xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_object.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/highmem.h>
26 #include <linux/sched/mm.h>
27 
28 #include <drm/drm_cache.h>
29 
30 #include "display/intel_frontbuffer.h"
31 #include "pxp/intel_pxp.h"
32 
33 #include "i915_drv.h"
34 #include "i915_file_private.h"
35 #include "i915_gem_clflush.h"
36 #include "i915_gem_context.h"
37 #include "i915_gem_dmabuf.h"
38 #include "i915_gem_mman.h"
39 #include "i915_gem_object.h"
40 #include "i915_gem_ttm.h"
41 #include "i915_memcpy.h"
42 #include "i915_trace.h"
43 
44 static struct kmem_cache *slab_objects;
45 
46 static const struct drm_gem_object_funcs i915_gem_object_funcs;
47 
48 struct drm_i915_gem_object *i915_gem_object_alloc(void)
49 {
50 	struct drm_i915_gem_object *obj;
51 
52 	obj = kmem_cache_zalloc(slab_objects, GFP_KERNEL);
53 	if (!obj)
54 		return NULL;
55 	obj->base.funcs = &i915_gem_object_funcs;
56 
57 	return obj;
58 }
59 
60 void i915_gem_object_free(struct drm_i915_gem_object *obj)
61 {
62 	return kmem_cache_free(slab_objects, obj);
63 }
64 
65 void i915_gem_object_init(struct drm_i915_gem_object *obj,
66 			  const struct drm_i915_gem_object_ops *ops,
67 			  struct lock_class_key *key, unsigned flags)
68 {
69 	/*
70 	 * A gem object is embedded both in a struct ttm_buffer_object :/ and
71 	 * in a drm_i915_gem_object. Make sure they are aliased.
72 	 */
73 	BUILD_BUG_ON(offsetof(typeof(*obj), base) !=
74 		     offsetof(typeof(*obj), __do_not_access.base));
75 
76 	spin_lock_init(&obj->vma.lock);
77 	INIT_LIST_HEAD(&obj->vma.list);
78 
79 	INIT_LIST_HEAD(&obj->mm.link);
80 
81 	INIT_LIST_HEAD(&obj->lut_list);
82 	spin_lock_init(&obj->lut_lock);
83 
84 	spin_lock_init(&obj->mmo.lock);
85 	obj->mmo.offsets = RB_ROOT;
86 
87 	init_rcu_head(&obj->rcu);
88 
89 	obj->ops = ops;
90 	GEM_BUG_ON(flags & ~I915_BO_ALLOC_FLAGS);
91 	obj->flags = flags;
92 
93 	obj->mm.madv = I915_MADV_WILLNEED;
94 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
95 	mutex_init(&obj->mm.get_page.lock);
96 	INIT_RADIX_TREE(&obj->mm.get_dma_page.radix, GFP_KERNEL | __GFP_NOWARN);
97 	mutex_init(&obj->mm.get_dma_page.lock);
98 }
99 
100 /**
101  * __i915_gem_object_fini - Clean up a GEM object initialization
102  * @obj: The gem object to cleanup
103  *
104  * This function cleans up gem object fields that are set up by
105  * drm_gem_private_object_init() and i915_gem_object_init().
106  * It's primarily intended as a helper for backends that need to
107  * clean up the gem object in separate steps.
108  */
109 void __i915_gem_object_fini(struct drm_i915_gem_object *obj)
110 {
111 	mutex_destroy(&obj->mm.get_page.lock);
112 	mutex_destroy(&obj->mm.get_dma_page.lock);
113 	dma_resv_fini(&obj->base._resv);
114 }
115 
116 /**
117  * i915_gem_object_set_cache_coherency - Mark up the object's coherency levels
118  * for a given cache_level
119  * @obj: #drm_i915_gem_object
120  * @cache_level: cache level
121  */
122 void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj,
123 					 unsigned int cache_level)
124 {
125 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
126 
127 	obj->cache_level = cache_level;
128 
129 	if (cache_level != I915_CACHE_NONE)
130 		obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ |
131 				       I915_BO_CACHE_COHERENT_FOR_WRITE);
132 	else if (HAS_LLC(i915))
133 		obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ;
134 	else
135 		obj->cache_coherent = 0;
136 
137 	obj->cache_dirty =
138 		!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) &&
139 		!IS_DGFX(i915);
140 }
141 
142 bool i915_gem_object_can_bypass_llc(struct drm_i915_gem_object *obj)
143 {
144 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
145 
146 	/*
147 	 * This is purely from a security perspective, so we simply don't care
148 	 * about non-userspace objects being able to bypass the LLC.
149 	 */
150 	if (!(obj->flags & I915_BO_ALLOC_USER))
151 		return false;
152 
153 	/*
154 	 * EHL and JSL add the 'Bypass LLC' MOCS entry, which should make it
155 	 * possible for userspace to bypass the GTT caching bits set by the
156 	 * kernel, as per the given object cache_level. This is troublesome
157 	 * since the heavy flush we apply when first gathering the pages is
158 	 * skipped if the kernel thinks the object is coherent with the GPU. As
159 	 * a result it might be possible to bypass the cache and read the
160 	 * contents of the page directly, which could be stale data. If it's
161 	 * just a case of userspace shooting themselves in the foot then so be
162 	 * it, but since i915 takes the stance of always zeroing memory before
163 	 * handing it to userspace, we need to prevent this.
164 	 */
165 	return IS_JSL_EHL(i915);
166 }
167 
168 static void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
169 {
170 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
171 	struct drm_i915_file_private *fpriv = file->driver_priv;
172 	struct i915_lut_handle bookmark = {};
173 	struct i915_mmap_offset *mmo, *mn;
174 	struct i915_lut_handle *lut, *ln;
175 	LIST_HEAD(close);
176 
177 	spin_lock(&obj->lut_lock);
178 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
179 		struct i915_gem_context *ctx = lut->ctx;
180 
181 		if (ctx && ctx->file_priv == fpriv) {
182 			i915_gem_context_get(ctx);
183 			list_move(&lut->obj_link, &close);
184 		}
185 
186 		/* Break long locks, and carefully continue on from this spot */
187 		if (&ln->obj_link != &obj->lut_list) {
188 			list_add_tail(&bookmark.obj_link, &ln->obj_link);
189 			if (cond_resched_lock(&obj->lut_lock))
190 				list_safe_reset_next(&bookmark, ln, obj_link);
191 			__list_del_entry(&bookmark.obj_link);
192 		}
193 	}
194 	spin_unlock(&obj->lut_lock);
195 
196 	spin_lock(&obj->mmo.lock);
197 	rbtree_postorder_for_each_entry_safe(mmo, mn, &obj->mmo.offsets, offset)
198 		drm_vma_node_revoke(&mmo->vma_node, file);
199 	spin_unlock(&obj->mmo.lock);
200 
201 	list_for_each_entry_safe(lut, ln, &close, obj_link) {
202 		struct i915_gem_context *ctx = lut->ctx;
203 		struct i915_vma *vma;
204 
205 		/*
206 		 * We allow the process to have multiple handles to the same
207 		 * vma, in the same fd namespace, by virtue of flink/open.
208 		 */
209 
210 		mutex_lock(&ctx->lut_mutex);
211 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
212 		if (vma) {
213 			GEM_BUG_ON(vma->obj != obj);
214 			GEM_BUG_ON(!atomic_read(&vma->open_count));
215 			i915_vma_close(vma);
216 		}
217 		mutex_unlock(&ctx->lut_mutex);
218 
219 		i915_gem_context_put(lut->ctx);
220 		i915_lut_handle_free(lut);
221 		i915_gem_object_put(obj);
222 	}
223 }
224 
225 void __i915_gem_free_object_rcu(struct rcu_head *head)
226 {
227 	struct drm_i915_gem_object *obj =
228 		container_of(head, typeof(*obj), rcu);
229 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
230 
231 	i915_gem_object_free(obj);
232 
233 	GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
234 	atomic_dec(&i915->mm.free_count);
235 }
236 
237 static void __i915_gem_object_free_mmaps(struct drm_i915_gem_object *obj)
238 {
239 	/* Skip serialisation and waking the device if known to be not used. */
240 
241 	if (obj->userfault_count)
242 		i915_gem_object_release_mmap_gtt(obj);
243 
244 	if (!RB_EMPTY_ROOT(&obj->mmo.offsets)) {
245 		struct i915_mmap_offset *mmo, *mn;
246 
247 		i915_gem_object_release_mmap_offset(obj);
248 
249 		rbtree_postorder_for_each_entry_safe(mmo, mn,
250 						     &obj->mmo.offsets,
251 						     offset) {
252 			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
253 					      &mmo->vma_node);
254 			kfree(mmo);
255 		}
256 		obj->mmo.offsets = RB_ROOT;
257 	}
258 }
259 
260 /**
261  * __i915_gem_object_pages_fini - Clean up pages use of a gem object
262  * @obj: The gem object to clean up
263  *
264  * This function cleans up usage of the object mm.pages member. It
265  * is intended for backends that need to clean up a gem object in
266  * separate steps and needs to be called when the object is idle before
267  * the object's backing memory is freed.
268  */
269 void __i915_gem_object_pages_fini(struct drm_i915_gem_object *obj)
270 {
271 	assert_object_held(obj);
272 
273 	if (!list_empty(&obj->vma.list)) {
274 		struct i915_vma *vma;
275 
276 		spin_lock(&obj->vma.lock);
277 		while ((vma = list_first_entry_or_null(&obj->vma.list,
278 						       struct i915_vma,
279 						       obj_link))) {
280 			GEM_BUG_ON(vma->obj != obj);
281 			spin_unlock(&obj->vma.lock);
282 
283 			i915_vma_destroy(vma);
284 
285 			spin_lock(&obj->vma.lock);
286 		}
287 		spin_unlock(&obj->vma.lock);
288 	}
289 
290 	__i915_gem_object_free_mmaps(obj);
291 
292 	atomic_set(&obj->mm.pages_pin_count, 0);
293 	__i915_gem_object_put_pages(obj);
294 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
295 }
296 
297 void __i915_gem_free_object(struct drm_i915_gem_object *obj)
298 {
299 	trace_i915_gem_object_destroy(obj);
300 
301 	GEM_BUG_ON(!list_empty(&obj->lut_list));
302 
303 	bitmap_free(obj->bit_17);
304 
305 	if (obj->base.import_attach)
306 		drm_prime_gem_destroy(&obj->base, NULL);
307 
308 	drm_gem_free_mmap_offset(&obj->base);
309 
310 	if (obj->ops->release)
311 		obj->ops->release(obj);
312 
313 	if (obj->mm.n_placements > 1)
314 		kfree(obj->mm.placements);
315 
316 	if (obj->shares_resv_from)
317 		i915_vm_resv_put(obj->shares_resv_from);
318 
319 	__i915_gem_object_fini(obj);
320 }
321 
322 static void __i915_gem_free_objects(struct drm_i915_private *i915,
323 				    struct llist_node *freed)
324 {
325 	struct drm_i915_gem_object *obj, *on;
326 
327 	llist_for_each_entry_safe(obj, on, freed, freed) {
328 		might_sleep();
329 		if (obj->ops->delayed_free) {
330 			obj->ops->delayed_free(obj);
331 			continue;
332 		}
333 
334 		if (!i915_gem_object_trylock(obj, NULL)) {
335 			/* busy, toss it back to the pile */
336 			if (llist_add(&obj->freed, &i915->mm.free_list))
337 				queue_delayed_work(i915->wq, &i915->mm.free_work, msecs_to_jiffies(10));
338 			continue;
339 		}
340 
341 		__i915_gem_object_pages_fini(obj);
342 		i915_gem_object_unlock(obj);
343 		__i915_gem_free_object(obj);
344 
345 		/* But keep the pointer alive for RCU-protected lookups */
346 		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
347 		cond_resched();
348 	}
349 }
350 
351 void i915_gem_flush_free_objects(struct drm_i915_private *i915)
352 {
353 	struct llist_node *freed = llist_del_all(&i915->mm.free_list);
354 
355 	if (unlikely(freed))
356 		__i915_gem_free_objects(i915, freed);
357 }
358 
359 static void __i915_gem_free_work(struct work_struct *work)
360 {
361 	struct drm_i915_private *i915 =
362 		container_of(work, struct drm_i915_private, mm.free_work.work);
363 
364 	i915_gem_flush_free_objects(i915);
365 }
366 
367 static void i915_gem_free_object(struct drm_gem_object *gem_obj)
368 {
369 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
370 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
371 
372 	GEM_BUG_ON(i915_gem_object_is_framebuffer(obj));
373 
374 	/*
375 	 * Before we free the object, make sure any pure RCU-only
376 	 * read-side critical sections are complete, e.g.
377 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
378 	 * lookup see i915_gem_object_lookup_rcu().
379 	 */
380 	atomic_inc(&i915->mm.free_count);
381 
382 	/*
383 	 * Since we require blocking on struct_mutex to unbind the freed
384 	 * object from the GPU before releasing resources back to the
385 	 * system, we can not do that directly from the RCU callback (which may
386 	 * be a softirq context), but must instead then defer that work onto a
387 	 * kthread. We use the RCU callback rather than move the freed object
388 	 * directly onto the work queue so that we can mix between using the
389 	 * worker and performing frees directly from subsequent allocations for
390 	 * crude but effective memory throttling.
391 	 */
392 
393 	if (llist_add(&obj->freed, &i915->mm.free_list))
394 		queue_delayed_work(i915->wq, &i915->mm.free_work, 0);
395 }
396 
397 void __i915_gem_object_flush_frontbuffer(struct drm_i915_gem_object *obj,
398 					 enum fb_op_origin origin)
399 {
400 	struct intel_frontbuffer *front;
401 
402 	front = __intel_frontbuffer_get(obj);
403 	if (front) {
404 		intel_frontbuffer_flush(front, origin);
405 		intel_frontbuffer_put(front);
406 	}
407 }
408 
409 void __i915_gem_object_invalidate_frontbuffer(struct drm_i915_gem_object *obj,
410 					      enum fb_op_origin origin)
411 {
412 	struct intel_frontbuffer *front;
413 
414 	front = __intel_frontbuffer_get(obj);
415 	if (front) {
416 		intel_frontbuffer_invalidate(front, origin);
417 		intel_frontbuffer_put(front);
418 	}
419 }
420 
421 static void
422 i915_gem_object_read_from_page_kmap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size)
423 {
424 	void *src_map;
425 	void *src_ptr;
426 
427 	src_map = kmap_atomic(i915_gem_object_get_page(obj, offset >> PAGE_SHIFT));
428 
429 	src_ptr = src_map + offset_in_page(offset);
430 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
431 		drm_clflush_virt_range(src_ptr, size);
432 	memcpy(dst, src_ptr, size);
433 
434 	kunmap_atomic(src_map);
435 }
436 
437 static void
438 i915_gem_object_read_from_page_iomap(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size)
439 {
440 	void __iomem *src_map;
441 	void __iomem *src_ptr;
442 	dma_addr_t dma = i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT);
443 
444 	src_map = io_mapping_map_wc(&obj->mm.region->iomap,
445 				    dma - obj->mm.region->region.start,
446 				    PAGE_SIZE);
447 
448 	src_ptr = src_map + offset_in_page(offset);
449 	if (!i915_memcpy_from_wc(dst, (void __force *)src_ptr, size))
450 		memcpy_fromio(dst, src_ptr, size);
451 
452 	io_mapping_unmap(src_map);
453 }
454 
455 /**
456  * i915_gem_object_read_from_page - read data from the page of a GEM object
457  * @obj: GEM object to read from
458  * @offset: offset within the object
459  * @dst: buffer to store the read data
460  * @size: size to read
461  *
462  * Reads data from @obj at the specified offset. The requested region to read
463  * from can't cross a page boundary. The caller must ensure that @obj pages
464  * are pinned and that @obj is synced wrt. any related writes.
465  *
466  * Return: %0 on success or -ENODEV if the type of @obj's backing store is
467  * unsupported.
468  */
469 int i915_gem_object_read_from_page(struct drm_i915_gem_object *obj, u64 offset, void *dst, int size)
470 {
471 	GEM_BUG_ON(offset >= obj->base.size);
472 	GEM_BUG_ON(offset_in_page(offset) > PAGE_SIZE - size);
473 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
474 
475 	if (i915_gem_object_has_struct_page(obj))
476 		i915_gem_object_read_from_page_kmap(obj, offset, dst, size);
477 	else if (i915_gem_object_has_iomem(obj))
478 		i915_gem_object_read_from_page_iomap(obj, offset, dst, size);
479 	else
480 		return -ENODEV;
481 
482 	return 0;
483 }
484 
485 /**
486  * i915_gem_object_evictable - Whether object is likely evictable after unbind.
487  * @obj: The object to check
488  *
489  * This function checks whether the object is likely unvictable after unbind.
490  * If the object is not locked when checking, the result is only advisory.
491  * If the object is locked when checking, and the function returns true,
492  * then an eviction should indeed be possible. But since unlocked vma
493  * unpinning and unbinding is currently possible, the object can actually
494  * become evictable even if this function returns false.
495  *
496  * Return: true if the object may be evictable. False otherwise.
497  */
498 bool i915_gem_object_evictable(struct drm_i915_gem_object *obj)
499 {
500 	struct i915_vma *vma;
501 	int pin_count = atomic_read(&obj->mm.pages_pin_count);
502 
503 	if (!pin_count)
504 		return true;
505 
506 	spin_lock(&obj->vma.lock);
507 	list_for_each_entry(vma, &obj->vma.list, obj_link) {
508 		if (i915_vma_is_pinned(vma)) {
509 			spin_unlock(&obj->vma.lock);
510 			return false;
511 		}
512 		if (atomic_read(&vma->pages_count))
513 			pin_count--;
514 	}
515 	spin_unlock(&obj->vma.lock);
516 	GEM_WARN_ON(pin_count < 0);
517 
518 	return pin_count == 0;
519 }
520 
521 /**
522  * i915_gem_object_migratable - Whether the object is migratable out of the
523  * current region.
524  * @obj: Pointer to the object.
525  *
526  * Return: Whether the object is allowed to be resident in other
527  * regions than the current while pages are present.
528  */
529 bool i915_gem_object_migratable(struct drm_i915_gem_object *obj)
530 {
531 	struct intel_memory_region *mr = READ_ONCE(obj->mm.region);
532 
533 	if (!mr)
534 		return false;
535 
536 	return obj->mm.n_placements > 1;
537 }
538 
539 /**
540  * i915_gem_object_has_struct_page - Whether the object is page-backed
541  * @obj: The object to query.
542  *
543  * This function should only be called while the object is locked or pinned,
544  * otherwise the page backing may change under the caller.
545  *
546  * Return: True if page-backed, false otherwise.
547  */
548 bool i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
549 {
550 #ifdef CONFIG_LOCKDEP
551 	if (IS_DGFX(to_i915(obj->base.dev)) &&
552 	    i915_gem_object_evictable((void __force *)obj))
553 		assert_object_held_shared(obj);
554 #endif
555 	return obj->mem_flags & I915_BO_FLAG_STRUCT_PAGE;
556 }
557 
558 /**
559  * i915_gem_object_has_iomem - Whether the object is iomem-backed
560  * @obj: The object to query.
561  *
562  * This function should only be called while the object is locked or pinned,
563  * otherwise the iomem backing may change under the caller.
564  *
565  * Return: True if iomem-backed, false otherwise.
566  */
567 bool i915_gem_object_has_iomem(const struct drm_i915_gem_object *obj)
568 {
569 #ifdef CONFIG_LOCKDEP
570 	if (IS_DGFX(to_i915(obj->base.dev)) &&
571 	    i915_gem_object_evictable((void __force *)obj))
572 		assert_object_held_shared(obj);
573 #endif
574 	return obj->mem_flags & I915_BO_FLAG_IOMEM;
575 }
576 
577 /**
578  * i915_gem_object_can_migrate - Whether an object likely can be migrated
579  *
580  * @obj: The object to migrate
581  * @id: The region intended to migrate to
582  *
583  * Check whether the object backend supports migration to the
584  * given region. Note that pinning may affect the ability to migrate as
585  * returned by this function.
586  *
587  * This function is primarily intended as a helper for checking the
588  * possibility to migrate objects and might be slightly less permissive
589  * than i915_gem_object_migrate() when it comes to objects with the
590  * I915_BO_ALLOC_USER flag set.
591  *
592  * Return: true if migration is possible, false otherwise.
593  */
594 bool i915_gem_object_can_migrate(struct drm_i915_gem_object *obj,
595 				 enum intel_region_id id)
596 {
597 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
598 	unsigned int num_allowed = obj->mm.n_placements;
599 	struct intel_memory_region *mr;
600 	unsigned int i;
601 
602 	GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN);
603 	GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED);
604 
605 	mr = i915->mm.regions[id];
606 	if (!mr)
607 		return false;
608 
609 	if (!IS_ALIGNED(obj->base.size, mr->min_page_size))
610 		return false;
611 
612 	if (obj->mm.region == mr)
613 		return true;
614 
615 	if (!i915_gem_object_evictable(obj))
616 		return false;
617 
618 	if (!obj->ops->migrate)
619 		return false;
620 
621 	if (!(obj->flags & I915_BO_ALLOC_USER))
622 		return true;
623 
624 	if (num_allowed == 0)
625 		return false;
626 
627 	for (i = 0; i < num_allowed; ++i) {
628 		if (mr == obj->mm.placements[i])
629 			return true;
630 	}
631 
632 	return false;
633 }
634 
635 /**
636  * i915_gem_object_migrate - Migrate an object to the desired region id
637  * @obj: The object to migrate.
638  * @ww: An optional struct i915_gem_ww_ctx. If NULL, the backend may
639  * not be successful in evicting other objects to make room for this object.
640  * @id: The region id to migrate to.
641  *
642  * Attempt to migrate the object to the desired memory region. The
643  * object backend must support migration and the object may not be
644  * pinned, (explicitly pinned pages or pinned vmas). The object must
645  * be locked.
646  * On successful completion, the object will have pages pointing to
647  * memory in the new region, but an async migration task may not have
648  * completed yet, and to accomplish that, i915_gem_object_wait_migration()
649  * must be called.
650  *
651  * Note: the @ww parameter is not used yet, but included to make sure
652  * callers put some effort into obtaining a valid ww ctx if one is
653  * available.
654  *
655  * Return: 0 on success. Negative error code on failure. In particular may
656  * return -ENXIO on lack of region space, -EDEADLK for deadlock avoidance
657  * if @ww is set, -EINTR or -ERESTARTSYS if signal pending, and
658  * -EBUSY if the object is pinned.
659  */
660 int i915_gem_object_migrate(struct drm_i915_gem_object *obj,
661 			    struct i915_gem_ww_ctx *ww,
662 			    enum intel_region_id id)
663 {
664 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
665 	struct intel_memory_region *mr;
666 
667 	GEM_BUG_ON(id >= INTEL_REGION_UNKNOWN);
668 	GEM_BUG_ON(obj->mm.madv != I915_MADV_WILLNEED);
669 	assert_object_held(obj);
670 
671 	mr = i915->mm.regions[id];
672 	GEM_BUG_ON(!mr);
673 
674 	if (!i915_gem_object_can_migrate(obj, id))
675 		return -EINVAL;
676 
677 	if (!obj->ops->migrate) {
678 		if (GEM_WARN_ON(obj->mm.region != mr))
679 			return -EINVAL;
680 		return 0;
681 	}
682 
683 	return obj->ops->migrate(obj, mr);
684 }
685 
686 /**
687  * i915_gem_object_placement_possible - Check whether the object can be
688  * placed at certain memory type
689  * @obj: Pointer to the object
690  * @type: The memory type to check
691  *
692  * Return: True if the object can be placed in @type. False otherwise.
693  */
694 bool i915_gem_object_placement_possible(struct drm_i915_gem_object *obj,
695 					enum intel_memory_type type)
696 {
697 	unsigned int i;
698 
699 	if (!obj->mm.n_placements) {
700 		switch (type) {
701 		case INTEL_MEMORY_LOCAL:
702 			return i915_gem_object_has_iomem(obj);
703 		case INTEL_MEMORY_SYSTEM:
704 			return i915_gem_object_has_pages(obj);
705 		default:
706 			/* Ignore stolen for now */
707 			GEM_BUG_ON(1);
708 			return false;
709 		}
710 	}
711 
712 	for (i = 0; i < obj->mm.n_placements; i++) {
713 		if (obj->mm.placements[i]->type == type)
714 			return true;
715 	}
716 
717 	return false;
718 }
719 
720 /**
721  * i915_gem_object_needs_ccs_pages - Check whether the object requires extra
722  * pages when placed in system-memory, in order to save and later restore the
723  * flat-CCS aux state when the object is moved between local-memory and
724  * system-memory
725  * @obj: Pointer to the object
726  *
727  * Return: True if the object needs extra ccs pages. False otherwise.
728  */
729 bool i915_gem_object_needs_ccs_pages(struct drm_i915_gem_object *obj)
730 {
731 	bool lmem_placement = false;
732 	int i;
733 
734 	for (i = 0; i < obj->mm.n_placements; i++) {
735 		/* Compression is not allowed for the objects with smem placement */
736 		if (obj->mm.placements[i]->type == INTEL_MEMORY_SYSTEM)
737 			return false;
738 		if (!lmem_placement &&
739 		    obj->mm.placements[i]->type == INTEL_MEMORY_LOCAL)
740 			lmem_placement = true;
741 	}
742 
743 	return lmem_placement;
744 }
745 
746 void i915_gem_init__objects(struct drm_i915_private *i915)
747 {
748 	INIT_DELAYED_WORK(&i915->mm.free_work, __i915_gem_free_work);
749 }
750 
751 void i915_objects_module_exit(void)
752 {
753 	kmem_cache_destroy(slab_objects);
754 }
755 
756 int __init i915_objects_module_init(void)
757 {
758 	slab_objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
759 	if (!slab_objects)
760 		return -ENOMEM;
761 
762 	return 0;
763 }
764 
765 static const struct drm_gem_object_funcs i915_gem_object_funcs = {
766 	.free = i915_gem_free_object,
767 	.close = i915_gem_close_object,
768 	.export = i915_gem_prime_export,
769 };
770 
771 /**
772  * i915_gem_object_get_moving_fence - Get the object's moving fence if any
773  * @obj: The object whose moving fence to get.
774  * @fence: The resulting fence
775  *
776  * A non-signaled moving fence means that there is an async operation
777  * pending on the object that needs to be waited on before setting up
778  * any GPU- or CPU PTEs to the object's pages.
779  *
780  * Return: Negative error code or 0 for success.
781  */
782 int i915_gem_object_get_moving_fence(struct drm_i915_gem_object *obj,
783 				     struct dma_fence **fence)
784 {
785 	return dma_resv_get_singleton(obj->base.resv, DMA_RESV_USAGE_KERNEL,
786 				      fence);
787 }
788 
789 /**
790  * i915_gem_object_wait_moving_fence - Wait for the object's moving fence if any
791  * @obj: The object whose moving fence to wait for.
792  * @intr: Whether to wait interruptible.
793  *
794  * If the moving fence signaled without an error, it is detached from the
795  * object and put.
796  *
797  * Return: 0 if successful, -ERESTARTSYS if the wait was interrupted,
798  * negative error code if the async operation represented by the
799  * moving fence failed.
800  */
801 int i915_gem_object_wait_moving_fence(struct drm_i915_gem_object *obj,
802 				      bool intr)
803 {
804 	long ret;
805 
806 	assert_object_held(obj);
807 
808 	ret = dma_resv_wait_timeout(obj->base. resv, DMA_RESV_USAGE_KERNEL,
809 				    intr, MAX_SCHEDULE_TIMEOUT);
810 	if (!ret)
811 		ret = -ETIME;
812 	else if (ret > 0 && i915_gem_object_has_unknown_state(obj))
813 		ret = -EIO;
814 
815 	return ret < 0 ? ret : 0;
816 }
817 
818 /**
819  * i915_gem_object_has_unknown_state - Return true if the object backing pages are
820  * in an unknown_state. This means that userspace must NEVER be allowed to touch
821  * the pages, with either the GPU or CPU.
822  *
823  * ONLY valid to be called after ensuring that all kernel fences have signalled
824  * (in particular the fence for moving/clearing the object).
825  */
826 bool i915_gem_object_has_unknown_state(struct drm_i915_gem_object *obj)
827 {
828 	/*
829 	 * The below barrier pairs with the dma_fence_signal() in
830 	 * __memcpy_work(). We should only sample the unknown_state after all
831 	 * the kernel fences have signalled.
832 	 */
833 	smp_rmb();
834 	return obj->mm.unknown_state;
835 }
836 
837 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
838 #include "selftests/huge_gem_object.c"
839 #include "selftests/huge_pages.c"
840 #include "selftests/i915_gem_migrate.c"
841 #include "selftests/i915_gem_object.c"
842 #include "selftests/i915_gem_coherency.c"
843 #endif
844