1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include <linux/anon_inodes.h> 8 #include <linux/mman.h> 9 #include <linux/pfn_t.h> 10 #include <linux/sizes.h> 11 12 #include "gt/intel_gt.h" 13 #include "gt/intel_gt_requests.h" 14 15 #include "i915_drv.h" 16 #include "i915_gem_gtt.h" 17 #include "i915_gem_ioctls.h" 18 #include "i915_gem_object.h" 19 #include "i915_gem_mman.h" 20 #include "i915_trace.h" 21 #include "i915_user_extensions.h" 22 #include "i915_gem_ttm.h" 23 #include "i915_vma.h" 24 25 static inline bool 26 __vma_matches(struct vm_area_struct *vma, struct file *filp, 27 unsigned long addr, unsigned long size) 28 { 29 if (vma->vm_file != filp) 30 return false; 31 32 return vma->vm_start == addr && 33 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size); 34 } 35 36 /** 37 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 38 * it is mapped to. 39 * @dev: drm device 40 * @data: ioctl data blob 41 * @file: drm file 42 * 43 * While the mapping holds a reference on the contents of the object, it doesn't 44 * imply a ref on the object itself. 45 * 46 * IMPORTANT: 47 * 48 * DRM driver writers who look a this function as an example for how to do GEM 49 * mmap support, please don't implement mmap support like here. The modern way 50 * to implement DRM mmap support is with an mmap offset ioctl (like 51 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 52 * That way debug tooling like valgrind will understand what's going on, hiding 53 * the mmap call in a driver private ioctl will break that. The i915 driver only 54 * does cpu mmaps this way because we didn't know better. 55 */ 56 int 57 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 58 struct drm_file *file) 59 { 60 struct drm_i915_private *i915 = to_i915(dev); 61 struct drm_i915_gem_mmap *args = data; 62 struct drm_i915_gem_object *obj; 63 unsigned long addr; 64 65 /* 66 * mmap ioctl is disallowed for all discrete platforms, 67 * and for all platforms with GRAPHICS_VER > 12. 68 */ 69 if (IS_DGFX(i915) || GRAPHICS_VER(i915) > 12) 70 return -EOPNOTSUPP; 71 72 if (args->flags & ~(I915_MMAP_WC)) 73 return -EINVAL; 74 75 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 76 return -ENODEV; 77 78 obj = i915_gem_object_lookup(file, args->handle); 79 if (!obj) 80 return -ENOENT; 81 82 /* prime objects have no backing filp to GEM mmap 83 * pages from. 84 */ 85 if (!obj->base.filp) { 86 addr = -ENXIO; 87 goto err; 88 } 89 90 if (range_overflows(args->offset, args->size, (u64)obj->base.size)) { 91 addr = -EINVAL; 92 goto err; 93 } 94 95 addr = vm_mmap(obj->base.filp, 0, args->size, 96 PROT_READ | PROT_WRITE, MAP_SHARED, 97 args->offset); 98 if (IS_ERR_VALUE(addr)) 99 goto err; 100 101 if (args->flags & I915_MMAP_WC) { 102 struct mm_struct *mm = current->mm; 103 struct vm_area_struct *vma; 104 105 if (mmap_write_lock_killable(mm)) { 106 addr = -EINTR; 107 goto err; 108 } 109 vma = find_vma(mm, addr); 110 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size)) 111 vma->vm_page_prot = 112 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 113 else 114 addr = -ENOMEM; 115 mmap_write_unlock(mm); 116 if (IS_ERR_VALUE(addr)) 117 goto err; 118 } 119 i915_gem_object_put(obj); 120 121 args->addr_ptr = (u64)addr; 122 return 0; 123 124 err: 125 i915_gem_object_put(obj); 126 return addr; 127 } 128 129 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj) 130 { 131 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 132 } 133 134 /** 135 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 136 * 137 * A history of the GTT mmap interface: 138 * 139 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 140 * aligned and suitable for fencing, and still fit into the available 141 * mappable space left by the pinned display objects. A classic problem 142 * we called the page-fault-of-doom where we would ping-pong between 143 * two objects that could not fit inside the GTT and so the memcpy 144 * would page one object in at the expense of the other between every 145 * single byte. 146 * 147 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 148 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 149 * object is too large for the available space (or simply too large 150 * for the mappable aperture!), a view is created instead and faulted 151 * into userspace. (This view is aligned and sized appropriately for 152 * fenced access.) 153 * 154 * 2 - Recognise WC as a separate cache domain so that we can flush the 155 * delayed writes via GTT before performing direct access via WC. 156 * 157 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial 158 * pagefault; swapin remains transparent. 159 * 160 * 4 - Support multiple fault handlers per object depending on object's 161 * backing storage (a.k.a. MMAP_OFFSET). 162 * 163 * Restrictions: 164 * 165 * * snoopable objects cannot be accessed via the GTT. It can cause machine 166 * hangs on some architectures, corruption on others. An attempt to service 167 * a GTT page fault from a snoopable object will generate a SIGBUS. 168 * 169 * * the object must be able to fit into RAM (physical memory, though no 170 * limited to the mappable aperture). 171 * 172 * 173 * Caveats: 174 * 175 * * a new GTT page fault will synchronize rendering from the GPU and flush 176 * all data to system memory. Subsequent access will not be synchronized. 177 * 178 * * all mappings are revoked on runtime device suspend. 179 * 180 * * there are only 8, 16 or 32 fence registers to share between all users 181 * (older machines require fence register for display and blitter access 182 * as well). Contention of the fence registers will cause the previous users 183 * to be unmapped and any new access will generate new page faults. 184 * 185 * * running out of memory while servicing a fault may generate a SIGBUS, 186 * rather than the expected SIGSEGV. 187 */ 188 int i915_gem_mmap_gtt_version(void) 189 { 190 return 4; 191 } 192 193 static inline struct i915_ggtt_view 194 compute_partial_view(const struct drm_i915_gem_object *obj, 195 pgoff_t page_offset, 196 unsigned int chunk) 197 { 198 struct i915_ggtt_view view; 199 200 if (i915_gem_object_is_tiled(obj)) 201 chunk = roundup(chunk, tile_row_pages(obj) ?: 1); 202 203 view.type = I915_GGTT_VIEW_PARTIAL; 204 view.partial.offset = rounddown(page_offset, chunk); 205 view.partial.size = 206 min_t(unsigned int, chunk, 207 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 208 209 /* If the partial covers the entire object, just create a normal VMA. */ 210 if (chunk >= obj->base.size >> PAGE_SHIFT) 211 view.type = I915_GGTT_VIEW_NORMAL; 212 213 return view; 214 } 215 216 static vm_fault_t i915_error_to_vmf_fault(int err) 217 { 218 switch (err) { 219 default: 220 WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err); 221 fallthrough; 222 case -EIO: /* shmemfs failure from swap device */ 223 case -EFAULT: /* purged object */ 224 case -ENODEV: /* bad object, how did you get here! */ 225 case -ENXIO: /* unable to access backing store (on device) */ 226 return VM_FAULT_SIGBUS; 227 228 case -ENOMEM: /* our allocation failure */ 229 return VM_FAULT_OOM; 230 231 case 0: 232 case -EAGAIN: 233 case -ENOSPC: /* transient failure to evict? */ 234 case -ERESTARTSYS: 235 case -EINTR: 236 case -EBUSY: 237 /* 238 * EBUSY is ok: this just means that another thread 239 * already did the job. 240 */ 241 return VM_FAULT_NOPAGE; 242 } 243 } 244 245 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf) 246 { 247 struct vm_area_struct *area = vmf->vma; 248 struct i915_mmap_offset *mmo = area->vm_private_data; 249 struct drm_i915_gem_object *obj = mmo->obj; 250 resource_size_t iomap; 251 int err; 252 253 /* Sanity check that we allow writing into this object */ 254 if (unlikely(i915_gem_object_is_readonly(obj) && 255 area->vm_flags & VM_WRITE)) 256 return VM_FAULT_SIGBUS; 257 258 if (i915_gem_object_lock_interruptible(obj, NULL)) 259 return VM_FAULT_NOPAGE; 260 261 err = i915_gem_object_pin_pages(obj); 262 if (err) 263 goto out; 264 265 iomap = -1; 266 if (!i915_gem_object_has_struct_page(obj)) { 267 iomap = obj->mm.region->iomap.base; 268 iomap -= obj->mm.region->region.start; 269 } 270 271 /* PTEs are revoked in obj->ops->put_pages() */ 272 err = remap_io_sg(area, 273 area->vm_start, area->vm_end - area->vm_start, 274 obj->mm.pages->sgl, iomap); 275 276 if (area->vm_flags & VM_WRITE) { 277 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 278 obj->mm.dirty = true; 279 } 280 281 i915_gem_object_unpin_pages(obj); 282 283 out: 284 i915_gem_object_unlock(obj); 285 return i915_error_to_vmf_fault(err); 286 } 287 288 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf) 289 { 290 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT) 291 struct vm_area_struct *area = vmf->vma; 292 struct i915_mmap_offset *mmo = area->vm_private_data; 293 struct drm_i915_gem_object *obj = mmo->obj; 294 struct drm_device *dev = obj->base.dev; 295 struct drm_i915_private *i915 = to_i915(dev); 296 struct intel_runtime_pm *rpm = &i915->runtime_pm; 297 struct i915_ggtt *ggtt = &i915->ggtt; 298 bool write = area->vm_flags & VM_WRITE; 299 struct i915_gem_ww_ctx ww; 300 intel_wakeref_t wakeref; 301 struct i915_vma *vma; 302 pgoff_t page_offset; 303 int srcu; 304 int ret; 305 306 /* We don't use vmf->pgoff since that has the fake offset */ 307 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 308 309 trace_i915_gem_object_fault(obj, page_offset, true, write); 310 311 wakeref = intel_runtime_pm_get(rpm); 312 313 i915_gem_ww_ctx_init(&ww, true); 314 retry: 315 ret = i915_gem_object_lock(obj, &ww); 316 if (ret) 317 goto err_rpm; 318 319 /* Sanity check that we allow writing into this object */ 320 if (i915_gem_object_is_readonly(obj) && write) { 321 ret = -EFAULT; 322 goto err_rpm; 323 } 324 325 ret = i915_gem_object_pin_pages(obj); 326 if (ret) 327 goto err_rpm; 328 329 ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu); 330 if (ret) 331 goto err_pages; 332 333 /* Now pin it into the GTT as needed */ 334 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, 335 PIN_MAPPABLE | 336 PIN_NONBLOCK /* NOWARN */ | 337 PIN_NOEVICT); 338 if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) { 339 /* Use a partial view if it is bigger than available space */ 340 struct i915_ggtt_view view = 341 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 342 unsigned int flags; 343 344 flags = PIN_MAPPABLE | PIN_NOSEARCH; 345 if (view.type == I915_GGTT_VIEW_NORMAL) 346 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */ 347 348 /* 349 * Userspace is now writing through an untracked VMA, abandon 350 * all hope that the hardware is able to track future writes. 351 */ 352 353 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags); 354 if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) { 355 flags = PIN_MAPPABLE; 356 view.type = I915_GGTT_VIEW_PARTIAL; 357 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags); 358 } 359 360 /* The entire mappable GGTT is pinned? Unexpected! */ 361 GEM_BUG_ON(vma == ERR_PTR(-ENOSPC)); 362 } 363 if (IS_ERR(vma)) { 364 ret = PTR_ERR(vma); 365 goto err_reset; 366 } 367 368 /* Access to snoopable pages through the GTT is incoherent. */ 369 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) { 370 ret = -EFAULT; 371 goto err_unpin; 372 } 373 374 ret = i915_vma_pin_fence(vma); 375 if (ret) 376 goto err_unpin; 377 378 /* Finally, remap it using the new GTT offset */ 379 ret = remap_io_mapping(area, 380 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 381 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, 382 min_t(u64, vma->size, area->vm_end - area->vm_start), 383 &ggtt->iomap); 384 if (ret) 385 goto err_fence; 386 387 assert_rpm_wakelock_held(rpm); 388 389 /* Mark as being mmapped into userspace for later revocation */ 390 mutex_lock(&i915->ggtt.vm.mutex); 391 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 392 list_add(&obj->userfault_link, &i915->ggtt.userfault_list); 393 mutex_unlock(&i915->ggtt.vm.mutex); 394 395 /* Track the mmo associated with the fenced vma */ 396 vma->mmo = mmo; 397 398 if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)) 399 intel_wakeref_auto(&i915->ggtt.userfault_wakeref, 400 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 401 402 if (write) { 403 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 404 i915_vma_set_ggtt_write(vma); 405 obj->mm.dirty = true; 406 } 407 408 err_fence: 409 i915_vma_unpin_fence(vma); 410 err_unpin: 411 __i915_vma_unpin(vma); 412 err_reset: 413 intel_gt_reset_unlock(ggtt->vm.gt, srcu); 414 err_pages: 415 i915_gem_object_unpin_pages(obj); 416 err_rpm: 417 if (ret == -EDEADLK) { 418 ret = i915_gem_ww_ctx_backoff(&ww); 419 if (!ret) 420 goto retry; 421 } 422 i915_gem_ww_ctx_fini(&ww); 423 intel_runtime_pm_put(rpm, wakeref); 424 return i915_error_to_vmf_fault(ret); 425 } 426 427 static int 428 vm_access(struct vm_area_struct *area, unsigned long addr, 429 void *buf, int len, int write) 430 { 431 struct i915_mmap_offset *mmo = area->vm_private_data; 432 struct drm_i915_gem_object *obj = mmo->obj; 433 struct i915_gem_ww_ctx ww; 434 void *vaddr; 435 int err = 0; 436 437 if (i915_gem_object_is_readonly(obj) && write) 438 return -EACCES; 439 440 addr -= area->vm_start; 441 if (addr >= obj->base.size) 442 return -EINVAL; 443 444 i915_gem_ww_ctx_init(&ww, true); 445 retry: 446 err = i915_gem_object_lock(obj, &ww); 447 if (err) 448 goto out; 449 450 /* As this is primarily for debugging, let's focus on simplicity */ 451 vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC); 452 if (IS_ERR(vaddr)) { 453 err = PTR_ERR(vaddr); 454 goto out; 455 } 456 457 if (write) { 458 memcpy(vaddr + addr, buf, len); 459 __i915_gem_object_flush_map(obj, addr, len); 460 } else { 461 memcpy(buf, vaddr + addr, len); 462 } 463 464 i915_gem_object_unpin_map(obj); 465 out: 466 if (err == -EDEADLK) { 467 err = i915_gem_ww_ctx_backoff(&ww); 468 if (!err) 469 goto retry; 470 } 471 i915_gem_ww_ctx_fini(&ww); 472 473 if (err) 474 return err; 475 476 return len; 477 } 478 479 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj) 480 { 481 struct i915_vma *vma; 482 483 GEM_BUG_ON(!obj->userfault_count); 484 485 for_each_ggtt_vma(vma, obj) 486 i915_vma_revoke_mmap(vma); 487 488 GEM_BUG_ON(obj->userfault_count); 489 } 490 491 /* 492 * It is vital that we remove the page mapping if we have mapped a tiled 493 * object through the GTT and then lose the fence register due to 494 * resource pressure. Similarly if the object has been moved out of the 495 * aperture, than pages mapped into userspace must be revoked. Removing the 496 * mapping will then trigger a page fault on the next user access, allowing 497 * fixup by vm_fault_gtt(). 498 */ 499 void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj) 500 { 501 struct drm_i915_private *i915 = to_i915(obj->base.dev); 502 intel_wakeref_t wakeref; 503 504 /* 505 * Serialisation between user GTT access and our code depends upon 506 * revoking the CPU's PTE whilst the mutex is held. The next user 507 * pagefault then has to wait until we release the mutex. 508 * 509 * Note that RPM complicates somewhat by adding an additional 510 * requirement that operations to the GGTT be made holding the RPM 511 * wakeref. 512 */ 513 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 514 mutex_lock(&i915->ggtt.vm.mutex); 515 516 if (!obj->userfault_count) 517 goto out; 518 519 __i915_gem_object_release_mmap_gtt(obj); 520 521 /* 522 * Ensure that the CPU's PTE are revoked and there are not outstanding 523 * memory transactions from userspace before we return. The TLB 524 * flushing implied above by changing the PTE above *should* be 525 * sufficient, an extra barrier here just provides us with a bit 526 * of paranoid documentation about our requirement to serialise 527 * memory writes before touching registers / GSM. 528 */ 529 wmb(); 530 531 out: 532 mutex_unlock(&i915->ggtt.vm.mutex); 533 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 534 } 535 536 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj) 537 { 538 struct i915_mmap_offset *mmo, *mn; 539 540 spin_lock(&obj->mmo.lock); 541 rbtree_postorder_for_each_entry_safe(mmo, mn, 542 &obj->mmo.offsets, offset) { 543 /* 544 * vma_node_unmap for GTT mmaps handled already in 545 * __i915_gem_object_release_mmap_gtt 546 */ 547 if (mmo->mmap_type == I915_MMAP_TYPE_GTT) 548 continue; 549 550 spin_unlock(&obj->mmo.lock); 551 drm_vma_node_unmap(&mmo->vma_node, 552 obj->base.dev->anon_inode->i_mapping); 553 spin_lock(&obj->mmo.lock); 554 } 555 spin_unlock(&obj->mmo.lock); 556 } 557 558 static struct i915_mmap_offset * 559 lookup_mmo(struct drm_i915_gem_object *obj, 560 enum i915_mmap_type mmap_type) 561 { 562 struct rb_node *rb; 563 564 spin_lock(&obj->mmo.lock); 565 rb = obj->mmo.offsets.rb_node; 566 while (rb) { 567 struct i915_mmap_offset *mmo = 568 rb_entry(rb, typeof(*mmo), offset); 569 570 if (mmo->mmap_type == mmap_type) { 571 spin_unlock(&obj->mmo.lock); 572 return mmo; 573 } 574 575 if (mmo->mmap_type < mmap_type) 576 rb = rb->rb_right; 577 else 578 rb = rb->rb_left; 579 } 580 spin_unlock(&obj->mmo.lock); 581 582 return NULL; 583 } 584 585 static struct i915_mmap_offset * 586 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo) 587 { 588 struct rb_node *rb, **p; 589 590 spin_lock(&obj->mmo.lock); 591 rb = NULL; 592 p = &obj->mmo.offsets.rb_node; 593 while (*p) { 594 struct i915_mmap_offset *pos; 595 596 rb = *p; 597 pos = rb_entry(rb, typeof(*pos), offset); 598 599 if (pos->mmap_type == mmo->mmap_type) { 600 spin_unlock(&obj->mmo.lock); 601 drm_vma_offset_remove(obj->base.dev->vma_offset_manager, 602 &mmo->vma_node); 603 kfree(mmo); 604 return pos; 605 } 606 607 if (pos->mmap_type < mmo->mmap_type) 608 p = &rb->rb_right; 609 else 610 p = &rb->rb_left; 611 } 612 rb_link_node(&mmo->offset, rb, p); 613 rb_insert_color(&mmo->offset, &obj->mmo.offsets); 614 spin_unlock(&obj->mmo.lock); 615 616 return mmo; 617 } 618 619 static struct i915_mmap_offset * 620 mmap_offset_attach(struct drm_i915_gem_object *obj, 621 enum i915_mmap_type mmap_type, 622 struct drm_file *file) 623 { 624 struct drm_i915_private *i915 = to_i915(obj->base.dev); 625 struct i915_mmap_offset *mmo; 626 int err; 627 628 GEM_BUG_ON(obj->ops->mmap_offset || obj->ops->mmap_ops); 629 630 mmo = lookup_mmo(obj, mmap_type); 631 if (mmo) 632 goto out; 633 634 mmo = kmalloc(sizeof(*mmo), GFP_KERNEL); 635 if (!mmo) 636 return ERR_PTR(-ENOMEM); 637 638 mmo->obj = obj; 639 mmo->mmap_type = mmap_type; 640 drm_vma_node_reset(&mmo->vma_node); 641 642 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager, 643 &mmo->vma_node, obj->base.size / PAGE_SIZE); 644 if (likely(!err)) 645 goto insert; 646 647 /* Attempt to reap some mmap space from dead objects */ 648 err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT); 649 if (err) 650 goto err; 651 652 i915_gem_drain_freed_objects(i915); 653 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager, 654 &mmo->vma_node, obj->base.size / PAGE_SIZE); 655 if (err) 656 goto err; 657 658 insert: 659 mmo = insert_mmo(obj, mmo); 660 GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo); 661 out: 662 if (file) 663 drm_vma_node_allow(&mmo->vma_node, file); 664 return mmo; 665 666 err: 667 kfree(mmo); 668 return ERR_PTR(err); 669 } 670 671 static int 672 __assign_mmap_offset(struct drm_i915_gem_object *obj, 673 enum i915_mmap_type mmap_type, 674 u64 *offset, struct drm_file *file) 675 { 676 struct i915_mmap_offset *mmo; 677 678 if (i915_gem_object_never_mmap(obj)) 679 return -ENODEV; 680 681 if (obj->ops->mmap_offset) { 682 *offset = obj->ops->mmap_offset(obj); 683 return 0; 684 } 685 686 if (mmap_type != I915_MMAP_TYPE_GTT && 687 !i915_gem_object_has_struct_page(obj) && 688 !i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_IOMEM)) 689 return -ENODEV; 690 691 mmo = mmap_offset_attach(obj, mmap_type, file); 692 if (IS_ERR(mmo)) 693 return PTR_ERR(mmo); 694 695 *offset = drm_vma_node_offset_addr(&mmo->vma_node); 696 return 0; 697 } 698 699 static int 700 __assign_mmap_offset_handle(struct drm_file *file, 701 u32 handle, 702 enum i915_mmap_type mmap_type, 703 u64 *offset) 704 { 705 struct drm_i915_gem_object *obj; 706 int err; 707 708 obj = i915_gem_object_lookup(file, handle); 709 if (!obj) 710 return -ENOENT; 711 712 err = __assign_mmap_offset(obj, mmap_type, offset, file); 713 i915_gem_object_put(obj); 714 return err; 715 } 716 717 int 718 i915_gem_dumb_mmap_offset(struct drm_file *file, 719 struct drm_device *dev, 720 u32 handle, 721 u64 *offset) 722 { 723 enum i915_mmap_type mmap_type; 724 725 if (boot_cpu_has(X86_FEATURE_PAT)) 726 mmap_type = I915_MMAP_TYPE_WC; 727 else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt)) 728 return -ENODEV; 729 else 730 mmap_type = I915_MMAP_TYPE_GTT; 731 732 return __assign_mmap_offset_handle(file, handle, mmap_type, offset); 733 } 734 735 /** 736 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing 737 * @dev: DRM device 738 * @data: GTT mapping ioctl data 739 * @file: GEM object info 740 * 741 * Simply returns the fake offset to userspace so it can mmap it. 742 * The mmap call will end up in drm_gem_mmap(), which will set things 743 * up so we can get faults in the handler above. 744 * 745 * The fault handler will take care of binding the object into the GTT 746 * (since it may have been evicted to make room for something), allocating 747 * a fence register, and mapping the appropriate aperture address into 748 * userspace. 749 */ 750 int 751 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 752 struct drm_file *file) 753 { 754 struct drm_i915_private *i915 = to_i915(dev); 755 struct drm_i915_gem_mmap_offset *args = data; 756 enum i915_mmap_type type; 757 int err; 758 759 /* 760 * Historically we failed to check args.pad and args.offset 761 * and so we cannot use those fields for user input and we cannot 762 * add -EINVAL for them as the ABI is fixed, i.e. old userspace 763 * may be feeding in garbage in those fields. 764 * 765 * if (args->pad) return -EINVAL; is verbotten! 766 */ 767 768 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 769 NULL, 0, NULL); 770 if (err) 771 return err; 772 773 switch (args->flags) { 774 case I915_MMAP_OFFSET_GTT: 775 if (!i915_ggtt_has_aperture(&i915->ggtt)) 776 return -ENODEV; 777 type = I915_MMAP_TYPE_GTT; 778 break; 779 780 case I915_MMAP_OFFSET_WC: 781 if (!boot_cpu_has(X86_FEATURE_PAT)) 782 return -ENODEV; 783 type = I915_MMAP_TYPE_WC; 784 break; 785 786 case I915_MMAP_OFFSET_WB: 787 type = I915_MMAP_TYPE_WB; 788 break; 789 790 case I915_MMAP_OFFSET_UC: 791 if (!boot_cpu_has(X86_FEATURE_PAT)) 792 return -ENODEV; 793 type = I915_MMAP_TYPE_UC; 794 break; 795 796 default: 797 return -EINVAL; 798 } 799 800 return __assign_mmap_offset_handle(file, args->handle, type, &args->offset); 801 } 802 803 static void vm_open(struct vm_area_struct *vma) 804 { 805 struct i915_mmap_offset *mmo = vma->vm_private_data; 806 struct drm_i915_gem_object *obj = mmo->obj; 807 808 GEM_BUG_ON(!obj); 809 i915_gem_object_get(obj); 810 } 811 812 static void vm_close(struct vm_area_struct *vma) 813 { 814 struct i915_mmap_offset *mmo = vma->vm_private_data; 815 struct drm_i915_gem_object *obj = mmo->obj; 816 817 GEM_BUG_ON(!obj); 818 i915_gem_object_put(obj); 819 } 820 821 static const struct vm_operations_struct vm_ops_gtt = { 822 .fault = vm_fault_gtt, 823 .access = vm_access, 824 .open = vm_open, 825 .close = vm_close, 826 }; 827 828 static const struct vm_operations_struct vm_ops_cpu = { 829 .fault = vm_fault_cpu, 830 .access = vm_access, 831 .open = vm_open, 832 .close = vm_close, 833 }; 834 835 static int singleton_release(struct inode *inode, struct file *file) 836 { 837 struct drm_i915_private *i915 = file->private_data; 838 839 cmpxchg(&i915->gem.mmap_singleton, file, NULL); 840 drm_dev_put(&i915->drm); 841 842 return 0; 843 } 844 845 static const struct file_operations singleton_fops = { 846 .owner = THIS_MODULE, 847 .release = singleton_release, 848 }; 849 850 static struct file *mmap_singleton(struct drm_i915_private *i915) 851 { 852 struct file *file; 853 854 rcu_read_lock(); 855 file = READ_ONCE(i915->gem.mmap_singleton); 856 if (file && !get_file_rcu(file)) 857 file = NULL; 858 rcu_read_unlock(); 859 if (file) 860 return file; 861 862 file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR); 863 if (IS_ERR(file)) 864 return file; 865 866 /* Everyone shares a single global address space */ 867 file->f_mapping = i915->drm.anon_inode->i_mapping; 868 869 smp_store_mb(i915->gem.mmap_singleton, file); 870 drm_dev_get(&i915->drm); 871 872 return file; 873 } 874 875 /* 876 * This overcomes the limitation in drm_gem_mmap's assignment of a 877 * drm_gem_object as the vma->vm_private_data. Since we need to 878 * be able to resolve multiple mmap offsets which could be tied 879 * to a single gem object. 880 */ 881 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma) 882 { 883 struct drm_vma_offset_node *node; 884 struct drm_file *priv = filp->private_data; 885 struct drm_device *dev = priv->minor->dev; 886 struct drm_i915_gem_object *obj = NULL; 887 struct i915_mmap_offset *mmo = NULL; 888 struct file *anon; 889 890 if (drm_dev_is_unplugged(dev)) 891 return -ENODEV; 892 893 rcu_read_lock(); 894 drm_vma_offset_lock_lookup(dev->vma_offset_manager); 895 node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager, 896 vma->vm_pgoff, 897 vma_pages(vma)); 898 if (node && drm_vma_node_is_allowed(node, priv)) { 899 /* 900 * Skip 0-refcnted objects as it is in the process of being 901 * destroyed and will be invalid when the vma manager lock 902 * is released. 903 */ 904 if (!node->driver_private) { 905 mmo = container_of(node, struct i915_mmap_offset, vma_node); 906 obj = i915_gem_object_get_rcu(mmo->obj); 907 908 GEM_BUG_ON(obj && obj->ops->mmap_ops); 909 } else { 910 obj = i915_gem_object_get_rcu 911 (container_of(node, struct drm_i915_gem_object, 912 base.vma_node)); 913 914 GEM_BUG_ON(obj && !obj->ops->mmap_ops); 915 } 916 } 917 drm_vma_offset_unlock_lookup(dev->vma_offset_manager); 918 rcu_read_unlock(); 919 if (!obj) 920 return node ? -EACCES : -EINVAL; 921 922 if (i915_gem_object_is_readonly(obj)) { 923 if (vma->vm_flags & VM_WRITE) { 924 i915_gem_object_put(obj); 925 return -EINVAL; 926 } 927 vma->vm_flags &= ~VM_MAYWRITE; 928 } 929 930 anon = mmap_singleton(to_i915(dev)); 931 if (IS_ERR(anon)) { 932 i915_gem_object_put(obj); 933 return PTR_ERR(anon); 934 } 935 936 vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 937 938 if (i915_gem_object_has_iomem(obj)) 939 vma->vm_flags |= VM_IO; 940 941 /* 942 * We keep the ref on mmo->obj, not vm_file, but we require 943 * vma->vm_file->f_mapping, see vma_link(), for later revocation. 944 * Our userspace is accustomed to having per-file resource cleanup 945 * (i.e. contexts, objects and requests) on their close(fd), which 946 * requires avoiding extraneous references to their filp, hence why 947 * we prefer to use an anonymous file for their mmaps. 948 */ 949 vma_set_file(vma, anon); 950 /* Drop the initial creation reference, the vma is now holding one. */ 951 fput(anon); 952 953 if (obj->ops->mmap_ops) { 954 vma->vm_page_prot = pgprot_decrypted(vm_get_page_prot(vma->vm_flags)); 955 vma->vm_ops = obj->ops->mmap_ops; 956 vma->vm_private_data = node->driver_private; 957 return 0; 958 } 959 960 vma->vm_private_data = mmo; 961 962 switch (mmo->mmap_type) { 963 case I915_MMAP_TYPE_WC: 964 vma->vm_page_prot = 965 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 966 vma->vm_ops = &vm_ops_cpu; 967 break; 968 969 case I915_MMAP_TYPE_WB: 970 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 971 vma->vm_ops = &vm_ops_cpu; 972 break; 973 974 case I915_MMAP_TYPE_UC: 975 vma->vm_page_prot = 976 pgprot_noncached(vm_get_page_prot(vma->vm_flags)); 977 vma->vm_ops = &vm_ops_cpu; 978 break; 979 980 case I915_MMAP_TYPE_GTT: 981 vma->vm_page_prot = 982 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 983 vma->vm_ops = &vm_ops_gtt; 984 break; 985 } 986 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 987 988 return 0; 989 } 990 991 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 992 #include "selftests/i915_gem_mman.c" 993 #endif 994