1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/anon_inodes.h>
8 #include <linux/mman.h>
9 #include <linux/pfn_t.h>
10 #include <linux/sizes.h>
11 
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_requests.h"
14 
15 #include "i915_drv.h"
16 #include "i915_gem_gtt.h"
17 #include "i915_gem_ioctls.h"
18 #include "i915_gem_object.h"
19 #include "i915_gem_mman.h"
20 #include "i915_mm.h"
21 #include "i915_trace.h"
22 #include "i915_user_extensions.h"
23 #include "i915_gem_ttm.h"
24 #include "i915_vma.h"
25 
26 static inline bool
27 __vma_matches(struct vm_area_struct *vma, struct file *filp,
28 	      unsigned long addr, unsigned long size)
29 {
30 	if (vma->vm_file != filp)
31 		return false;
32 
33 	return vma->vm_start == addr &&
34 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
35 }
36 
37 /**
38  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
39  *			 it is mapped to.
40  * @dev: drm device
41  * @data: ioctl data blob
42  * @file: drm file
43  *
44  * While the mapping holds a reference on the contents of the object, it doesn't
45  * imply a ref on the object itself.
46  *
47  * IMPORTANT:
48  *
49  * DRM driver writers who look a this function as an example for how to do GEM
50  * mmap support, please don't implement mmap support like here. The modern way
51  * to implement DRM mmap support is with an mmap offset ioctl (like
52  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
53  * That way debug tooling like valgrind will understand what's going on, hiding
54  * the mmap call in a driver private ioctl will break that. The i915 driver only
55  * does cpu mmaps this way because we didn't know better.
56  */
57 int
58 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
59 		    struct drm_file *file)
60 {
61 	struct drm_i915_private *i915 = to_i915(dev);
62 	struct drm_i915_gem_mmap *args = data;
63 	struct drm_i915_gem_object *obj;
64 	unsigned long addr;
65 
66 	/*
67 	 * mmap ioctl is disallowed for all discrete platforms,
68 	 * and for all platforms with GRAPHICS_VER > 12.
69 	 */
70 	if (IS_DGFX(i915) || GRAPHICS_VER(i915) > 12)
71 		return -EOPNOTSUPP;
72 
73 	if (args->flags & ~(I915_MMAP_WC))
74 		return -EINVAL;
75 
76 	if (args->flags & I915_MMAP_WC && !pat_enabled())
77 		return -ENODEV;
78 
79 	obj = i915_gem_object_lookup(file, args->handle);
80 	if (!obj)
81 		return -ENOENT;
82 
83 	/* prime objects have no backing filp to GEM mmap
84 	 * pages from.
85 	 */
86 	if (!obj->base.filp) {
87 		addr = -ENXIO;
88 		goto err;
89 	}
90 
91 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
92 		addr = -EINVAL;
93 		goto err;
94 	}
95 
96 	addr = vm_mmap(obj->base.filp, 0, args->size,
97 		       PROT_READ | PROT_WRITE, MAP_SHARED,
98 		       args->offset);
99 	if (IS_ERR_VALUE(addr))
100 		goto err;
101 
102 	if (args->flags & I915_MMAP_WC) {
103 		struct mm_struct *mm = current->mm;
104 		struct vm_area_struct *vma;
105 
106 		if (mmap_write_lock_killable(mm)) {
107 			addr = -EINTR;
108 			goto err;
109 		}
110 		vma = find_vma(mm, addr);
111 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
112 			vma->vm_page_prot =
113 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
114 		else
115 			addr = -ENOMEM;
116 		mmap_write_unlock(mm);
117 		if (IS_ERR_VALUE(addr))
118 			goto err;
119 	}
120 	i915_gem_object_put(obj);
121 
122 	args->addr_ptr = (u64)addr;
123 	return 0;
124 
125 err:
126 	i915_gem_object_put(obj);
127 	return addr;
128 }
129 
130 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
131 {
132 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
133 }
134 
135 /**
136  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
137  *
138  * A history of the GTT mmap interface:
139  *
140  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
141  *     aligned and suitable for fencing, and still fit into the available
142  *     mappable space left by the pinned display objects. A classic problem
143  *     we called the page-fault-of-doom where we would ping-pong between
144  *     two objects that could not fit inside the GTT and so the memcpy
145  *     would page one object in at the expense of the other between every
146  *     single byte.
147  *
148  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
149  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
150  *     object is too large for the available space (or simply too large
151  *     for the mappable aperture!), a view is created instead and faulted
152  *     into userspace. (This view is aligned and sized appropriately for
153  *     fenced access.)
154  *
155  * 2 - Recognise WC as a separate cache domain so that we can flush the
156  *     delayed writes via GTT before performing direct access via WC.
157  *
158  * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
159  *     pagefault; swapin remains transparent.
160  *
161  * 4 - Support multiple fault handlers per object depending on object's
162  *     backing storage (a.k.a. MMAP_OFFSET).
163  *
164  * Restrictions:
165  *
166  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
167  *    hangs on some architectures, corruption on others. An attempt to service
168  *    a GTT page fault from a snoopable object will generate a SIGBUS.
169  *
170  *  * the object must be able to fit into RAM (physical memory, though no
171  *    limited to the mappable aperture).
172  *
173  *
174  * Caveats:
175  *
176  *  * a new GTT page fault will synchronize rendering from the GPU and flush
177  *    all data to system memory. Subsequent access will not be synchronized.
178  *
179  *  * all mappings are revoked on runtime device suspend.
180  *
181  *  * there are only 8, 16 or 32 fence registers to share between all users
182  *    (older machines require fence register for display and blitter access
183  *    as well). Contention of the fence registers will cause the previous users
184  *    to be unmapped and any new access will generate new page faults.
185  *
186  *  * running out of memory while servicing a fault may generate a SIGBUS,
187  *    rather than the expected SIGSEGV.
188  */
189 int i915_gem_mmap_gtt_version(void)
190 {
191 	return 4;
192 }
193 
194 static inline struct i915_ggtt_view
195 compute_partial_view(const struct drm_i915_gem_object *obj,
196 		     pgoff_t page_offset,
197 		     unsigned int chunk)
198 {
199 	struct i915_ggtt_view view;
200 
201 	if (i915_gem_object_is_tiled(obj))
202 		chunk = roundup(chunk, tile_row_pages(obj) ?: 1);
203 
204 	view.type = I915_GGTT_VIEW_PARTIAL;
205 	view.partial.offset = rounddown(page_offset, chunk);
206 	view.partial.size =
207 		min_t(unsigned int, chunk,
208 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
209 
210 	/* If the partial covers the entire object, just create a normal VMA. */
211 	if (chunk >= obj->base.size >> PAGE_SHIFT)
212 		view.type = I915_GGTT_VIEW_NORMAL;
213 
214 	return view;
215 }
216 
217 static vm_fault_t i915_error_to_vmf_fault(int err)
218 {
219 	switch (err) {
220 	default:
221 		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
222 		fallthrough;
223 	case -EIO: /* shmemfs failure from swap device */
224 	case -EFAULT: /* purged object */
225 	case -ENODEV: /* bad object, how did you get here! */
226 	case -ENXIO: /* unable to access backing store (on device) */
227 		return VM_FAULT_SIGBUS;
228 
229 	case -ENOMEM: /* our allocation failure */
230 		return VM_FAULT_OOM;
231 
232 	case 0:
233 	case -EAGAIN:
234 	case -ENOSPC: /* transient failure to evict? */
235 	case -ERESTARTSYS:
236 	case -EINTR:
237 	case -EBUSY:
238 		/*
239 		 * EBUSY is ok: this just means that another thread
240 		 * already did the job.
241 		 */
242 		return VM_FAULT_NOPAGE;
243 	}
244 }
245 
246 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
247 {
248 	struct vm_area_struct *area = vmf->vma;
249 	struct i915_mmap_offset *mmo = area->vm_private_data;
250 	struct drm_i915_gem_object *obj = mmo->obj;
251 	resource_size_t iomap;
252 	int err;
253 
254 	/* Sanity check that we allow writing into this object */
255 	if (unlikely(i915_gem_object_is_readonly(obj) &&
256 		     area->vm_flags & VM_WRITE))
257 		return VM_FAULT_SIGBUS;
258 
259 	if (i915_gem_object_lock_interruptible(obj, NULL))
260 		return VM_FAULT_NOPAGE;
261 
262 	err = i915_gem_object_pin_pages(obj);
263 	if (err)
264 		goto out;
265 
266 	iomap = -1;
267 	if (!i915_gem_object_has_struct_page(obj)) {
268 		iomap = obj->mm.region->iomap.base;
269 		iomap -= obj->mm.region->region.start;
270 	}
271 
272 	/* PTEs are revoked in obj->ops->put_pages() */
273 	err = remap_io_sg(area,
274 			  area->vm_start, area->vm_end - area->vm_start,
275 			  obj->mm.pages->sgl, iomap);
276 
277 	if (area->vm_flags & VM_WRITE) {
278 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
279 		obj->mm.dirty = true;
280 	}
281 
282 	i915_gem_object_unpin_pages(obj);
283 
284 out:
285 	i915_gem_object_unlock(obj);
286 	return i915_error_to_vmf_fault(err);
287 }
288 
289 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
290 {
291 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
292 	struct vm_area_struct *area = vmf->vma;
293 	struct i915_mmap_offset *mmo = area->vm_private_data;
294 	struct drm_i915_gem_object *obj = mmo->obj;
295 	struct drm_device *dev = obj->base.dev;
296 	struct drm_i915_private *i915 = to_i915(dev);
297 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
298 	struct i915_ggtt *ggtt = &i915->ggtt;
299 	bool write = area->vm_flags & VM_WRITE;
300 	struct i915_gem_ww_ctx ww;
301 	intel_wakeref_t wakeref;
302 	struct i915_vma *vma;
303 	pgoff_t page_offset;
304 	int srcu;
305 	int ret;
306 
307 	/* We don't use vmf->pgoff since that has the fake offset */
308 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
309 
310 	trace_i915_gem_object_fault(obj, page_offset, true, write);
311 
312 	wakeref = intel_runtime_pm_get(rpm);
313 
314 	i915_gem_ww_ctx_init(&ww, true);
315 retry:
316 	ret = i915_gem_object_lock(obj, &ww);
317 	if (ret)
318 		goto err_rpm;
319 
320 	/* Sanity check that we allow writing into this object */
321 	if (i915_gem_object_is_readonly(obj) && write) {
322 		ret = -EFAULT;
323 		goto err_rpm;
324 	}
325 
326 	ret = i915_gem_object_pin_pages(obj);
327 	if (ret)
328 		goto err_rpm;
329 
330 	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
331 	if (ret)
332 		goto err_pages;
333 
334 	/* Now pin it into the GTT as needed */
335 	vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
336 					  PIN_MAPPABLE |
337 					  PIN_NONBLOCK /* NOWARN */ |
338 					  PIN_NOEVICT);
339 	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
340 		/* Use a partial view if it is bigger than available space */
341 		struct i915_ggtt_view view =
342 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
343 		unsigned int flags;
344 
345 		flags = PIN_MAPPABLE | PIN_NOSEARCH;
346 		if (view.type == I915_GGTT_VIEW_NORMAL)
347 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
348 
349 		/*
350 		 * Userspace is now writing through an untracked VMA, abandon
351 		 * all hope that the hardware is able to track future writes.
352 		 */
353 
354 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
355 		if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
356 			flags = PIN_MAPPABLE;
357 			view.type = I915_GGTT_VIEW_PARTIAL;
358 			vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
359 		}
360 
361 		/* The entire mappable GGTT is pinned? Unexpected! */
362 		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
363 	}
364 	if (IS_ERR(vma)) {
365 		ret = PTR_ERR(vma);
366 		goto err_reset;
367 	}
368 
369 	/* Access to snoopable pages through the GTT is incoherent. */
370 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
371 		ret = -EFAULT;
372 		goto err_unpin;
373 	}
374 
375 	ret = i915_vma_pin_fence(vma);
376 	if (ret)
377 		goto err_unpin;
378 
379 	/* Finally, remap it using the new GTT offset */
380 	ret = remap_io_mapping(area,
381 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
382 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
383 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
384 			       &ggtt->iomap);
385 	if (ret)
386 		goto err_fence;
387 
388 	assert_rpm_wakelock_held(rpm);
389 
390 	/* Mark as being mmapped into userspace for later revocation */
391 	mutex_lock(&i915->ggtt.vm.mutex);
392 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
393 		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
394 	mutex_unlock(&i915->ggtt.vm.mutex);
395 
396 	/* Track the mmo associated with the fenced vma */
397 	vma->mmo = mmo;
398 
399 	if (CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
400 		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
401 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
402 
403 	if (write) {
404 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
405 		i915_vma_set_ggtt_write(vma);
406 		obj->mm.dirty = true;
407 	}
408 
409 err_fence:
410 	i915_vma_unpin_fence(vma);
411 err_unpin:
412 	__i915_vma_unpin(vma);
413 err_reset:
414 	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
415 err_pages:
416 	i915_gem_object_unpin_pages(obj);
417 err_rpm:
418 	if (ret == -EDEADLK) {
419 		ret = i915_gem_ww_ctx_backoff(&ww);
420 		if (!ret)
421 			goto retry;
422 	}
423 	i915_gem_ww_ctx_fini(&ww);
424 	intel_runtime_pm_put(rpm, wakeref);
425 	return i915_error_to_vmf_fault(ret);
426 }
427 
428 static int
429 vm_access(struct vm_area_struct *area, unsigned long addr,
430 	  void *buf, int len, int write)
431 {
432 	struct i915_mmap_offset *mmo = area->vm_private_data;
433 	struct drm_i915_gem_object *obj = mmo->obj;
434 	struct i915_gem_ww_ctx ww;
435 	void *vaddr;
436 	int err = 0;
437 
438 	if (i915_gem_object_is_readonly(obj) && write)
439 		return -EACCES;
440 
441 	addr -= area->vm_start;
442 	if (addr >= obj->base.size)
443 		return -EINVAL;
444 
445 	i915_gem_ww_ctx_init(&ww, true);
446 retry:
447 	err = i915_gem_object_lock(obj, &ww);
448 	if (err)
449 		goto out;
450 
451 	/* As this is primarily for debugging, let's focus on simplicity */
452 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
453 	if (IS_ERR(vaddr)) {
454 		err = PTR_ERR(vaddr);
455 		goto out;
456 	}
457 
458 	if (write) {
459 		memcpy(vaddr + addr, buf, len);
460 		__i915_gem_object_flush_map(obj, addr, len);
461 	} else {
462 		memcpy(buf, vaddr + addr, len);
463 	}
464 
465 	i915_gem_object_unpin_map(obj);
466 out:
467 	if (err == -EDEADLK) {
468 		err = i915_gem_ww_ctx_backoff(&ww);
469 		if (!err)
470 			goto retry;
471 	}
472 	i915_gem_ww_ctx_fini(&ww);
473 
474 	if (err)
475 		return err;
476 
477 	return len;
478 }
479 
480 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
481 {
482 	struct i915_vma *vma;
483 
484 	GEM_BUG_ON(!obj->userfault_count);
485 
486 	for_each_ggtt_vma(vma, obj)
487 		i915_vma_revoke_mmap(vma);
488 
489 	GEM_BUG_ON(obj->userfault_count);
490 }
491 
492 /*
493  * It is vital that we remove the page mapping if we have mapped a tiled
494  * object through the GTT and then lose the fence register due to
495  * resource pressure. Similarly if the object has been moved out of the
496  * aperture, than pages mapped into userspace must be revoked. Removing the
497  * mapping will then trigger a page fault on the next user access, allowing
498  * fixup by vm_fault_gtt().
499  */
500 void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
501 {
502 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
503 	intel_wakeref_t wakeref;
504 
505 	/*
506 	 * Serialisation between user GTT access and our code depends upon
507 	 * revoking the CPU's PTE whilst the mutex is held. The next user
508 	 * pagefault then has to wait until we release the mutex.
509 	 *
510 	 * Note that RPM complicates somewhat by adding an additional
511 	 * requirement that operations to the GGTT be made holding the RPM
512 	 * wakeref.
513 	 */
514 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
515 	mutex_lock(&i915->ggtt.vm.mutex);
516 
517 	if (!obj->userfault_count)
518 		goto out;
519 
520 	__i915_gem_object_release_mmap_gtt(obj);
521 
522 	/*
523 	 * Ensure that the CPU's PTE are revoked and there are not outstanding
524 	 * memory transactions from userspace before we return. The TLB
525 	 * flushing implied above by changing the PTE above *should* be
526 	 * sufficient, an extra barrier here just provides us with a bit
527 	 * of paranoid documentation about our requirement to serialise
528 	 * memory writes before touching registers / GSM.
529 	 */
530 	wmb();
531 
532 out:
533 	mutex_unlock(&i915->ggtt.vm.mutex);
534 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
535 }
536 
537 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
538 {
539 	struct i915_mmap_offset *mmo, *mn;
540 
541 	if (obj->ops->unmap_virtual)
542 		obj->ops->unmap_virtual(obj);
543 
544 	spin_lock(&obj->mmo.lock);
545 	rbtree_postorder_for_each_entry_safe(mmo, mn,
546 					     &obj->mmo.offsets, offset) {
547 		/*
548 		 * vma_node_unmap for GTT mmaps handled already in
549 		 * __i915_gem_object_release_mmap_gtt
550 		 */
551 		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
552 			continue;
553 
554 		spin_unlock(&obj->mmo.lock);
555 		drm_vma_node_unmap(&mmo->vma_node,
556 				   obj->base.dev->anon_inode->i_mapping);
557 		spin_lock(&obj->mmo.lock);
558 	}
559 	spin_unlock(&obj->mmo.lock);
560 }
561 
562 static struct i915_mmap_offset *
563 lookup_mmo(struct drm_i915_gem_object *obj,
564 	   enum i915_mmap_type mmap_type)
565 {
566 	struct rb_node *rb;
567 
568 	spin_lock(&obj->mmo.lock);
569 	rb = obj->mmo.offsets.rb_node;
570 	while (rb) {
571 		struct i915_mmap_offset *mmo =
572 			rb_entry(rb, typeof(*mmo), offset);
573 
574 		if (mmo->mmap_type == mmap_type) {
575 			spin_unlock(&obj->mmo.lock);
576 			return mmo;
577 		}
578 
579 		if (mmo->mmap_type < mmap_type)
580 			rb = rb->rb_right;
581 		else
582 			rb = rb->rb_left;
583 	}
584 	spin_unlock(&obj->mmo.lock);
585 
586 	return NULL;
587 }
588 
589 static struct i915_mmap_offset *
590 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
591 {
592 	struct rb_node *rb, **p;
593 
594 	spin_lock(&obj->mmo.lock);
595 	rb = NULL;
596 	p = &obj->mmo.offsets.rb_node;
597 	while (*p) {
598 		struct i915_mmap_offset *pos;
599 
600 		rb = *p;
601 		pos = rb_entry(rb, typeof(*pos), offset);
602 
603 		if (pos->mmap_type == mmo->mmap_type) {
604 			spin_unlock(&obj->mmo.lock);
605 			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
606 					      &mmo->vma_node);
607 			kfree(mmo);
608 			return pos;
609 		}
610 
611 		if (pos->mmap_type < mmo->mmap_type)
612 			p = &rb->rb_right;
613 		else
614 			p = &rb->rb_left;
615 	}
616 	rb_link_node(&mmo->offset, rb, p);
617 	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
618 	spin_unlock(&obj->mmo.lock);
619 
620 	return mmo;
621 }
622 
623 static struct i915_mmap_offset *
624 mmap_offset_attach(struct drm_i915_gem_object *obj,
625 		   enum i915_mmap_type mmap_type,
626 		   struct drm_file *file)
627 {
628 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
629 	struct i915_mmap_offset *mmo;
630 	int err;
631 
632 	GEM_BUG_ON(obj->ops->mmap_offset || obj->ops->mmap_ops);
633 
634 	mmo = lookup_mmo(obj, mmap_type);
635 	if (mmo)
636 		goto out;
637 
638 	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
639 	if (!mmo)
640 		return ERR_PTR(-ENOMEM);
641 
642 	mmo->obj = obj;
643 	mmo->mmap_type = mmap_type;
644 	drm_vma_node_reset(&mmo->vma_node);
645 
646 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
647 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
648 	if (likely(!err))
649 		goto insert;
650 
651 	/* Attempt to reap some mmap space from dead objects */
652 	err = intel_gt_retire_requests_timeout(to_gt(i915), MAX_SCHEDULE_TIMEOUT,
653 					       NULL);
654 	if (err)
655 		goto err;
656 
657 	i915_gem_drain_freed_objects(i915);
658 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
659 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
660 	if (err)
661 		goto err;
662 
663 insert:
664 	mmo = insert_mmo(obj, mmo);
665 	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
666 out:
667 	if (file)
668 		drm_vma_node_allow(&mmo->vma_node, file);
669 	return mmo;
670 
671 err:
672 	kfree(mmo);
673 	return ERR_PTR(err);
674 }
675 
676 static int
677 __assign_mmap_offset(struct drm_i915_gem_object *obj,
678 		     enum i915_mmap_type mmap_type,
679 		     u64 *offset, struct drm_file *file)
680 {
681 	struct i915_mmap_offset *mmo;
682 
683 	if (i915_gem_object_never_mmap(obj))
684 		return -ENODEV;
685 
686 	if (obj->ops->mmap_offset)  {
687 		if (mmap_type != I915_MMAP_TYPE_FIXED)
688 			return -ENODEV;
689 
690 		*offset = obj->ops->mmap_offset(obj);
691 		return 0;
692 	}
693 
694 	if (mmap_type == I915_MMAP_TYPE_FIXED)
695 		return -ENODEV;
696 
697 	if (mmap_type != I915_MMAP_TYPE_GTT &&
698 	    !i915_gem_object_has_struct_page(obj) &&
699 	    !i915_gem_object_has_iomem(obj))
700 		return -ENODEV;
701 
702 	mmo = mmap_offset_attach(obj, mmap_type, file);
703 	if (IS_ERR(mmo))
704 		return PTR_ERR(mmo);
705 
706 	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
707 	return 0;
708 }
709 
710 static int
711 __assign_mmap_offset_handle(struct drm_file *file,
712 			    u32 handle,
713 			    enum i915_mmap_type mmap_type,
714 			    u64 *offset)
715 {
716 	struct drm_i915_gem_object *obj;
717 	int err;
718 
719 	obj = i915_gem_object_lookup(file, handle);
720 	if (!obj)
721 		return -ENOENT;
722 
723 	err = i915_gem_object_lock_interruptible(obj, NULL);
724 	if (err)
725 		goto out_put;
726 	err = __assign_mmap_offset(obj, mmap_type, offset, file);
727 	i915_gem_object_unlock(obj);
728 out_put:
729 	i915_gem_object_put(obj);
730 	return err;
731 }
732 
733 int
734 i915_gem_dumb_mmap_offset(struct drm_file *file,
735 			  struct drm_device *dev,
736 			  u32 handle,
737 			  u64 *offset)
738 {
739 	enum i915_mmap_type mmap_type;
740 
741 	if (HAS_LMEM(to_i915(dev)))
742 		mmap_type = I915_MMAP_TYPE_FIXED;
743 	else if (pat_enabled())
744 		mmap_type = I915_MMAP_TYPE_WC;
745 	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
746 		return -ENODEV;
747 	else
748 		mmap_type = I915_MMAP_TYPE_GTT;
749 
750 	return __assign_mmap_offset_handle(file, handle, mmap_type, offset);
751 }
752 
753 /**
754  * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
755  * @dev: DRM device
756  * @data: GTT mapping ioctl data
757  * @file: GEM object info
758  *
759  * Simply returns the fake offset to userspace so it can mmap it.
760  * The mmap call will end up in drm_gem_mmap(), which will set things
761  * up so we can get faults in the handler above.
762  *
763  * The fault handler will take care of binding the object into the GTT
764  * (since it may have been evicted to make room for something), allocating
765  * a fence register, and mapping the appropriate aperture address into
766  * userspace.
767  */
768 int
769 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
770 			   struct drm_file *file)
771 {
772 	struct drm_i915_private *i915 = to_i915(dev);
773 	struct drm_i915_gem_mmap_offset *args = data;
774 	enum i915_mmap_type type;
775 	int err;
776 
777 	/*
778 	 * Historically we failed to check args.pad and args.offset
779 	 * and so we cannot use those fields for user input and we cannot
780 	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
781 	 * may be feeding in garbage in those fields.
782 	 *
783 	 * if (args->pad) return -EINVAL; is verbotten!
784 	 */
785 
786 	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
787 				   NULL, 0, NULL);
788 	if (err)
789 		return err;
790 
791 	switch (args->flags) {
792 	case I915_MMAP_OFFSET_GTT:
793 		if (!i915_ggtt_has_aperture(&i915->ggtt))
794 			return -ENODEV;
795 		type = I915_MMAP_TYPE_GTT;
796 		break;
797 
798 	case I915_MMAP_OFFSET_WC:
799 		if (!pat_enabled())
800 			return -ENODEV;
801 		type = I915_MMAP_TYPE_WC;
802 		break;
803 
804 	case I915_MMAP_OFFSET_WB:
805 		type = I915_MMAP_TYPE_WB;
806 		break;
807 
808 	case I915_MMAP_OFFSET_UC:
809 		if (!pat_enabled())
810 			return -ENODEV;
811 		type = I915_MMAP_TYPE_UC;
812 		break;
813 
814 	case I915_MMAP_OFFSET_FIXED:
815 		type = I915_MMAP_TYPE_FIXED;
816 		break;
817 
818 	default:
819 		return -EINVAL;
820 	}
821 
822 	return __assign_mmap_offset_handle(file, args->handle, type, &args->offset);
823 }
824 
825 static void vm_open(struct vm_area_struct *vma)
826 {
827 	struct i915_mmap_offset *mmo = vma->vm_private_data;
828 	struct drm_i915_gem_object *obj = mmo->obj;
829 
830 	GEM_BUG_ON(!obj);
831 	i915_gem_object_get(obj);
832 }
833 
834 static void vm_close(struct vm_area_struct *vma)
835 {
836 	struct i915_mmap_offset *mmo = vma->vm_private_data;
837 	struct drm_i915_gem_object *obj = mmo->obj;
838 
839 	GEM_BUG_ON(!obj);
840 	i915_gem_object_put(obj);
841 }
842 
843 static const struct vm_operations_struct vm_ops_gtt = {
844 	.fault = vm_fault_gtt,
845 	.access = vm_access,
846 	.open = vm_open,
847 	.close = vm_close,
848 };
849 
850 static const struct vm_operations_struct vm_ops_cpu = {
851 	.fault = vm_fault_cpu,
852 	.access = vm_access,
853 	.open = vm_open,
854 	.close = vm_close,
855 };
856 
857 static int singleton_release(struct inode *inode, struct file *file)
858 {
859 	struct drm_i915_private *i915 = file->private_data;
860 
861 	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
862 	drm_dev_put(&i915->drm);
863 
864 	return 0;
865 }
866 
867 static const struct file_operations singleton_fops = {
868 	.owner = THIS_MODULE,
869 	.release = singleton_release,
870 };
871 
872 static struct file *mmap_singleton(struct drm_i915_private *i915)
873 {
874 	struct file *file;
875 
876 	rcu_read_lock();
877 	file = READ_ONCE(i915->gem.mmap_singleton);
878 	if (file && !get_file_rcu(file))
879 		file = NULL;
880 	rcu_read_unlock();
881 	if (file)
882 		return file;
883 
884 	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
885 	if (IS_ERR(file))
886 		return file;
887 
888 	/* Everyone shares a single global address space */
889 	file->f_mapping = i915->drm.anon_inode->i_mapping;
890 
891 	smp_store_mb(i915->gem.mmap_singleton, file);
892 	drm_dev_get(&i915->drm);
893 
894 	return file;
895 }
896 
897 /*
898  * This overcomes the limitation in drm_gem_mmap's assignment of a
899  * drm_gem_object as the vma->vm_private_data. Since we need to
900  * be able to resolve multiple mmap offsets which could be tied
901  * to a single gem object.
902  */
903 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
904 {
905 	struct drm_vma_offset_node *node;
906 	struct drm_file *priv = filp->private_data;
907 	struct drm_device *dev = priv->minor->dev;
908 	struct drm_i915_gem_object *obj = NULL;
909 	struct i915_mmap_offset *mmo = NULL;
910 	struct file *anon;
911 
912 	if (drm_dev_is_unplugged(dev))
913 		return -ENODEV;
914 
915 	rcu_read_lock();
916 	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
917 	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
918 						  vma->vm_pgoff,
919 						  vma_pages(vma));
920 	if (node && drm_vma_node_is_allowed(node, priv)) {
921 		/*
922 		 * Skip 0-refcnted objects as it is in the process of being
923 		 * destroyed and will be invalid when the vma manager lock
924 		 * is released.
925 		 */
926 		if (!node->driver_private) {
927 			mmo = container_of(node, struct i915_mmap_offset, vma_node);
928 			obj = i915_gem_object_get_rcu(mmo->obj);
929 
930 			GEM_BUG_ON(obj && obj->ops->mmap_ops);
931 		} else {
932 			obj = i915_gem_object_get_rcu
933 				(container_of(node, struct drm_i915_gem_object,
934 					      base.vma_node));
935 
936 			GEM_BUG_ON(obj && !obj->ops->mmap_ops);
937 		}
938 	}
939 	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
940 	rcu_read_unlock();
941 	if (!obj)
942 		return node ? -EACCES : -EINVAL;
943 
944 	if (i915_gem_object_is_readonly(obj)) {
945 		if (vma->vm_flags & VM_WRITE) {
946 			i915_gem_object_put(obj);
947 			return -EINVAL;
948 		}
949 		vma->vm_flags &= ~VM_MAYWRITE;
950 	}
951 
952 	anon = mmap_singleton(to_i915(dev));
953 	if (IS_ERR(anon)) {
954 		i915_gem_object_put(obj);
955 		return PTR_ERR(anon);
956 	}
957 
958 	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO;
959 
960 	/*
961 	 * We keep the ref on mmo->obj, not vm_file, but we require
962 	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
963 	 * Our userspace is accustomed to having per-file resource cleanup
964 	 * (i.e. contexts, objects and requests) on their close(fd), which
965 	 * requires avoiding extraneous references to their filp, hence why
966 	 * we prefer to use an anonymous file for their mmaps.
967 	 */
968 	vma_set_file(vma, anon);
969 	/* Drop the initial creation reference, the vma is now holding one. */
970 	fput(anon);
971 
972 	if (obj->ops->mmap_ops) {
973 		vma->vm_page_prot = pgprot_decrypted(vm_get_page_prot(vma->vm_flags));
974 		vma->vm_ops = obj->ops->mmap_ops;
975 		vma->vm_private_data = node->driver_private;
976 		return 0;
977 	}
978 
979 	vma->vm_private_data = mmo;
980 
981 	switch (mmo->mmap_type) {
982 	case I915_MMAP_TYPE_WC:
983 		vma->vm_page_prot =
984 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
985 		vma->vm_ops = &vm_ops_cpu;
986 		break;
987 
988 	case I915_MMAP_TYPE_FIXED:
989 		GEM_WARN_ON(1);
990 		fallthrough;
991 	case I915_MMAP_TYPE_WB:
992 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
993 		vma->vm_ops = &vm_ops_cpu;
994 		break;
995 
996 	case I915_MMAP_TYPE_UC:
997 		vma->vm_page_prot =
998 			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
999 		vma->vm_ops = &vm_ops_cpu;
1000 		break;
1001 
1002 	case I915_MMAP_TYPE_GTT:
1003 		vma->vm_page_prot =
1004 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1005 		vma->vm_ops = &vm_ops_gtt;
1006 		break;
1007 	}
1008 	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
1009 
1010 	return 0;
1011 }
1012 
1013 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1014 #include "selftests/i915_gem_mman.c"
1015 #endif
1016