1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include <linux/anon_inodes.h> 8 #include <linux/mman.h> 9 #include <linux/pfn_t.h> 10 #include <linux/sizes.h> 11 12 #include <drm/drm_cache.h> 13 14 #include "gt/intel_gt.h" 15 #include "gt/intel_gt_requests.h" 16 17 #include "i915_drv.h" 18 #include "i915_gem_evict.h" 19 #include "i915_gem_gtt.h" 20 #include "i915_gem_ioctls.h" 21 #include "i915_gem_object.h" 22 #include "i915_gem_mman.h" 23 #include "i915_mm.h" 24 #include "i915_trace.h" 25 #include "i915_user_extensions.h" 26 #include "i915_gem_ttm.h" 27 #include "i915_vma.h" 28 29 static inline bool 30 __vma_matches(struct vm_area_struct *vma, struct file *filp, 31 unsigned long addr, unsigned long size) 32 { 33 if (vma->vm_file != filp) 34 return false; 35 36 return vma->vm_start == addr && 37 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size); 38 } 39 40 /** 41 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 42 * it is mapped to. 43 * @dev: drm device 44 * @data: ioctl data blob 45 * @file: drm file 46 * 47 * While the mapping holds a reference on the contents of the object, it doesn't 48 * imply a ref on the object itself. 49 * 50 * IMPORTANT: 51 * 52 * DRM driver writers who look a this function as an example for how to do GEM 53 * mmap support, please don't implement mmap support like here. The modern way 54 * to implement DRM mmap support is with an mmap offset ioctl (like 55 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 56 * That way debug tooling like valgrind will understand what's going on, hiding 57 * the mmap call in a driver private ioctl will break that. The i915 driver only 58 * does cpu mmaps this way because we didn't know better. 59 */ 60 int 61 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 62 struct drm_file *file) 63 { 64 struct drm_i915_private *i915 = to_i915(dev); 65 struct drm_i915_gem_mmap *args = data; 66 struct drm_i915_gem_object *obj; 67 unsigned long addr; 68 69 /* 70 * mmap ioctl is disallowed for all discrete platforms, 71 * and for all platforms with GRAPHICS_VER > 12. 72 */ 73 if (IS_DGFX(i915) || GRAPHICS_VER_FULL(i915) > IP_VER(12, 0)) 74 return -EOPNOTSUPP; 75 76 if (args->flags & ~(I915_MMAP_WC)) 77 return -EINVAL; 78 79 if (args->flags & I915_MMAP_WC && !pat_enabled()) 80 return -ENODEV; 81 82 obj = i915_gem_object_lookup(file, args->handle); 83 if (!obj) 84 return -ENOENT; 85 86 /* prime objects have no backing filp to GEM mmap 87 * pages from. 88 */ 89 if (!obj->base.filp) { 90 addr = -ENXIO; 91 goto err; 92 } 93 94 if (range_overflows(args->offset, args->size, (u64)obj->base.size)) { 95 addr = -EINVAL; 96 goto err; 97 } 98 99 addr = vm_mmap(obj->base.filp, 0, args->size, 100 PROT_READ | PROT_WRITE, MAP_SHARED, 101 args->offset); 102 if (IS_ERR_VALUE(addr)) 103 goto err; 104 105 if (args->flags & I915_MMAP_WC) { 106 struct mm_struct *mm = current->mm; 107 struct vm_area_struct *vma; 108 109 if (mmap_write_lock_killable(mm)) { 110 addr = -EINTR; 111 goto err; 112 } 113 vma = find_vma(mm, addr); 114 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size)) 115 vma->vm_page_prot = 116 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 117 else 118 addr = -ENOMEM; 119 mmap_write_unlock(mm); 120 if (IS_ERR_VALUE(addr)) 121 goto err; 122 } 123 i915_gem_object_put(obj); 124 125 args->addr_ptr = (u64)addr; 126 return 0; 127 128 err: 129 i915_gem_object_put(obj); 130 return addr; 131 } 132 133 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj) 134 { 135 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 136 } 137 138 /** 139 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 140 * 141 * A history of the GTT mmap interface: 142 * 143 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 144 * aligned and suitable for fencing, and still fit into the available 145 * mappable space left by the pinned display objects. A classic problem 146 * we called the page-fault-of-doom where we would ping-pong between 147 * two objects that could not fit inside the GTT and so the memcpy 148 * would page one object in at the expense of the other between every 149 * single byte. 150 * 151 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 152 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 153 * object is too large for the available space (or simply too large 154 * for the mappable aperture!), a view is created instead and faulted 155 * into userspace. (This view is aligned and sized appropriately for 156 * fenced access.) 157 * 158 * 2 - Recognise WC as a separate cache domain so that we can flush the 159 * delayed writes via GTT before performing direct access via WC. 160 * 161 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial 162 * pagefault; swapin remains transparent. 163 * 164 * 4 - Support multiple fault handlers per object depending on object's 165 * backing storage (a.k.a. MMAP_OFFSET). 166 * 167 * Restrictions: 168 * 169 * * snoopable objects cannot be accessed via the GTT. It can cause machine 170 * hangs on some architectures, corruption on others. An attempt to service 171 * a GTT page fault from a snoopable object will generate a SIGBUS. 172 * 173 * * the object must be able to fit into RAM (physical memory, though no 174 * limited to the mappable aperture). 175 * 176 * 177 * Caveats: 178 * 179 * * a new GTT page fault will synchronize rendering from the GPU and flush 180 * all data to system memory. Subsequent access will not be synchronized. 181 * 182 * * all mappings are revoked on runtime device suspend. 183 * 184 * * there are only 8, 16 or 32 fence registers to share between all users 185 * (older machines require fence register for display and blitter access 186 * as well). Contention of the fence registers will cause the previous users 187 * to be unmapped and any new access will generate new page faults. 188 * 189 * * running out of memory while servicing a fault may generate a SIGBUS, 190 * rather than the expected SIGSEGV. 191 */ 192 int i915_gem_mmap_gtt_version(void) 193 { 194 return 4; 195 } 196 197 static inline struct i915_gtt_view 198 compute_partial_view(const struct drm_i915_gem_object *obj, 199 pgoff_t page_offset, 200 unsigned int chunk) 201 { 202 struct i915_gtt_view view; 203 204 if (i915_gem_object_is_tiled(obj)) 205 chunk = roundup(chunk, tile_row_pages(obj) ?: 1); 206 207 view.type = I915_GTT_VIEW_PARTIAL; 208 view.partial.offset = rounddown(page_offset, chunk); 209 view.partial.size = 210 min_t(unsigned int, chunk, 211 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 212 213 /* If the partial covers the entire object, just create a normal VMA. */ 214 if (chunk >= obj->base.size >> PAGE_SHIFT) 215 view.type = I915_GTT_VIEW_NORMAL; 216 217 return view; 218 } 219 220 static vm_fault_t i915_error_to_vmf_fault(int err) 221 { 222 switch (err) { 223 default: 224 WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err); 225 fallthrough; 226 case -EIO: /* shmemfs failure from swap device */ 227 case -EFAULT: /* purged object */ 228 case -ENODEV: /* bad object, how did you get here! */ 229 case -ENXIO: /* unable to access backing store (on device) */ 230 return VM_FAULT_SIGBUS; 231 232 case -ENOMEM: /* our allocation failure */ 233 return VM_FAULT_OOM; 234 235 case 0: 236 case -EAGAIN: 237 case -ENOSPC: /* transient failure to evict? */ 238 case -ERESTARTSYS: 239 case -EINTR: 240 case -EBUSY: 241 /* 242 * EBUSY is ok: this just means that another thread 243 * already did the job. 244 */ 245 return VM_FAULT_NOPAGE; 246 } 247 } 248 249 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf) 250 { 251 struct vm_area_struct *area = vmf->vma; 252 struct i915_mmap_offset *mmo = area->vm_private_data; 253 struct drm_i915_gem_object *obj = mmo->obj; 254 resource_size_t iomap; 255 int err; 256 257 /* Sanity check that we allow writing into this object */ 258 if (unlikely(i915_gem_object_is_readonly(obj) && 259 area->vm_flags & VM_WRITE)) 260 return VM_FAULT_SIGBUS; 261 262 if (i915_gem_object_lock_interruptible(obj, NULL)) 263 return VM_FAULT_NOPAGE; 264 265 err = i915_gem_object_pin_pages(obj); 266 if (err) 267 goto out; 268 269 iomap = -1; 270 if (!i915_gem_object_has_struct_page(obj)) { 271 iomap = obj->mm.region->iomap.base; 272 iomap -= obj->mm.region->region.start; 273 } 274 275 /* PTEs are revoked in obj->ops->put_pages() */ 276 err = remap_io_sg(area, 277 area->vm_start, area->vm_end - area->vm_start, 278 obj->mm.pages->sgl, iomap); 279 280 if (area->vm_flags & VM_WRITE) { 281 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 282 obj->mm.dirty = true; 283 } 284 285 i915_gem_object_unpin_pages(obj); 286 287 out: 288 i915_gem_object_unlock(obj); 289 return i915_error_to_vmf_fault(err); 290 } 291 292 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf) 293 { 294 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT) 295 struct vm_area_struct *area = vmf->vma; 296 struct i915_mmap_offset *mmo = area->vm_private_data; 297 struct drm_i915_gem_object *obj = mmo->obj; 298 struct drm_device *dev = obj->base.dev; 299 struct drm_i915_private *i915 = to_i915(dev); 300 struct intel_runtime_pm *rpm = &i915->runtime_pm; 301 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 302 bool write = area->vm_flags & VM_WRITE; 303 struct i915_gem_ww_ctx ww; 304 intel_wakeref_t wakeref; 305 struct i915_vma *vma; 306 pgoff_t page_offset; 307 int srcu; 308 int ret; 309 310 /* We don't use vmf->pgoff since that has the fake offset */ 311 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 312 313 trace_i915_gem_object_fault(obj, page_offset, true, write); 314 315 wakeref = intel_runtime_pm_get(rpm); 316 317 i915_gem_ww_ctx_init(&ww, true); 318 retry: 319 ret = i915_gem_object_lock(obj, &ww); 320 if (ret) 321 goto err_rpm; 322 323 /* Sanity check that we allow writing into this object */ 324 if (i915_gem_object_is_readonly(obj) && write) { 325 ret = -EFAULT; 326 goto err_rpm; 327 } 328 329 ret = i915_gem_object_pin_pages(obj); 330 if (ret) 331 goto err_rpm; 332 333 ret = intel_gt_reset_lock_interruptible(ggtt->vm.gt, &srcu); 334 if (ret) 335 goto err_pages; 336 337 /* Now pin it into the GTT as needed */ 338 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, 339 PIN_MAPPABLE | 340 PIN_NONBLOCK /* NOWARN */ | 341 PIN_NOEVICT); 342 if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) { 343 /* Use a partial view if it is bigger than available space */ 344 struct i915_gtt_view view = 345 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 346 unsigned int flags; 347 348 flags = PIN_MAPPABLE | PIN_NOSEARCH; 349 if (view.type == I915_GTT_VIEW_NORMAL) 350 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */ 351 352 /* 353 * Userspace is now writing through an untracked VMA, abandon 354 * all hope that the hardware is able to track future writes. 355 */ 356 357 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags); 358 if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) { 359 flags = PIN_MAPPABLE; 360 view.type = I915_GTT_VIEW_PARTIAL; 361 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags); 362 } 363 364 /* 365 * The entire mappable GGTT is pinned? Unexpected! 366 * Try to evict the object we locked too, as normally we skip it 367 * due to lack of short term pinning inside execbuf. 368 */ 369 if (vma == ERR_PTR(-ENOSPC)) { 370 ret = mutex_lock_interruptible(&ggtt->vm.mutex); 371 if (!ret) { 372 ret = i915_gem_evict_vm(&ggtt->vm, &ww, NULL); 373 mutex_unlock(&ggtt->vm.mutex); 374 } 375 if (ret) 376 goto err_reset; 377 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags); 378 } 379 } 380 if (IS_ERR(vma)) { 381 ret = PTR_ERR(vma); 382 goto err_reset; 383 } 384 385 /* Access to snoopable pages through the GTT is incoherent. */ 386 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) { 387 ret = -EFAULT; 388 goto err_unpin; 389 } 390 391 ret = i915_vma_pin_fence(vma); 392 if (ret) 393 goto err_unpin; 394 395 /* Finally, remap it using the new GTT offset */ 396 ret = remap_io_mapping(area, 397 area->vm_start + (vma->gtt_view.partial.offset << PAGE_SHIFT), 398 (ggtt->gmadr.start + i915_ggtt_offset(vma)) >> PAGE_SHIFT, 399 min_t(u64, vma->size, area->vm_end - area->vm_start), 400 &ggtt->iomap); 401 if (ret) 402 goto err_fence; 403 404 assert_rpm_wakelock_held(rpm); 405 406 /* Mark as being mmapped into userspace for later revocation */ 407 mutex_lock(&to_gt(i915)->ggtt->vm.mutex); 408 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 409 list_add(&obj->userfault_link, &to_gt(i915)->ggtt->userfault_list); 410 mutex_unlock(&to_gt(i915)->ggtt->vm.mutex); 411 412 /* Track the mmo associated with the fenced vma */ 413 vma->mmo = mmo; 414 415 if (CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND) 416 intel_wakeref_auto(&i915->runtime_pm.userfault_wakeref, 417 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 418 419 if (write) { 420 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 421 i915_vma_set_ggtt_write(vma); 422 obj->mm.dirty = true; 423 } 424 425 err_fence: 426 i915_vma_unpin_fence(vma); 427 err_unpin: 428 __i915_vma_unpin(vma); 429 err_reset: 430 intel_gt_reset_unlock(ggtt->vm.gt, srcu); 431 err_pages: 432 i915_gem_object_unpin_pages(obj); 433 err_rpm: 434 if (ret == -EDEADLK) { 435 ret = i915_gem_ww_ctx_backoff(&ww); 436 if (!ret) 437 goto retry; 438 } 439 i915_gem_ww_ctx_fini(&ww); 440 intel_runtime_pm_put(rpm, wakeref); 441 return i915_error_to_vmf_fault(ret); 442 } 443 444 static int 445 vm_access(struct vm_area_struct *area, unsigned long addr, 446 void *buf, int len, int write) 447 { 448 struct i915_mmap_offset *mmo = area->vm_private_data; 449 struct drm_i915_gem_object *obj = mmo->obj; 450 struct i915_gem_ww_ctx ww; 451 void *vaddr; 452 int err = 0; 453 454 if (i915_gem_object_is_readonly(obj) && write) 455 return -EACCES; 456 457 addr -= area->vm_start; 458 if (range_overflows_t(u64, addr, len, obj->base.size)) 459 return -EINVAL; 460 461 i915_gem_ww_ctx_init(&ww, true); 462 retry: 463 err = i915_gem_object_lock(obj, &ww); 464 if (err) 465 goto out; 466 467 /* As this is primarily for debugging, let's focus on simplicity */ 468 vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC); 469 if (IS_ERR(vaddr)) { 470 err = PTR_ERR(vaddr); 471 goto out; 472 } 473 474 if (write) { 475 memcpy(vaddr + addr, buf, len); 476 __i915_gem_object_flush_map(obj, addr, len); 477 } else { 478 memcpy(buf, vaddr + addr, len); 479 } 480 481 i915_gem_object_unpin_map(obj); 482 out: 483 if (err == -EDEADLK) { 484 err = i915_gem_ww_ctx_backoff(&ww); 485 if (!err) 486 goto retry; 487 } 488 i915_gem_ww_ctx_fini(&ww); 489 490 if (err) 491 return err; 492 493 return len; 494 } 495 496 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj) 497 { 498 struct i915_vma *vma; 499 500 GEM_BUG_ON(!obj->userfault_count); 501 502 for_each_ggtt_vma(vma, obj) 503 i915_vma_revoke_mmap(vma); 504 505 GEM_BUG_ON(obj->userfault_count); 506 } 507 508 /* 509 * It is vital that we remove the page mapping if we have mapped a tiled 510 * object through the GTT and then lose the fence register due to 511 * resource pressure. Similarly if the object has been moved out of the 512 * aperture, than pages mapped into userspace must be revoked. Removing the 513 * mapping will then trigger a page fault on the next user access, allowing 514 * fixup by vm_fault_gtt(). 515 */ 516 void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj) 517 { 518 struct drm_i915_private *i915 = to_i915(obj->base.dev); 519 intel_wakeref_t wakeref; 520 521 /* 522 * Serialisation between user GTT access and our code depends upon 523 * revoking the CPU's PTE whilst the mutex is held. The next user 524 * pagefault then has to wait until we release the mutex. 525 * 526 * Note that RPM complicates somewhat by adding an additional 527 * requirement that operations to the GGTT be made holding the RPM 528 * wakeref. 529 */ 530 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 531 mutex_lock(&to_gt(i915)->ggtt->vm.mutex); 532 533 if (!obj->userfault_count) 534 goto out; 535 536 __i915_gem_object_release_mmap_gtt(obj); 537 538 /* 539 * Ensure that the CPU's PTE are revoked and there are not outstanding 540 * memory transactions from userspace before we return. The TLB 541 * flushing implied above by changing the PTE above *should* be 542 * sufficient, an extra barrier here just provides us with a bit 543 * of paranoid documentation about our requirement to serialise 544 * memory writes before touching registers / GSM. 545 */ 546 wmb(); 547 548 out: 549 mutex_unlock(&to_gt(i915)->ggtt->vm.mutex); 550 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 551 } 552 553 void i915_gem_object_runtime_pm_release_mmap_offset(struct drm_i915_gem_object *obj) 554 { 555 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 556 struct ttm_device *bdev = bo->bdev; 557 558 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 559 560 /* 561 * We have exclusive access here via runtime suspend. All other callers 562 * must first grab the rpm wakeref. 563 */ 564 GEM_BUG_ON(!obj->userfault_count); 565 list_del(&obj->userfault_link); 566 obj->userfault_count = 0; 567 } 568 569 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj) 570 { 571 struct i915_mmap_offset *mmo, *mn; 572 573 if (obj->ops->unmap_virtual) 574 obj->ops->unmap_virtual(obj); 575 576 spin_lock(&obj->mmo.lock); 577 rbtree_postorder_for_each_entry_safe(mmo, mn, 578 &obj->mmo.offsets, offset) { 579 /* 580 * vma_node_unmap for GTT mmaps handled already in 581 * __i915_gem_object_release_mmap_gtt 582 */ 583 if (mmo->mmap_type == I915_MMAP_TYPE_GTT) 584 continue; 585 586 spin_unlock(&obj->mmo.lock); 587 drm_vma_node_unmap(&mmo->vma_node, 588 obj->base.dev->anon_inode->i_mapping); 589 spin_lock(&obj->mmo.lock); 590 } 591 spin_unlock(&obj->mmo.lock); 592 } 593 594 static struct i915_mmap_offset * 595 lookup_mmo(struct drm_i915_gem_object *obj, 596 enum i915_mmap_type mmap_type) 597 { 598 struct rb_node *rb; 599 600 spin_lock(&obj->mmo.lock); 601 rb = obj->mmo.offsets.rb_node; 602 while (rb) { 603 struct i915_mmap_offset *mmo = 604 rb_entry(rb, typeof(*mmo), offset); 605 606 if (mmo->mmap_type == mmap_type) { 607 spin_unlock(&obj->mmo.lock); 608 return mmo; 609 } 610 611 if (mmo->mmap_type < mmap_type) 612 rb = rb->rb_right; 613 else 614 rb = rb->rb_left; 615 } 616 spin_unlock(&obj->mmo.lock); 617 618 return NULL; 619 } 620 621 static struct i915_mmap_offset * 622 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo) 623 { 624 struct rb_node *rb, **p; 625 626 spin_lock(&obj->mmo.lock); 627 rb = NULL; 628 p = &obj->mmo.offsets.rb_node; 629 while (*p) { 630 struct i915_mmap_offset *pos; 631 632 rb = *p; 633 pos = rb_entry(rb, typeof(*pos), offset); 634 635 if (pos->mmap_type == mmo->mmap_type) { 636 spin_unlock(&obj->mmo.lock); 637 drm_vma_offset_remove(obj->base.dev->vma_offset_manager, 638 &mmo->vma_node); 639 kfree(mmo); 640 return pos; 641 } 642 643 if (pos->mmap_type < mmo->mmap_type) 644 p = &rb->rb_right; 645 else 646 p = &rb->rb_left; 647 } 648 rb_link_node(&mmo->offset, rb, p); 649 rb_insert_color(&mmo->offset, &obj->mmo.offsets); 650 spin_unlock(&obj->mmo.lock); 651 652 return mmo; 653 } 654 655 static struct i915_mmap_offset * 656 mmap_offset_attach(struct drm_i915_gem_object *obj, 657 enum i915_mmap_type mmap_type, 658 struct drm_file *file) 659 { 660 struct drm_i915_private *i915 = to_i915(obj->base.dev); 661 struct i915_mmap_offset *mmo; 662 int err; 663 664 GEM_BUG_ON(obj->ops->mmap_offset || obj->ops->mmap_ops); 665 666 mmo = lookup_mmo(obj, mmap_type); 667 if (mmo) 668 goto out; 669 670 mmo = kmalloc(sizeof(*mmo), GFP_KERNEL); 671 if (!mmo) 672 return ERR_PTR(-ENOMEM); 673 674 mmo->obj = obj; 675 mmo->mmap_type = mmap_type; 676 drm_vma_node_reset(&mmo->vma_node); 677 678 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager, 679 &mmo->vma_node, obj->base.size / PAGE_SIZE); 680 if (likely(!err)) 681 goto insert; 682 683 /* Attempt to reap some mmap space from dead objects */ 684 err = intel_gt_retire_requests_timeout(to_gt(i915), MAX_SCHEDULE_TIMEOUT, 685 NULL); 686 if (err) 687 goto err; 688 689 i915_gem_drain_freed_objects(i915); 690 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager, 691 &mmo->vma_node, obj->base.size / PAGE_SIZE); 692 if (err) 693 goto err; 694 695 insert: 696 mmo = insert_mmo(obj, mmo); 697 GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo); 698 out: 699 if (file) 700 drm_vma_node_allow_once(&mmo->vma_node, file); 701 return mmo; 702 703 err: 704 kfree(mmo); 705 return ERR_PTR(err); 706 } 707 708 static int 709 __assign_mmap_offset(struct drm_i915_gem_object *obj, 710 enum i915_mmap_type mmap_type, 711 u64 *offset, struct drm_file *file) 712 { 713 struct i915_mmap_offset *mmo; 714 715 if (i915_gem_object_never_mmap(obj)) 716 return -ENODEV; 717 718 if (obj->ops->mmap_offset) { 719 if (mmap_type != I915_MMAP_TYPE_FIXED) 720 return -ENODEV; 721 722 *offset = obj->ops->mmap_offset(obj); 723 return 0; 724 } 725 726 if (mmap_type == I915_MMAP_TYPE_FIXED) 727 return -ENODEV; 728 729 if (mmap_type != I915_MMAP_TYPE_GTT && 730 !i915_gem_object_has_struct_page(obj) && 731 !i915_gem_object_has_iomem(obj)) 732 return -ENODEV; 733 734 mmo = mmap_offset_attach(obj, mmap_type, file); 735 if (IS_ERR(mmo)) 736 return PTR_ERR(mmo); 737 738 *offset = drm_vma_node_offset_addr(&mmo->vma_node); 739 return 0; 740 } 741 742 static int 743 __assign_mmap_offset_handle(struct drm_file *file, 744 u32 handle, 745 enum i915_mmap_type mmap_type, 746 u64 *offset) 747 { 748 struct drm_i915_gem_object *obj; 749 int err; 750 751 obj = i915_gem_object_lookup(file, handle); 752 if (!obj) 753 return -ENOENT; 754 755 err = i915_gem_object_lock_interruptible(obj, NULL); 756 if (err) 757 goto out_put; 758 err = __assign_mmap_offset(obj, mmap_type, offset, file); 759 i915_gem_object_unlock(obj); 760 out_put: 761 i915_gem_object_put(obj); 762 return err; 763 } 764 765 int 766 i915_gem_dumb_mmap_offset(struct drm_file *file, 767 struct drm_device *dev, 768 u32 handle, 769 u64 *offset) 770 { 771 struct drm_i915_private *i915 = to_i915(dev); 772 enum i915_mmap_type mmap_type; 773 774 if (HAS_LMEM(to_i915(dev))) 775 mmap_type = I915_MMAP_TYPE_FIXED; 776 else if (pat_enabled()) 777 mmap_type = I915_MMAP_TYPE_WC; 778 else if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt)) 779 return -ENODEV; 780 else 781 mmap_type = I915_MMAP_TYPE_GTT; 782 783 return __assign_mmap_offset_handle(file, handle, mmap_type, offset); 784 } 785 786 /** 787 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing 788 * @dev: DRM device 789 * @data: GTT mapping ioctl data 790 * @file: GEM object info 791 * 792 * Simply returns the fake offset to userspace so it can mmap it. 793 * The mmap call will end up in drm_gem_mmap(), which will set things 794 * up so we can get faults in the handler above. 795 * 796 * The fault handler will take care of binding the object into the GTT 797 * (since it may have been evicted to make room for something), allocating 798 * a fence register, and mapping the appropriate aperture address into 799 * userspace. 800 */ 801 int 802 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 803 struct drm_file *file) 804 { 805 struct drm_i915_private *i915 = to_i915(dev); 806 struct drm_i915_gem_mmap_offset *args = data; 807 enum i915_mmap_type type; 808 int err; 809 810 /* 811 * Historically we failed to check args.pad and args.offset 812 * and so we cannot use those fields for user input and we cannot 813 * add -EINVAL for them as the ABI is fixed, i.e. old userspace 814 * may be feeding in garbage in those fields. 815 * 816 * if (args->pad) return -EINVAL; is verbotten! 817 */ 818 819 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 820 NULL, 0, NULL); 821 if (err) 822 return err; 823 824 switch (args->flags) { 825 case I915_MMAP_OFFSET_GTT: 826 if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt)) 827 return -ENODEV; 828 type = I915_MMAP_TYPE_GTT; 829 break; 830 831 case I915_MMAP_OFFSET_WC: 832 if (!pat_enabled()) 833 return -ENODEV; 834 type = I915_MMAP_TYPE_WC; 835 break; 836 837 case I915_MMAP_OFFSET_WB: 838 type = I915_MMAP_TYPE_WB; 839 break; 840 841 case I915_MMAP_OFFSET_UC: 842 if (!pat_enabled()) 843 return -ENODEV; 844 type = I915_MMAP_TYPE_UC; 845 break; 846 847 case I915_MMAP_OFFSET_FIXED: 848 type = I915_MMAP_TYPE_FIXED; 849 break; 850 851 default: 852 return -EINVAL; 853 } 854 855 return __assign_mmap_offset_handle(file, args->handle, type, &args->offset); 856 } 857 858 static void vm_open(struct vm_area_struct *vma) 859 { 860 struct i915_mmap_offset *mmo = vma->vm_private_data; 861 struct drm_i915_gem_object *obj = mmo->obj; 862 863 GEM_BUG_ON(!obj); 864 i915_gem_object_get(obj); 865 } 866 867 static void vm_close(struct vm_area_struct *vma) 868 { 869 struct i915_mmap_offset *mmo = vma->vm_private_data; 870 struct drm_i915_gem_object *obj = mmo->obj; 871 872 GEM_BUG_ON(!obj); 873 i915_gem_object_put(obj); 874 } 875 876 static const struct vm_operations_struct vm_ops_gtt = { 877 .fault = vm_fault_gtt, 878 .access = vm_access, 879 .open = vm_open, 880 .close = vm_close, 881 }; 882 883 static const struct vm_operations_struct vm_ops_cpu = { 884 .fault = vm_fault_cpu, 885 .access = vm_access, 886 .open = vm_open, 887 .close = vm_close, 888 }; 889 890 static int singleton_release(struct inode *inode, struct file *file) 891 { 892 struct drm_i915_private *i915 = file->private_data; 893 894 cmpxchg(&i915->gem.mmap_singleton, file, NULL); 895 drm_dev_put(&i915->drm); 896 897 return 0; 898 } 899 900 static const struct file_operations singleton_fops = { 901 .owner = THIS_MODULE, 902 .release = singleton_release, 903 }; 904 905 static struct file *mmap_singleton(struct drm_i915_private *i915) 906 { 907 struct file *file; 908 909 rcu_read_lock(); 910 file = READ_ONCE(i915->gem.mmap_singleton); 911 if (file && !get_file_rcu(file)) 912 file = NULL; 913 rcu_read_unlock(); 914 if (file) 915 return file; 916 917 file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR); 918 if (IS_ERR(file)) 919 return file; 920 921 /* Everyone shares a single global address space */ 922 file->f_mapping = i915->drm.anon_inode->i_mapping; 923 924 smp_store_mb(i915->gem.mmap_singleton, file); 925 drm_dev_get(&i915->drm); 926 927 return file; 928 } 929 930 /* 931 * This overcomes the limitation in drm_gem_mmap's assignment of a 932 * drm_gem_object as the vma->vm_private_data. Since we need to 933 * be able to resolve multiple mmap offsets which could be tied 934 * to a single gem object. 935 */ 936 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma) 937 { 938 struct drm_vma_offset_node *node; 939 struct drm_file *priv = filp->private_data; 940 struct drm_device *dev = priv->minor->dev; 941 struct drm_i915_gem_object *obj = NULL; 942 struct i915_mmap_offset *mmo = NULL; 943 struct file *anon; 944 945 if (drm_dev_is_unplugged(dev)) 946 return -ENODEV; 947 948 rcu_read_lock(); 949 drm_vma_offset_lock_lookup(dev->vma_offset_manager); 950 node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager, 951 vma->vm_pgoff, 952 vma_pages(vma)); 953 if (node && drm_vma_node_is_allowed(node, priv)) { 954 /* 955 * Skip 0-refcnted objects as it is in the process of being 956 * destroyed and will be invalid when the vma manager lock 957 * is released. 958 */ 959 if (!node->driver_private) { 960 mmo = container_of(node, struct i915_mmap_offset, vma_node); 961 obj = i915_gem_object_get_rcu(mmo->obj); 962 963 GEM_BUG_ON(obj && obj->ops->mmap_ops); 964 } else { 965 obj = i915_gem_object_get_rcu 966 (container_of(node, struct drm_i915_gem_object, 967 base.vma_node)); 968 969 GEM_BUG_ON(obj && !obj->ops->mmap_ops); 970 } 971 } 972 drm_vma_offset_unlock_lookup(dev->vma_offset_manager); 973 rcu_read_unlock(); 974 if (!obj) 975 return node ? -EACCES : -EINVAL; 976 977 if (i915_gem_object_is_readonly(obj)) { 978 if (vma->vm_flags & VM_WRITE) { 979 i915_gem_object_put(obj); 980 return -EINVAL; 981 } 982 vm_flags_clear(vma, VM_MAYWRITE); 983 } 984 985 anon = mmap_singleton(to_i915(dev)); 986 if (IS_ERR(anon)) { 987 i915_gem_object_put(obj); 988 return PTR_ERR(anon); 989 } 990 991 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO); 992 993 /* 994 * We keep the ref on mmo->obj, not vm_file, but we require 995 * vma->vm_file->f_mapping, see vma_link(), for later revocation. 996 * Our userspace is accustomed to having per-file resource cleanup 997 * (i.e. contexts, objects and requests) on their close(fd), which 998 * requires avoiding extraneous references to their filp, hence why 999 * we prefer to use an anonymous file for their mmaps. 1000 */ 1001 vma_set_file(vma, anon); 1002 /* Drop the initial creation reference, the vma is now holding one. */ 1003 fput(anon); 1004 1005 if (obj->ops->mmap_ops) { 1006 vma->vm_page_prot = pgprot_decrypted(vm_get_page_prot(vma->vm_flags)); 1007 vma->vm_ops = obj->ops->mmap_ops; 1008 vma->vm_private_data = node->driver_private; 1009 return 0; 1010 } 1011 1012 vma->vm_private_data = mmo; 1013 1014 switch (mmo->mmap_type) { 1015 case I915_MMAP_TYPE_WC: 1016 vma->vm_page_prot = 1017 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1018 vma->vm_ops = &vm_ops_cpu; 1019 break; 1020 1021 case I915_MMAP_TYPE_FIXED: 1022 GEM_WARN_ON(1); 1023 fallthrough; 1024 case I915_MMAP_TYPE_WB: 1025 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 1026 vma->vm_ops = &vm_ops_cpu; 1027 break; 1028 1029 case I915_MMAP_TYPE_UC: 1030 vma->vm_page_prot = 1031 pgprot_noncached(vm_get_page_prot(vma->vm_flags)); 1032 vma->vm_ops = &vm_ops_cpu; 1033 break; 1034 1035 case I915_MMAP_TYPE_GTT: 1036 vma->vm_page_prot = 1037 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1038 vma->vm_ops = &vm_ops_gtt; 1039 break; 1040 } 1041 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 1042 1043 return 0; 1044 } 1045 1046 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1047 #include "selftests/i915_gem_mman.c" 1048 #endif 1049