1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/sizes.h>
9 
10 #include "i915_drv.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 #include "intel_drv.h"
16 
17 static inline bool
18 __vma_matches(struct vm_area_struct *vma, struct file *filp,
19 	      unsigned long addr, unsigned long size)
20 {
21 	if (vma->vm_file != filp)
22 		return false;
23 
24 	return vma->vm_start == addr &&
25 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
26 }
27 
28 /**
29  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
30  *			 it is mapped to.
31  * @dev: drm device
32  * @data: ioctl data blob
33  * @file: drm file
34  *
35  * While the mapping holds a reference on the contents of the object, it doesn't
36  * imply a ref on the object itself.
37  *
38  * IMPORTANT:
39  *
40  * DRM driver writers who look a this function as an example for how to do GEM
41  * mmap support, please don't implement mmap support like here. The modern way
42  * to implement DRM mmap support is with an mmap offset ioctl (like
43  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
44  * That way debug tooling like valgrind will understand what's going on, hiding
45  * the mmap call in a driver private ioctl will break that. The i915 driver only
46  * does cpu mmaps this way because we didn't know better.
47  */
48 int
49 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
50 		    struct drm_file *file)
51 {
52 	struct drm_i915_gem_mmap *args = data;
53 	struct drm_i915_gem_object *obj;
54 	unsigned long addr;
55 
56 	if (args->flags & ~(I915_MMAP_WC))
57 		return -EINVAL;
58 
59 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
60 		return -ENODEV;
61 
62 	obj = i915_gem_object_lookup(file, args->handle);
63 	if (!obj)
64 		return -ENOENT;
65 
66 	/* prime objects have no backing filp to GEM mmap
67 	 * pages from.
68 	 */
69 	if (!obj->base.filp) {
70 		addr = -ENXIO;
71 		goto err;
72 	}
73 
74 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
75 		addr = -EINVAL;
76 		goto err;
77 	}
78 
79 	addr = vm_mmap(obj->base.filp, 0, args->size,
80 		       PROT_READ | PROT_WRITE, MAP_SHARED,
81 		       args->offset);
82 	if (IS_ERR_VALUE(addr))
83 		goto err;
84 
85 	if (args->flags & I915_MMAP_WC) {
86 		struct mm_struct *mm = current->mm;
87 		struct vm_area_struct *vma;
88 
89 		if (down_write_killable(&mm->mmap_sem)) {
90 			addr = -EINTR;
91 			goto err;
92 		}
93 		vma = find_vma(mm, addr);
94 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
95 			vma->vm_page_prot =
96 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
97 		else
98 			addr = -ENOMEM;
99 		up_write(&mm->mmap_sem);
100 		if (IS_ERR_VALUE(addr))
101 			goto err;
102 
103 		/* This may race, but that's ok, it only gets set */
104 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
105 	}
106 	i915_gem_object_put(obj);
107 
108 	args->addr_ptr = (u64)addr;
109 	return 0;
110 
111 err:
112 	i915_gem_object_put(obj);
113 	return addr;
114 }
115 
116 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
117 {
118 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
119 }
120 
121 /**
122  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
123  *
124  * A history of the GTT mmap interface:
125  *
126  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
127  *     aligned and suitable for fencing, and still fit into the available
128  *     mappable space left by the pinned display objects. A classic problem
129  *     we called the page-fault-of-doom where we would ping-pong between
130  *     two objects that could not fit inside the GTT and so the memcpy
131  *     would page one object in at the expense of the other between every
132  *     single byte.
133  *
134  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
135  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
136  *     object is too large for the available space (or simply too large
137  *     for the mappable aperture!), a view is created instead and faulted
138  *     into userspace. (This view is aligned and sized appropriately for
139  *     fenced access.)
140  *
141  * 2 - Recognise WC as a separate cache domain so that we can flush the
142  *     delayed writes via GTT before performing direct access via WC.
143  *
144  * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
145  *     pagefault; swapin remains transparent.
146  *
147  * Restrictions:
148  *
149  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
150  *    hangs on some architectures, corruption on others. An attempt to service
151  *    a GTT page fault from a snoopable object will generate a SIGBUS.
152  *
153  *  * the object must be able to fit into RAM (physical memory, though no
154  *    limited to the mappable aperture).
155  *
156  *
157  * Caveats:
158  *
159  *  * a new GTT page fault will synchronize rendering from the GPU and flush
160  *    all data to system memory. Subsequent access will not be synchronized.
161  *
162  *  * all mappings are revoked on runtime device suspend.
163  *
164  *  * there are only 8, 16 or 32 fence registers to share between all users
165  *    (older machines require fence register for display and blitter access
166  *    as well). Contention of the fence registers will cause the previous users
167  *    to be unmapped and any new access will generate new page faults.
168  *
169  *  * running out of memory while servicing a fault may generate a SIGBUS,
170  *    rather than the expected SIGSEGV.
171  */
172 int i915_gem_mmap_gtt_version(void)
173 {
174 	return 3;
175 }
176 
177 static inline struct i915_ggtt_view
178 compute_partial_view(const struct drm_i915_gem_object *obj,
179 		     pgoff_t page_offset,
180 		     unsigned int chunk)
181 {
182 	struct i915_ggtt_view view;
183 
184 	if (i915_gem_object_is_tiled(obj))
185 		chunk = roundup(chunk, tile_row_pages(obj));
186 
187 	view.type = I915_GGTT_VIEW_PARTIAL;
188 	view.partial.offset = rounddown(page_offset, chunk);
189 	view.partial.size =
190 		min_t(unsigned int, chunk,
191 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
192 
193 	/* If the partial covers the entire object, just create a normal VMA. */
194 	if (chunk >= obj->base.size >> PAGE_SHIFT)
195 		view.type = I915_GGTT_VIEW_NORMAL;
196 
197 	return view;
198 }
199 
200 /**
201  * i915_gem_fault - fault a page into the GTT
202  * @vmf: fault info
203  *
204  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
205  * from userspace.  The fault handler takes care of binding the object to
206  * the GTT (if needed), allocating and programming a fence register (again,
207  * only if needed based on whether the old reg is still valid or the object
208  * is tiled) and inserting a new PTE into the faulting process.
209  *
210  * Note that the faulting process may involve evicting existing objects
211  * from the GTT and/or fence registers to make room.  So performance may
212  * suffer if the GTT working set is large or there are few fence registers
213  * left.
214  *
215  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
216  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
217  */
218 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
219 {
220 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
221 	struct vm_area_struct *area = vmf->vma;
222 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
223 	struct drm_device *dev = obj->base.dev;
224 	struct drm_i915_private *i915 = to_i915(dev);
225 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
226 	struct i915_ggtt *ggtt = &i915->ggtt;
227 	bool write = area->vm_flags & VM_WRITE;
228 	intel_wakeref_t wakeref;
229 	struct i915_vma *vma;
230 	pgoff_t page_offset;
231 	int srcu;
232 	int ret;
233 
234 	/* Sanity check that we allow writing into this object */
235 	if (i915_gem_object_is_readonly(obj) && write)
236 		return VM_FAULT_SIGBUS;
237 
238 	/* We don't use vmf->pgoff since that has the fake offset */
239 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
240 
241 	trace_i915_gem_object_fault(obj, page_offset, true, write);
242 
243 	ret = i915_gem_object_pin_pages(obj);
244 	if (ret)
245 		goto err;
246 
247 	wakeref = intel_runtime_pm_get(rpm);
248 
249 	srcu = i915_reset_trylock(i915);
250 	if (srcu < 0) {
251 		ret = srcu;
252 		goto err_rpm;
253 	}
254 
255 	ret = i915_mutex_lock_interruptible(dev);
256 	if (ret)
257 		goto err_reset;
258 
259 	/* Access to snoopable pages through the GTT is incoherent. */
260 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
261 		ret = -EFAULT;
262 		goto err_unlock;
263 	}
264 
265 	/* Now pin it into the GTT as needed */
266 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
267 				       PIN_MAPPABLE |
268 				       PIN_NONBLOCK |
269 				       PIN_NONFAULT);
270 	if (IS_ERR(vma)) {
271 		/* Use a partial view if it is bigger than available space */
272 		struct i915_ggtt_view view =
273 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
274 		unsigned int flags;
275 
276 		flags = PIN_MAPPABLE;
277 		if (view.type == I915_GGTT_VIEW_NORMAL)
278 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
279 
280 		/*
281 		 * Userspace is now writing through an untracked VMA, abandon
282 		 * all hope that the hardware is able to track future writes.
283 		 */
284 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
285 
286 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
287 		if (IS_ERR(vma) && !view.type) {
288 			flags = PIN_MAPPABLE;
289 			view.type = I915_GGTT_VIEW_PARTIAL;
290 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
291 		}
292 	}
293 	if (IS_ERR(vma)) {
294 		ret = PTR_ERR(vma);
295 		goto err_unlock;
296 	}
297 
298 	ret = i915_vma_pin_fence(vma);
299 	if (ret)
300 		goto err_unpin;
301 
302 	/* Finally, remap it using the new GTT offset */
303 	ret = remap_io_mapping(area,
304 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
305 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
306 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
307 			       &ggtt->iomap);
308 	if (ret)
309 		goto err_fence;
310 
311 	/* Mark as being mmapped into userspace for later revocation */
312 	assert_rpm_wakelock_held(rpm);
313 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
314 		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
315 	if (CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
316 		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
317 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
318 	GEM_BUG_ON(!obj->userfault_count);
319 
320 	i915_vma_set_ggtt_write(vma);
321 
322 err_fence:
323 	i915_vma_unpin_fence(vma);
324 err_unpin:
325 	__i915_vma_unpin(vma);
326 err_unlock:
327 	mutex_unlock(&dev->struct_mutex);
328 err_reset:
329 	i915_reset_unlock(i915, srcu);
330 err_rpm:
331 	intel_runtime_pm_put(rpm, wakeref);
332 	i915_gem_object_unpin_pages(obj);
333 err:
334 	switch (ret) {
335 	case -EIO:
336 		/*
337 		 * We eat errors when the gpu is terminally wedged to avoid
338 		 * userspace unduly crashing (gl has no provisions for mmaps to
339 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
340 		 * and so needs to be reported.
341 		 */
342 		if (!i915_terminally_wedged(i915))
343 			return VM_FAULT_SIGBUS;
344 		/* else: fall through */
345 	case -EAGAIN:
346 		/*
347 		 * EAGAIN means the gpu is hung and we'll wait for the error
348 		 * handler to reset everything when re-faulting in
349 		 * i915_mutex_lock_interruptible.
350 		 */
351 	case 0:
352 	case -ERESTARTSYS:
353 	case -EINTR:
354 	case -EBUSY:
355 		/*
356 		 * EBUSY is ok: this just means that another thread
357 		 * already did the job.
358 		 */
359 		return VM_FAULT_NOPAGE;
360 	case -ENOMEM:
361 		return VM_FAULT_OOM;
362 	case -ENOSPC:
363 	case -EFAULT:
364 		return VM_FAULT_SIGBUS;
365 	default:
366 		WARN_ONCE(ret, "unhandled error in %s: %i\n", __func__, ret);
367 		return VM_FAULT_SIGBUS;
368 	}
369 }
370 
371 void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
372 {
373 	struct i915_vma *vma;
374 
375 	GEM_BUG_ON(!obj->userfault_count);
376 
377 	obj->userfault_count = 0;
378 	list_del(&obj->userfault_link);
379 	drm_vma_node_unmap(&obj->base.vma_node,
380 			   obj->base.dev->anon_inode->i_mapping);
381 
382 	for_each_ggtt_vma(vma, obj)
383 		i915_vma_unset_userfault(vma);
384 }
385 
386 /**
387  * i915_gem_object_release_mmap - remove physical page mappings
388  * @obj: obj in question
389  *
390  * Preserve the reservation of the mmapping with the DRM core code, but
391  * relinquish ownership of the pages back to the system.
392  *
393  * It is vital that we remove the page mapping if we have mapped a tiled
394  * object through the GTT and then lose the fence register due to
395  * resource pressure. Similarly if the object has been moved out of the
396  * aperture, than pages mapped into userspace must be revoked. Removing the
397  * mapping will then trigger a page fault on the next user access, allowing
398  * fixup by i915_gem_fault().
399  */
400 void i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
401 {
402 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
403 	intel_wakeref_t wakeref;
404 
405 	/* Serialisation between user GTT access and our code depends upon
406 	 * revoking the CPU's PTE whilst the mutex is held. The next user
407 	 * pagefault then has to wait until we release the mutex.
408 	 *
409 	 * Note that RPM complicates somewhat by adding an additional
410 	 * requirement that operations to the GGTT be made holding the RPM
411 	 * wakeref.
412 	 */
413 	lockdep_assert_held(&i915->drm.struct_mutex);
414 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
415 
416 	if (!obj->userfault_count)
417 		goto out;
418 
419 	__i915_gem_object_release_mmap(obj);
420 
421 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
422 	 * memory transactions from userspace before we return. The TLB
423 	 * flushing implied above by changing the PTE above *should* be
424 	 * sufficient, an extra barrier here just provides us with a bit
425 	 * of paranoid documentation about our requirement to serialise
426 	 * memory writes before touching registers / GSM.
427 	 */
428 	wmb();
429 
430 out:
431 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
432 }
433 
434 static int create_mmap_offset(struct drm_i915_gem_object *obj)
435 {
436 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
437 	int err;
438 
439 	err = drm_gem_create_mmap_offset(&obj->base);
440 	if (likely(!err))
441 		return 0;
442 
443 	/* Attempt to reap some mmap space from dead objects */
444 	do {
445 		err = i915_gem_wait_for_idle(i915,
446 					     I915_WAIT_INTERRUPTIBLE,
447 					     MAX_SCHEDULE_TIMEOUT);
448 		if (err)
449 			break;
450 
451 		i915_gem_drain_freed_objects(i915);
452 		err = drm_gem_create_mmap_offset(&obj->base);
453 		if (!err)
454 			break;
455 
456 	} while (flush_delayed_work(&i915->gem.retire_work));
457 
458 	return err;
459 }
460 
461 int
462 i915_gem_mmap_gtt(struct drm_file *file,
463 		  struct drm_device *dev,
464 		  u32 handle,
465 		  u64 *offset)
466 {
467 	struct drm_i915_gem_object *obj;
468 	int ret;
469 
470 	obj = i915_gem_object_lookup(file, handle);
471 	if (!obj)
472 		return -ENOENT;
473 
474 	ret = create_mmap_offset(obj);
475 	if (ret == 0)
476 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
477 
478 	i915_gem_object_put(obj);
479 	return ret;
480 }
481 
482 /**
483  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
484  * @dev: DRM device
485  * @data: GTT mapping ioctl data
486  * @file: GEM object info
487  *
488  * Simply returns the fake offset to userspace so it can mmap it.
489  * The mmap call will end up in drm_gem_mmap(), which will set things
490  * up so we can get faults in the handler above.
491  *
492  * The fault handler will take care of binding the object into the GTT
493  * (since it may have been evicted to make room for something), allocating
494  * a fence register, and mapping the appropriate aperture address into
495  * userspace.
496  */
497 int
498 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
499 			struct drm_file *file)
500 {
501 	struct drm_i915_gem_mmap_gtt *args = data;
502 
503 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
504 }
505 
506 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
507 #include "selftests/i915_gem_mman.c"
508 #endif
509