1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/anon_inodes.h>
8 #include <linux/mman.h>
9 #include <linux/pfn_t.h>
10 #include <linux/sizes.h>
11 
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_requests.h"
14 
15 #include "i915_drv.h"
16 #include "i915_gem_gtt.h"
17 #include "i915_gem_ioctls.h"
18 #include "i915_gem_object.h"
19 #include "i915_gem_mman.h"
20 #include "i915_trace.h"
21 #include "i915_user_extensions.h"
22 #include "i915_vma.h"
23 
24 static inline bool
25 __vma_matches(struct vm_area_struct *vma, struct file *filp,
26 	      unsigned long addr, unsigned long size)
27 {
28 	if (vma->vm_file != filp)
29 		return false;
30 
31 	return vma->vm_start == addr &&
32 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
33 }
34 
35 /**
36  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
37  *			 it is mapped to.
38  * @dev: drm device
39  * @data: ioctl data blob
40  * @file: drm file
41  *
42  * While the mapping holds a reference on the contents of the object, it doesn't
43  * imply a ref on the object itself.
44  *
45  * IMPORTANT:
46  *
47  * DRM driver writers who look a this function as an example for how to do GEM
48  * mmap support, please don't implement mmap support like here. The modern way
49  * to implement DRM mmap support is with an mmap offset ioctl (like
50  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
51  * That way debug tooling like valgrind will understand what's going on, hiding
52  * the mmap call in a driver private ioctl will break that. The i915 driver only
53  * does cpu mmaps this way because we didn't know better.
54  */
55 int
56 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
57 		    struct drm_file *file)
58 {
59 	struct drm_i915_private *i915 = to_i915(dev);
60 	struct drm_i915_gem_mmap *args = data;
61 	struct drm_i915_gem_object *obj;
62 	unsigned long addr;
63 
64 	/* mmap ioctl is disallowed for all platforms after TGL-LP.  This also
65 	 * covers all platforms with local memory.
66 	 */
67 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
68 		return -EOPNOTSUPP;
69 
70 	if (args->flags & ~(I915_MMAP_WC))
71 		return -EINVAL;
72 
73 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
74 		return -ENODEV;
75 
76 	obj = i915_gem_object_lookup(file, args->handle);
77 	if (!obj)
78 		return -ENOENT;
79 
80 	/* prime objects have no backing filp to GEM mmap
81 	 * pages from.
82 	 */
83 	if (!obj->base.filp) {
84 		addr = -ENXIO;
85 		goto err;
86 	}
87 
88 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
89 		addr = -EINVAL;
90 		goto err;
91 	}
92 
93 	addr = vm_mmap(obj->base.filp, 0, args->size,
94 		       PROT_READ | PROT_WRITE, MAP_SHARED,
95 		       args->offset);
96 	if (IS_ERR_VALUE(addr))
97 		goto err;
98 
99 	if (args->flags & I915_MMAP_WC) {
100 		struct mm_struct *mm = current->mm;
101 		struct vm_area_struct *vma;
102 
103 		if (mmap_write_lock_killable(mm)) {
104 			addr = -EINTR;
105 			goto err;
106 		}
107 		vma = find_vma(mm, addr);
108 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
109 			vma->vm_page_prot =
110 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
111 		else
112 			addr = -ENOMEM;
113 		mmap_write_unlock(mm);
114 		if (IS_ERR_VALUE(addr))
115 			goto err;
116 	}
117 	i915_gem_object_put(obj);
118 
119 	args->addr_ptr = (u64)addr;
120 	return 0;
121 
122 err:
123 	i915_gem_object_put(obj);
124 	return addr;
125 }
126 
127 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
128 {
129 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
130 }
131 
132 /**
133  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
134  *
135  * A history of the GTT mmap interface:
136  *
137  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
138  *     aligned and suitable for fencing, and still fit into the available
139  *     mappable space left by the pinned display objects. A classic problem
140  *     we called the page-fault-of-doom where we would ping-pong between
141  *     two objects that could not fit inside the GTT and so the memcpy
142  *     would page one object in at the expense of the other between every
143  *     single byte.
144  *
145  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
146  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
147  *     object is too large for the available space (or simply too large
148  *     for the mappable aperture!), a view is created instead and faulted
149  *     into userspace. (This view is aligned and sized appropriately for
150  *     fenced access.)
151  *
152  * 2 - Recognise WC as a separate cache domain so that we can flush the
153  *     delayed writes via GTT before performing direct access via WC.
154  *
155  * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
156  *     pagefault; swapin remains transparent.
157  *
158  * 4 - Support multiple fault handlers per object depending on object's
159  *     backing storage (a.k.a. MMAP_OFFSET).
160  *
161  * Restrictions:
162  *
163  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
164  *    hangs on some architectures, corruption on others. An attempt to service
165  *    a GTT page fault from a snoopable object will generate a SIGBUS.
166  *
167  *  * the object must be able to fit into RAM (physical memory, though no
168  *    limited to the mappable aperture).
169  *
170  *
171  * Caveats:
172  *
173  *  * a new GTT page fault will synchronize rendering from the GPU and flush
174  *    all data to system memory. Subsequent access will not be synchronized.
175  *
176  *  * all mappings are revoked on runtime device suspend.
177  *
178  *  * there are only 8, 16 or 32 fence registers to share between all users
179  *    (older machines require fence register for display and blitter access
180  *    as well). Contention of the fence registers will cause the previous users
181  *    to be unmapped and any new access will generate new page faults.
182  *
183  *  * running out of memory while servicing a fault may generate a SIGBUS,
184  *    rather than the expected SIGSEGV.
185  */
186 int i915_gem_mmap_gtt_version(void)
187 {
188 	return 4;
189 }
190 
191 static inline struct i915_ggtt_view
192 compute_partial_view(const struct drm_i915_gem_object *obj,
193 		     pgoff_t page_offset,
194 		     unsigned int chunk)
195 {
196 	struct i915_ggtt_view view;
197 
198 	if (i915_gem_object_is_tiled(obj))
199 		chunk = roundup(chunk, tile_row_pages(obj) ?: 1);
200 
201 	view.type = I915_GGTT_VIEW_PARTIAL;
202 	view.partial.offset = rounddown(page_offset, chunk);
203 	view.partial.size =
204 		min_t(unsigned int, chunk,
205 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
206 
207 	/* If the partial covers the entire object, just create a normal VMA. */
208 	if (chunk >= obj->base.size >> PAGE_SHIFT)
209 		view.type = I915_GGTT_VIEW_NORMAL;
210 
211 	return view;
212 }
213 
214 static vm_fault_t i915_error_to_vmf_fault(int err)
215 {
216 	switch (err) {
217 	default:
218 		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
219 		fallthrough;
220 	case -EIO: /* shmemfs failure from swap device */
221 	case -EFAULT: /* purged object */
222 	case -ENODEV: /* bad object, how did you get here! */
223 	case -ENXIO: /* unable to access backing store (on device) */
224 		return VM_FAULT_SIGBUS;
225 
226 	case -ENOMEM: /* our allocation failure */
227 		return VM_FAULT_OOM;
228 
229 	case 0:
230 	case -EAGAIN:
231 	case -ENOSPC: /* transient failure to evict? */
232 	case -ERESTARTSYS:
233 	case -EINTR:
234 	case -EBUSY:
235 		/*
236 		 * EBUSY is ok: this just means that another thread
237 		 * already did the job.
238 		 */
239 		return VM_FAULT_NOPAGE;
240 	}
241 }
242 
243 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
244 {
245 	struct vm_area_struct *area = vmf->vma;
246 	struct i915_mmap_offset *mmo = area->vm_private_data;
247 	struct drm_i915_gem_object *obj = mmo->obj;
248 	resource_size_t iomap;
249 	int err;
250 
251 	/* Sanity check that we allow writing into this object */
252 	if (unlikely(i915_gem_object_is_readonly(obj) &&
253 		     area->vm_flags & VM_WRITE))
254 		return VM_FAULT_SIGBUS;
255 
256 	if (i915_gem_object_lock_interruptible(obj, NULL))
257 		return VM_FAULT_NOPAGE;
258 
259 	err = i915_gem_object_pin_pages(obj);
260 	if (err)
261 		goto out;
262 
263 	iomap = -1;
264 	if (!i915_gem_object_has_struct_page(obj)) {
265 		iomap = obj->mm.region->iomap.base;
266 		iomap -= obj->mm.region->region.start;
267 	}
268 
269 	/* PTEs are revoked in obj->ops->put_pages() */
270 	err = remap_io_sg(area,
271 			  area->vm_start, area->vm_end - area->vm_start,
272 			  obj->mm.pages->sgl, iomap);
273 
274 	if (area->vm_flags & VM_WRITE) {
275 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
276 		obj->mm.dirty = true;
277 	}
278 
279 	i915_gem_object_unpin_pages(obj);
280 
281 out:
282 	i915_gem_object_unlock(obj);
283 	return i915_error_to_vmf_fault(err);
284 }
285 
286 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
287 {
288 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
289 	struct vm_area_struct *area = vmf->vma;
290 	struct i915_mmap_offset *mmo = area->vm_private_data;
291 	struct drm_i915_gem_object *obj = mmo->obj;
292 	struct drm_device *dev = obj->base.dev;
293 	struct drm_i915_private *i915 = to_i915(dev);
294 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
295 	struct i915_ggtt *ggtt = &i915->ggtt;
296 	bool write = area->vm_flags & VM_WRITE;
297 	struct i915_gem_ww_ctx ww;
298 	intel_wakeref_t wakeref;
299 	struct i915_vma *vma;
300 	pgoff_t page_offset;
301 	int srcu;
302 	int ret;
303 
304 	/* We don't use vmf->pgoff since that has the fake offset */
305 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
306 
307 	trace_i915_gem_object_fault(obj, page_offset, true, write);
308 
309 	wakeref = intel_runtime_pm_get(rpm);
310 
311 	i915_gem_ww_ctx_init(&ww, true);
312 retry:
313 	ret = i915_gem_object_lock(obj, &ww);
314 	if (ret)
315 		goto err_rpm;
316 
317 	/* Sanity check that we allow writing into this object */
318 	if (i915_gem_object_is_readonly(obj) && write) {
319 		ret = -EFAULT;
320 		goto err_rpm;
321 	}
322 
323 	ret = i915_gem_object_pin_pages(obj);
324 	if (ret)
325 		goto err_rpm;
326 
327 	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
328 	if (ret)
329 		goto err_pages;
330 
331 	/* Now pin it into the GTT as needed */
332 	vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
333 					  PIN_MAPPABLE |
334 					  PIN_NONBLOCK /* NOWARN */ |
335 					  PIN_NOEVICT);
336 	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
337 		/* Use a partial view if it is bigger than available space */
338 		struct i915_ggtt_view view =
339 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
340 		unsigned int flags;
341 
342 		flags = PIN_MAPPABLE | PIN_NOSEARCH;
343 		if (view.type == I915_GGTT_VIEW_NORMAL)
344 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
345 
346 		/*
347 		 * Userspace is now writing through an untracked VMA, abandon
348 		 * all hope that the hardware is able to track future writes.
349 		 */
350 
351 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
352 		if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
353 			flags = PIN_MAPPABLE;
354 			view.type = I915_GGTT_VIEW_PARTIAL;
355 			vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
356 		}
357 
358 		/* The entire mappable GGTT is pinned? Unexpected! */
359 		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
360 	}
361 	if (IS_ERR(vma)) {
362 		ret = PTR_ERR(vma);
363 		goto err_reset;
364 	}
365 
366 	/* Access to snoopable pages through the GTT is incoherent. */
367 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
368 		ret = -EFAULT;
369 		goto err_unpin;
370 	}
371 
372 	ret = i915_vma_pin_fence(vma);
373 	if (ret)
374 		goto err_unpin;
375 
376 	/* Finally, remap it using the new GTT offset */
377 	ret = remap_io_mapping(area,
378 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
379 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
380 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
381 			       &ggtt->iomap);
382 	if (ret)
383 		goto err_fence;
384 
385 	assert_rpm_wakelock_held(rpm);
386 
387 	/* Mark as being mmapped into userspace for later revocation */
388 	mutex_lock(&i915->ggtt.vm.mutex);
389 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
390 		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
391 	mutex_unlock(&i915->ggtt.vm.mutex);
392 
393 	/* Track the mmo associated with the fenced vma */
394 	vma->mmo = mmo;
395 
396 	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
397 		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
398 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
399 
400 	if (write) {
401 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
402 		i915_vma_set_ggtt_write(vma);
403 		obj->mm.dirty = true;
404 	}
405 
406 err_fence:
407 	i915_vma_unpin_fence(vma);
408 err_unpin:
409 	__i915_vma_unpin(vma);
410 err_reset:
411 	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
412 err_pages:
413 	i915_gem_object_unpin_pages(obj);
414 err_rpm:
415 	if (ret == -EDEADLK) {
416 		ret = i915_gem_ww_ctx_backoff(&ww);
417 		if (!ret)
418 			goto retry;
419 	}
420 	i915_gem_ww_ctx_fini(&ww);
421 	intel_runtime_pm_put(rpm, wakeref);
422 	return i915_error_to_vmf_fault(ret);
423 }
424 
425 static int
426 vm_access(struct vm_area_struct *area, unsigned long addr,
427 	  void *buf, int len, int write)
428 {
429 	struct i915_mmap_offset *mmo = area->vm_private_data;
430 	struct drm_i915_gem_object *obj = mmo->obj;
431 	struct i915_gem_ww_ctx ww;
432 	void *vaddr;
433 	int err = 0;
434 
435 	if (i915_gem_object_is_readonly(obj) && write)
436 		return -EACCES;
437 
438 	addr -= area->vm_start;
439 	if (addr >= obj->base.size)
440 		return -EINVAL;
441 
442 	i915_gem_ww_ctx_init(&ww, true);
443 retry:
444 	err = i915_gem_object_lock(obj, &ww);
445 	if (err)
446 		goto out;
447 
448 	/* As this is primarily for debugging, let's focus on simplicity */
449 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
450 	if (IS_ERR(vaddr)) {
451 		err = PTR_ERR(vaddr);
452 		goto out;
453 	}
454 
455 	if (write) {
456 		memcpy(vaddr + addr, buf, len);
457 		__i915_gem_object_flush_map(obj, addr, len);
458 	} else {
459 		memcpy(buf, vaddr + addr, len);
460 	}
461 
462 	i915_gem_object_unpin_map(obj);
463 out:
464 	if (err == -EDEADLK) {
465 		err = i915_gem_ww_ctx_backoff(&ww);
466 		if (!err)
467 			goto retry;
468 	}
469 	i915_gem_ww_ctx_fini(&ww);
470 
471 	if (err)
472 		return err;
473 
474 	return len;
475 }
476 
477 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
478 {
479 	struct i915_vma *vma;
480 
481 	GEM_BUG_ON(!obj->userfault_count);
482 
483 	for_each_ggtt_vma(vma, obj)
484 		i915_vma_revoke_mmap(vma);
485 
486 	GEM_BUG_ON(obj->userfault_count);
487 }
488 
489 /*
490  * It is vital that we remove the page mapping if we have mapped a tiled
491  * object through the GTT and then lose the fence register due to
492  * resource pressure. Similarly if the object has been moved out of the
493  * aperture, than pages mapped into userspace must be revoked. Removing the
494  * mapping will then trigger a page fault on the next user access, allowing
495  * fixup by vm_fault_gtt().
496  */
497 void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
498 {
499 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
500 	intel_wakeref_t wakeref;
501 
502 	/*
503 	 * Serialisation between user GTT access and our code depends upon
504 	 * revoking the CPU's PTE whilst the mutex is held. The next user
505 	 * pagefault then has to wait until we release the mutex.
506 	 *
507 	 * Note that RPM complicates somewhat by adding an additional
508 	 * requirement that operations to the GGTT be made holding the RPM
509 	 * wakeref.
510 	 */
511 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
512 	mutex_lock(&i915->ggtt.vm.mutex);
513 
514 	if (!obj->userfault_count)
515 		goto out;
516 
517 	__i915_gem_object_release_mmap_gtt(obj);
518 
519 	/*
520 	 * Ensure that the CPU's PTE are revoked and there are not outstanding
521 	 * memory transactions from userspace before we return. The TLB
522 	 * flushing implied above by changing the PTE above *should* be
523 	 * sufficient, an extra barrier here just provides us with a bit
524 	 * of paranoid documentation about our requirement to serialise
525 	 * memory writes before touching registers / GSM.
526 	 */
527 	wmb();
528 
529 out:
530 	mutex_unlock(&i915->ggtt.vm.mutex);
531 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
532 }
533 
534 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
535 {
536 	struct i915_mmap_offset *mmo, *mn;
537 
538 	spin_lock(&obj->mmo.lock);
539 	rbtree_postorder_for_each_entry_safe(mmo, mn,
540 					     &obj->mmo.offsets, offset) {
541 		/*
542 		 * vma_node_unmap for GTT mmaps handled already in
543 		 * __i915_gem_object_release_mmap_gtt
544 		 */
545 		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
546 			continue;
547 
548 		spin_unlock(&obj->mmo.lock);
549 		drm_vma_node_unmap(&mmo->vma_node,
550 				   obj->base.dev->anon_inode->i_mapping);
551 		spin_lock(&obj->mmo.lock);
552 	}
553 	spin_unlock(&obj->mmo.lock);
554 }
555 
556 static struct i915_mmap_offset *
557 lookup_mmo(struct drm_i915_gem_object *obj,
558 	   enum i915_mmap_type mmap_type)
559 {
560 	struct rb_node *rb;
561 
562 	spin_lock(&obj->mmo.lock);
563 	rb = obj->mmo.offsets.rb_node;
564 	while (rb) {
565 		struct i915_mmap_offset *mmo =
566 			rb_entry(rb, typeof(*mmo), offset);
567 
568 		if (mmo->mmap_type == mmap_type) {
569 			spin_unlock(&obj->mmo.lock);
570 			return mmo;
571 		}
572 
573 		if (mmo->mmap_type < mmap_type)
574 			rb = rb->rb_right;
575 		else
576 			rb = rb->rb_left;
577 	}
578 	spin_unlock(&obj->mmo.lock);
579 
580 	return NULL;
581 }
582 
583 static struct i915_mmap_offset *
584 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
585 {
586 	struct rb_node *rb, **p;
587 
588 	spin_lock(&obj->mmo.lock);
589 	rb = NULL;
590 	p = &obj->mmo.offsets.rb_node;
591 	while (*p) {
592 		struct i915_mmap_offset *pos;
593 
594 		rb = *p;
595 		pos = rb_entry(rb, typeof(*pos), offset);
596 
597 		if (pos->mmap_type == mmo->mmap_type) {
598 			spin_unlock(&obj->mmo.lock);
599 			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
600 					      &mmo->vma_node);
601 			kfree(mmo);
602 			return pos;
603 		}
604 
605 		if (pos->mmap_type < mmo->mmap_type)
606 			p = &rb->rb_right;
607 		else
608 			p = &rb->rb_left;
609 	}
610 	rb_link_node(&mmo->offset, rb, p);
611 	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
612 	spin_unlock(&obj->mmo.lock);
613 
614 	return mmo;
615 }
616 
617 static struct i915_mmap_offset *
618 mmap_offset_attach(struct drm_i915_gem_object *obj,
619 		   enum i915_mmap_type mmap_type,
620 		   struct drm_file *file)
621 {
622 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
623 	struct i915_mmap_offset *mmo;
624 	int err;
625 
626 	mmo = lookup_mmo(obj, mmap_type);
627 	if (mmo)
628 		goto out;
629 
630 	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
631 	if (!mmo)
632 		return ERR_PTR(-ENOMEM);
633 
634 	mmo->obj = obj;
635 	mmo->mmap_type = mmap_type;
636 	drm_vma_node_reset(&mmo->vma_node);
637 
638 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
639 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
640 	if (likely(!err))
641 		goto insert;
642 
643 	/* Attempt to reap some mmap space from dead objects */
644 	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
645 	if (err)
646 		goto err;
647 
648 	i915_gem_drain_freed_objects(i915);
649 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
650 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
651 	if (err)
652 		goto err;
653 
654 insert:
655 	mmo = insert_mmo(obj, mmo);
656 	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
657 out:
658 	if (file)
659 		drm_vma_node_allow(&mmo->vma_node, file);
660 	return mmo;
661 
662 err:
663 	kfree(mmo);
664 	return ERR_PTR(err);
665 }
666 
667 static int
668 __assign_mmap_offset(struct drm_file *file,
669 		     u32 handle,
670 		     enum i915_mmap_type mmap_type,
671 		     u64 *offset)
672 {
673 	struct drm_i915_gem_object *obj;
674 	struct i915_mmap_offset *mmo;
675 	int err;
676 
677 	obj = i915_gem_object_lookup(file, handle);
678 	if (!obj)
679 		return -ENOENT;
680 
681 	if (i915_gem_object_never_mmap(obj)) {
682 		err = -ENODEV;
683 		goto out;
684 	}
685 
686 	if (mmap_type != I915_MMAP_TYPE_GTT &&
687 	    !i915_gem_object_has_struct_page(obj) &&
688 	    !i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_IOMEM)) {
689 		err = -ENODEV;
690 		goto out;
691 	}
692 
693 	mmo = mmap_offset_attach(obj, mmap_type, file);
694 	if (IS_ERR(mmo)) {
695 		err = PTR_ERR(mmo);
696 		goto out;
697 	}
698 
699 	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
700 	err = 0;
701 out:
702 	i915_gem_object_put(obj);
703 	return err;
704 }
705 
706 int
707 i915_gem_dumb_mmap_offset(struct drm_file *file,
708 			  struct drm_device *dev,
709 			  u32 handle,
710 			  u64 *offset)
711 {
712 	enum i915_mmap_type mmap_type;
713 
714 	if (boot_cpu_has(X86_FEATURE_PAT))
715 		mmap_type = I915_MMAP_TYPE_WC;
716 	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
717 		return -ENODEV;
718 	else
719 		mmap_type = I915_MMAP_TYPE_GTT;
720 
721 	return __assign_mmap_offset(file, handle, mmap_type, offset);
722 }
723 
724 /**
725  * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
726  * @dev: DRM device
727  * @data: GTT mapping ioctl data
728  * @file: GEM object info
729  *
730  * Simply returns the fake offset to userspace so it can mmap it.
731  * The mmap call will end up in drm_gem_mmap(), which will set things
732  * up so we can get faults in the handler above.
733  *
734  * The fault handler will take care of binding the object into the GTT
735  * (since it may have been evicted to make room for something), allocating
736  * a fence register, and mapping the appropriate aperture address into
737  * userspace.
738  */
739 int
740 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
741 			   struct drm_file *file)
742 {
743 	struct drm_i915_private *i915 = to_i915(dev);
744 	struct drm_i915_gem_mmap_offset *args = data;
745 	enum i915_mmap_type type;
746 	int err;
747 
748 	/*
749 	 * Historically we failed to check args.pad and args.offset
750 	 * and so we cannot use those fields for user input and we cannot
751 	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
752 	 * may be feeding in garbage in those fields.
753 	 *
754 	 * if (args->pad) return -EINVAL; is verbotten!
755 	 */
756 
757 	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
758 				   NULL, 0, NULL);
759 	if (err)
760 		return err;
761 
762 	switch (args->flags) {
763 	case I915_MMAP_OFFSET_GTT:
764 		if (!i915_ggtt_has_aperture(&i915->ggtt))
765 			return -ENODEV;
766 		type = I915_MMAP_TYPE_GTT;
767 		break;
768 
769 	case I915_MMAP_OFFSET_WC:
770 		if (!boot_cpu_has(X86_FEATURE_PAT))
771 			return -ENODEV;
772 		type = I915_MMAP_TYPE_WC;
773 		break;
774 
775 	case I915_MMAP_OFFSET_WB:
776 		type = I915_MMAP_TYPE_WB;
777 		break;
778 
779 	case I915_MMAP_OFFSET_UC:
780 		if (!boot_cpu_has(X86_FEATURE_PAT))
781 			return -ENODEV;
782 		type = I915_MMAP_TYPE_UC;
783 		break;
784 
785 	default:
786 		return -EINVAL;
787 	}
788 
789 	return __assign_mmap_offset(file, args->handle, type, &args->offset);
790 }
791 
792 static void vm_open(struct vm_area_struct *vma)
793 {
794 	struct i915_mmap_offset *mmo = vma->vm_private_data;
795 	struct drm_i915_gem_object *obj = mmo->obj;
796 
797 	GEM_BUG_ON(!obj);
798 	i915_gem_object_get(obj);
799 }
800 
801 static void vm_close(struct vm_area_struct *vma)
802 {
803 	struct i915_mmap_offset *mmo = vma->vm_private_data;
804 	struct drm_i915_gem_object *obj = mmo->obj;
805 
806 	GEM_BUG_ON(!obj);
807 	i915_gem_object_put(obj);
808 }
809 
810 static const struct vm_operations_struct vm_ops_gtt = {
811 	.fault = vm_fault_gtt,
812 	.access = vm_access,
813 	.open = vm_open,
814 	.close = vm_close,
815 };
816 
817 static const struct vm_operations_struct vm_ops_cpu = {
818 	.fault = vm_fault_cpu,
819 	.access = vm_access,
820 	.open = vm_open,
821 	.close = vm_close,
822 };
823 
824 static int singleton_release(struct inode *inode, struct file *file)
825 {
826 	struct drm_i915_private *i915 = file->private_data;
827 
828 	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
829 	drm_dev_put(&i915->drm);
830 
831 	return 0;
832 }
833 
834 static const struct file_operations singleton_fops = {
835 	.owner = THIS_MODULE,
836 	.release = singleton_release,
837 };
838 
839 static struct file *mmap_singleton(struct drm_i915_private *i915)
840 {
841 	struct file *file;
842 
843 	rcu_read_lock();
844 	file = READ_ONCE(i915->gem.mmap_singleton);
845 	if (file && !get_file_rcu(file))
846 		file = NULL;
847 	rcu_read_unlock();
848 	if (file)
849 		return file;
850 
851 	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
852 	if (IS_ERR(file))
853 		return file;
854 
855 	/* Everyone shares a single global address space */
856 	file->f_mapping = i915->drm.anon_inode->i_mapping;
857 
858 	smp_store_mb(i915->gem.mmap_singleton, file);
859 	drm_dev_get(&i915->drm);
860 
861 	return file;
862 }
863 
864 /*
865  * This overcomes the limitation in drm_gem_mmap's assignment of a
866  * drm_gem_object as the vma->vm_private_data. Since we need to
867  * be able to resolve multiple mmap offsets which could be tied
868  * to a single gem object.
869  */
870 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
871 {
872 	struct drm_vma_offset_node *node;
873 	struct drm_file *priv = filp->private_data;
874 	struct drm_device *dev = priv->minor->dev;
875 	struct drm_i915_gem_object *obj = NULL;
876 	struct i915_mmap_offset *mmo = NULL;
877 	struct file *anon;
878 
879 	if (drm_dev_is_unplugged(dev))
880 		return -ENODEV;
881 
882 	rcu_read_lock();
883 	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
884 	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
885 						  vma->vm_pgoff,
886 						  vma_pages(vma));
887 	if (node && drm_vma_node_is_allowed(node, priv)) {
888 		/*
889 		 * Skip 0-refcnted objects as it is in the process of being
890 		 * destroyed and will be invalid when the vma manager lock
891 		 * is released.
892 		 */
893 		mmo = container_of(node, struct i915_mmap_offset, vma_node);
894 		obj = i915_gem_object_get_rcu(mmo->obj);
895 	}
896 	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
897 	rcu_read_unlock();
898 	if (!obj)
899 		return node ? -EACCES : -EINVAL;
900 
901 	if (i915_gem_object_is_readonly(obj)) {
902 		if (vma->vm_flags & VM_WRITE) {
903 			i915_gem_object_put(obj);
904 			return -EINVAL;
905 		}
906 		vma->vm_flags &= ~VM_MAYWRITE;
907 	}
908 
909 	anon = mmap_singleton(to_i915(dev));
910 	if (IS_ERR(anon)) {
911 		i915_gem_object_put(obj);
912 		return PTR_ERR(anon);
913 	}
914 
915 	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
916 	vma->vm_private_data = mmo;
917 
918 	/*
919 	 * We keep the ref on mmo->obj, not vm_file, but we require
920 	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
921 	 * Our userspace is accustomed to having per-file resource cleanup
922 	 * (i.e. contexts, objects and requests) on their close(fd), which
923 	 * requires avoiding extraneous references to their filp, hence why
924 	 * we prefer to use an anonymous file for their mmaps.
925 	 */
926 	vma_set_file(vma, anon);
927 	/* Drop the initial creation reference, the vma is now holding one. */
928 	fput(anon);
929 
930 	switch (mmo->mmap_type) {
931 	case I915_MMAP_TYPE_WC:
932 		vma->vm_page_prot =
933 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
934 		vma->vm_ops = &vm_ops_cpu;
935 		break;
936 
937 	case I915_MMAP_TYPE_WB:
938 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
939 		vma->vm_ops = &vm_ops_cpu;
940 		break;
941 
942 	case I915_MMAP_TYPE_UC:
943 		vma->vm_page_prot =
944 			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
945 		vma->vm_ops = &vm_ops_cpu;
946 		break;
947 
948 	case I915_MMAP_TYPE_GTT:
949 		vma->vm_page_prot =
950 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
951 		vma->vm_ops = &vm_ops_gtt;
952 		break;
953 	}
954 	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
955 
956 	return 0;
957 }
958 
959 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
960 #include "selftests/i915_gem_mman.c"
961 #endif
962