_kmap(obj, offset, dst, size); 469 else if (i915_gem_object_has_iomem(obj)) 470 i915_gem_object_read_from_page_iomap(obj, offset, dst, size); 471 else 472 return -ENODEV; 473 474 return 0; 475 } 476 477 /** 478 * i915_gem_object_evictable - Whether object is likely evictable after unbind. 479 * @obj: The object to check 480 * 481 * This function checks whether the object is likely unvictable after unbind. 482 * If the object is not locked when checking, the result is only advisory. 483 * If the object is locked when checking, and the function returns true, 484 * then an eviction should indeed be possible. But since unlocked vma 485 * unpinning and unbinding is currently possible, the object can actually 486 * become evictable even if this function returns false. 487 * 488 * Return: true if the object may be evictable. False otherwise. 489 */ 490 bool i915_gem_object_evictable(struct drm_i915_gem_object *obj) 491 { 492 struct i915_vma *vma; 493 int pin_count = atomic_read(&obj->mm.pages_pin_count); 494 495 if (!pin_count) 496 return true; 497 498 spin_lock(&obj->vma.lock); 499 list_for_each_entry(vma, &obj->vma.list, obj_link) { 500 if (i915_vma_is_pinned(vma)) { 501 spin_unlock(&obj->vma.lock); 502 return false; 503 } 504 if (atomic_read(&vma->pages_count)) 505 pin_count--; 506 } 507 spin_unlock(&obj->vma.lock); 508 GEM_WARN_ON(pin_count < 0); 509 510 return pin_count == 0; 511 } 512 513 /** 514 * i915_gem_object_migratable - Whether the object is migratable out of the 515 * current region. 516 * @obj: Pointer to the object. 517 * 518 * Return: Whether the object is allowed to be resident in other 519 * regions than the current while pages are present. 520 */ 521 bool i915_gem_object_migratable(struct drm_i915_gem_object *obj) 522 { 523 struct intel_memory_region *mr = READ_ONCE(obj->mm.region); 524 525 if (!mr) 526 return false; 527 528 return obj->mm.n_placements > 1; 529 } 530 531 /** 532 * i915_gem_object_has_struct_page - Whether the object is page-backed 533 * @obj: The object to query. 534 * 535 * This function should only be called while the object is locked or pinned, 536 * otherwise the page backing may change under the caller. 537 * 538 * Return: True if page-backed, false otherwise. 539 */ 540 bool i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) 541 { 542 #ifdef CONFIG_LOCKDEP 543 if (IS_DGFX(to_i915(obj->base.dev)) && 544 i915_gem_object_evictable((void __force *)obj)) 545 assert_object_held_shared(obj); 546 #endif 547 return obj->mem_flags & I915_BO_FLAG_STRUCT_PAGE; 548 } 549 550 /** 551 * i915_gem_object_has_iomem - Whether the object is iomem-backed 552 * @obj: The object to query. 553 * 554 * This function should only be called while the object is locked or pinned, 555 * otherwise the iomem backing may change under the caller. 556 * 557 * Return: True if iomem-backed, false otherwise. 558 */ 559 bool i915_gem_object_has_iomem(const struct drm_i915_gem_object *obj) 560 { 561 #ifdef CONFIG_LOCKDEP 562 if (IS_DGFX(to_i915(obj->base.dev)) && 563 i915_gem_object_evictable((void __force *)obj)) 564 assert_object_held_shared(obj); 565 #endif 566 return obj->mem_flags & I915_BO_FLAG_IOMEM; 567 } 568 569 /** 570 * i915_gem_object_can_migrate - Whether an object likely can be migrated 571 * 572 * @obj: The object to migrate 573 * @id: The region intended to migrate to 574 * 575 * Check whether the object backend supports migration to the 576 * given region. Note that pinning may affect the ability to migrate as 577 * returned by this function. 578 * 579 * This function is primarily intended as a helper for checking the 580 * possibility to migrate objects and might be slightly less permissive 581 * than i915_gem_object_migrate() when it comes to objects with the 582 * I915_BO_ALLOC_USER flag set. 583 * 584 * Return: true if migration is possible, false otherwise. 585 */ 586 bool i915_gem_object_can_migrate(struct drm_i915_gem_object *obj, 587 enum intel_region_id id) 588 { 589 struct drm_i915_private *i915 = to_i915(obj->base.dev); 590 unsigned int num_allowed = obj->mm.n_placements; 591 struct intel_memory_region *mr; 592 unsigned int i; 593 594 GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN); 595 GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED); 596 597 mr = i915->mm.regions[id]; 598 if (!mr) 599 return false; 600 601 if (!IS_ALIGNED(obj->base.size, mr->min_page_size)) 602 return false; 603 604 if (obj->mm.region == mr) 605 return true; 606 607 if (!i915_gem_object_evictable(obj)) 608 return false; 609 610 if (!obj->ops->migrate) 611 return false; 612 613 if (!(obj->flags & I915_BO_ALLOC_USER)) 614 return true; 615 616 if (num_allowed == 0) 617 return false; 618 619 for (i = 0; i < num_allowed; ++i) { 620 if (mr == obj->mm.placements[i]) 621 return true; 622 } 623 624 return false; 625 } 626 627 /** 628 * i915_gem_object_migrate - Migrate an object to the desired region id 629 * @obj: The object to migrate. 630 * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may 631 * not be successful in evicting other objects to make room for this object. 632 * @id: The region id to migrate to. 633 * 634 * Attempt to migrate the object to the desired memory region. The 635 * object backend must support migration and the object may not be 636 * pinned, (explicitly pinned pages or pinned vmas). The object must 637 * be locked. 638 * On successful completion, the object will have pages pointing to 639 * memory in the new region, but an async migration task may not have 640 * completed yet, and to accomplish that, i915_gem_object_wait_migration() 641 * must be called. 642 * 643 * Note: the @ww parameter is not used yet, but included to make sure 644 * callers put some effort into obtaining a valid ww ctx if one is 645 * available. 646 * 647 * Return: 0 on success. Negative error code on failure. In particular may 648 * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance 649 * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and 650 * -EBUSY if the object is pinned. 651 */ 652 int i915_gem_object_migrate(struct drm_i915_gem_object *obj, 653 struct i915_gem_ww_ctx *ww, 654 enum intel_region_id id) 655 { 656 return __i915_gem_object_migrate(obj, ww, id, obj->flags); 657 } 658 659 /** 660 * __i915_gem_object_migrate - Migrate an object to the desired region id, with 661 * control of the extra flags 662 * @obj: The object to migrate. 663 * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may 664 * not be successful in evicting other objects to make room for this object. 665 * @id: The region id to migrate to. 666 * @flags: The object flags. Normally just obj->flags. 667 * 668 * Attempt to migrate the object to the desired memory region. The 669 * object backend must support migration and the object may not be 670 * pinned, (explicitly pinned pages or pinned vmas). The object must 671 * be locked. 672 * On successful completion, the object will have pages pointing to 673 * memory in the new region, but an async migration task may not have 674 * completed yet, and to accomplish that, i915_gem_object_wait_migration() 675 * must be called. 676 * 677 * Note: the @ww parameter is not used yet, but included to make sure 678 * callers put some effort into obtaining a valid ww ctx if one is 679 * available. 680 * 681 * Return: 0 on success. Negative error code on failure. In particular may 682 * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance 683 * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and 684 * -EBUSY if the object is pinned. 685 */ 686 int __i915_gem_object_migrate(struct drm_i915_gem_object *obj, 687 struct i915_gem_ww_ctx *ww, 688 enum intel_region_id id, 689 unsigned int flags) 690 { 691 struct drm_i915_private *i915 = to_i915(obj->base.dev); 692 struct intel_memory_region *mr; 693 694 GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN); 695 GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED); 696 assert_object_held(obj); 697 698 mr = i915->mm.regions[id]; 699 GEM_BUG_ON(!mr); 700 701 if (!i915_gem_object_can_migrate(obj, id)) 702 return -EINVAL; 703 704 if (!obj->ops->migrate) { 705 if (GEM_WARN_ON(obj->mm.region != mr)) 706 return -EINVAL; 707 return 0; 708 } 709 710 return obj->ops->migrate(obj, mr, flags); 711 } 712 713 /** 714 * i915_gem_object_placement_possible - Check whether the object can be 715 * placed at certain memory type 716 * @obj: Pointer to the object 717 * @type: The memory type to check 718 * 719 * Return: True if the object can be placed in @type. False otherwise. 720 */ 721 bool i915_gem_object_placement_possible(struct drm_i915_gem_object *obj, 722 enum intel_memory_type type) 723 { 724 unsigned int i; 725 726 if (!obj->mm.n_placements) { 727 switch (type) { 728 case INTEL_MEMORY_LOCAL: 729 return i915_gem_object_has_iomem(obj); 730 case INTEL_MEMORY_SYSTEM: 731 return i915_gem_object_has_pages(obj); 732 default: 733 /* Ignore stolen for now */ 734 GEM_BUG_ON(1); 735 return false; 736 } 737 } 738 739 for (i = 0; i < obj->mm.n_placements; i++) { 740 if (obj->mm.placements[i]->type == type) 741 return true; 742 } 743 744 return false; 745 } 746 747 /** 748 * i915_gem_object_needs_ccs_pages - Check whether the object requires extra 749 * pages when placed in system-memory, in order to save and later restore the 750 * flat-CCS aux state when the object is moved between local-memory and 751 * system-memory 752 * @obj: Pointer to the object 753 * 754 * Return: True if the object needs extra ccs pages. False otherwise. 755 */ 756 bool i915_gem_object_needs_ccs_pages(struct drm_i915_gem_object *obj) 757 { 758 bool lmem_placement = false; 759 int i; 760 761 if (!HAS_FLAT_CCS(to_i915(obj->base.dev))) 762 return false; 763 764 for (i = 0; i < obj->mm.n_placements; i++) { 765 /* Compression is not allowed for the objects with smem placement */ 766 if (obj->mm.placements[i]->type == INTEL_MEMORY_SYSTEM) 767 return false; 768 if (!lmem_placement && 769 obj->mm.placements[i]->type == INTEL_MEMORY_LOCAL) 770 lmem_placement = true; 771 } 772 773 return lmem_placement; 774 } 775 776 void i915_gem_init__objects(struct drm_i915_private *i915) 777 { 778 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); 779 } 780 781 void i915_objects_module_exit(void) 782 { 783 kmem_cache_destroy(slab_objects); 784 } 785 786 int __init i915_objects_module_init(void) 787 { 788 slab_objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 789 if (!slab_objects) 790 return -ENOMEM; 791 792 return 0; 793 } 794 795 static const struct drm_gem_object_funcs i915_gem_object_funcs = { 796 .free = i915_gem_free_object, 797 .close = i915_gem_close_object, 798 .export = i915_gem_prime_export, 799 }; 800 801 /** 802 * i915_gem_object_get_moving_fence - Get the object's moving fence if any 803 * @obj: The object whose moving fence to get. 804 * @fence: The resulting fence 805 * 806 * A non-signaled moving fence means that there is an async operation 807 * pending on the object that needs to be waited on before setting up 808 * any GPU- or CPU PTEs to the object's pages. 809 * 810 * Return: Negative error code or 0 for success. 811 */ 812 int i915_gem_object_get_moving_fence(struct drm_i915_gem_object *obj, 813 struct dma_fence **fence) 814 { 815 return dma_resv_get_singleton(obj->base.resv, DMA_RESV_USAGE_KERNEL, 816 fence); 817 } 818 819 /** 820 * i915_gem_object_wait_moving_fence - Wait for the object's moving fence if any 821 * @obj: The object whose moving fence to wait for. 822 * @intr: Whether to wait interruptible. 823 * 824 * If the moving fence signaled without an error, it is detached from the 825 * object and put. 826 * 827 * Return: 0 if successful, -ERESTARTSYS if the wait was interrupted, 828 * negative error code if the async operation represented by the 829 * moving fence failed. 830 */ 831 int i915_gem_object_wait_moving_fence(struct drm_i915_gem_object *obj, 832 bool intr) 833 { 834 long ret; 835 836 assert_object_held(obj); 837 838 ret = dma_resv_wait_timeout(obj->base. resv, DMA_RESV_USAGE_KERNEL, 839 intr, MAX_SCHEDULE_TIMEOUT); 840 if (!ret) 841 ret = -ETIME; 842 else if (ret > 0 && i915_gem_object_has_unknown_state(obj)) 843 ret = -EIO; 844 845 return ret < 0 ? ret : 0; 846 } 847 848 /** 849 * i915_gem_object_has_unknown_state - Return true if the object backing pages are 850 * in an unknown_state. This means that userspace must NEVER be allowed to touch 851 * the pages, with either the GPU or CPU. 852 * 853 * ONLY valid to be called after ensuring that all kernel fences have signalled 854 * (in particular the fence for moving/clearing the object). 855 */ 856 bool i915_gem_object_has_unknown_state(struct drm_i915_gem_object *obj) 857 { 858 /* 859 * The below barrier pairs with the dma_fence_signal() in 860 * __memcpy_work(). We should only sample the unknown_state after all 861 * the kernel fences have signalled. 862 */ 863 smp_rmb(); 864 return obj->mm.unknown_state; 865 } 866 867 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 868 #include "selftests/huge_gem_object.c" 869 #include "selftests/huge_pages.c" 870 #include "selftests/i915_gem_migrate.c" 871 #include "selftests/i915_gem_object.c" 872 #include "selftests/i915_gem_coherency.c" 873 #endif 874