xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_mman.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/anon_inodes.h>
8 #include <linux/mman.h>
9 #include <linux/pfn_t.h>
10 #include <linux/sizes.h>
11 
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_requests.h"
14 
15 #include "i915_drv.h"
16 #include "i915_gem_gtt.h"
17 #include "i915_gem_ioctls.h"
18 #include "i915_gem_object.h"
19 #include "i915_gem_mman.h"
20 #include "i915_trace.h"
21 #include "i915_user_extensions.h"
22 #include "i915_vma.h"
23 
24 static inline bool
25 __vma_matches(struct vm_area_struct *vma, struct file *filp,
26 	      unsigned long addr, unsigned long size)
27 {
28 	if (vma->vm_file != filp)
29 		return false;
30 
31 	return vma->vm_start == addr &&
32 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
33 }
34 
35 /**
36  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
37  *			 it is mapped to.
38  * @dev: drm device
39  * @data: ioctl data blob
40  * @file: drm file
41  *
42  * While the mapping holds a reference on the contents of the object, it doesn't
43  * imply a ref on the object itself.
44  *
45  * IMPORTANT:
46  *
47  * DRM driver writers who look a this function as an example for how to do GEM
48  * mmap support, please don't implement mmap support like here. The modern way
49  * to implement DRM mmap support is with an mmap offset ioctl (like
50  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
51  * That way debug tooling like valgrind will understand what's going on, hiding
52  * the mmap call in a driver private ioctl will break that. The i915 driver only
53  * does cpu mmaps this way because we didn't know better.
54  */
55 int
56 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
57 		    struct drm_file *file)
58 {
59 	struct drm_i915_gem_mmap *args = data;
60 	struct drm_i915_gem_object *obj;
61 	unsigned long addr;
62 
63 	if (args->flags & ~(I915_MMAP_WC))
64 		return -EINVAL;
65 
66 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
67 		return -ENODEV;
68 
69 	obj = i915_gem_object_lookup(file, args->handle);
70 	if (!obj)
71 		return -ENOENT;
72 
73 	/* prime objects have no backing filp to GEM mmap
74 	 * pages from.
75 	 */
76 	if (!obj->base.filp) {
77 		addr = -ENXIO;
78 		goto err;
79 	}
80 
81 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
82 		addr = -EINVAL;
83 		goto err;
84 	}
85 
86 	addr = vm_mmap(obj->base.filp, 0, args->size,
87 		       PROT_READ | PROT_WRITE, MAP_SHARED,
88 		       args->offset);
89 	if (IS_ERR_VALUE(addr))
90 		goto err;
91 
92 	if (args->flags & I915_MMAP_WC) {
93 		struct mm_struct *mm = current->mm;
94 		struct vm_area_struct *vma;
95 
96 		if (down_write_killable(&mm->mmap_sem)) {
97 			addr = -EINTR;
98 			goto err;
99 		}
100 		vma = find_vma(mm, addr);
101 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
102 			vma->vm_page_prot =
103 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
104 		else
105 			addr = -ENOMEM;
106 		up_write(&mm->mmap_sem);
107 		if (IS_ERR_VALUE(addr))
108 			goto err;
109 	}
110 	i915_gem_object_put(obj);
111 
112 	args->addr_ptr = (u64)addr;
113 	return 0;
114 
115 err:
116 	i915_gem_object_put(obj);
117 	return addr;
118 }
119 
120 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
121 {
122 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
123 }
124 
125 /**
126  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
127  *
128  * A history of the GTT mmap interface:
129  *
130  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
131  *     aligned and suitable for fencing, and still fit into the available
132  *     mappable space left by the pinned display objects. A classic problem
133  *     we called the page-fault-of-doom where we would ping-pong between
134  *     two objects that could not fit inside the GTT and so the memcpy
135  *     would page one object in at the expense of the other between every
136  *     single byte.
137  *
138  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
139  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
140  *     object is too large for the available space (or simply too large
141  *     for the mappable aperture!), a view is created instead and faulted
142  *     into userspace. (This view is aligned and sized appropriately for
143  *     fenced access.)
144  *
145  * 2 - Recognise WC as a separate cache domain so that we can flush the
146  *     delayed writes via GTT before performing direct access via WC.
147  *
148  * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
149  *     pagefault; swapin remains transparent.
150  *
151  * 4 - Support multiple fault handlers per object depending on object's
152  *     backing storage (a.k.a. MMAP_OFFSET).
153  *
154  * Restrictions:
155  *
156  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
157  *    hangs on some architectures, corruption on others. An attempt to service
158  *    a GTT page fault from a snoopable object will generate a SIGBUS.
159  *
160  *  * the object must be able to fit into RAM (physical memory, though no
161  *    limited to the mappable aperture).
162  *
163  *
164  * Caveats:
165  *
166  *  * a new GTT page fault will synchronize rendering from the GPU and flush
167  *    all data to system memory. Subsequent access will not be synchronized.
168  *
169  *  * all mappings are revoked on runtime device suspend.
170  *
171  *  * there are only 8, 16 or 32 fence registers to share between all users
172  *    (older machines require fence register for display and blitter access
173  *    as well). Contention of the fence registers will cause the previous users
174  *    to be unmapped and any new access will generate new page faults.
175  *
176  *  * running out of memory while servicing a fault may generate a SIGBUS,
177  *    rather than the expected SIGSEGV.
178  */
179 int i915_gem_mmap_gtt_version(void)
180 {
181 	return 4;
182 }
183 
184 static inline struct i915_ggtt_view
185 compute_partial_view(const struct drm_i915_gem_object *obj,
186 		     pgoff_t page_offset,
187 		     unsigned int chunk)
188 {
189 	struct i915_ggtt_view view;
190 
191 	if (i915_gem_object_is_tiled(obj))
192 		chunk = roundup(chunk, tile_row_pages(obj));
193 
194 	view.type = I915_GGTT_VIEW_PARTIAL;
195 	view.partial.offset = rounddown(page_offset, chunk);
196 	view.partial.size =
197 		min_t(unsigned int, chunk,
198 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
199 
200 	/* If the partial covers the entire object, just create a normal VMA. */
201 	if (chunk >= obj->base.size >> PAGE_SHIFT)
202 		view.type = I915_GGTT_VIEW_NORMAL;
203 
204 	return view;
205 }
206 
207 static vm_fault_t i915_error_to_vmf_fault(int err)
208 {
209 	switch (err) {
210 	default:
211 		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
212 		/* fallthrough */
213 	case -EIO: /* shmemfs failure from swap device */
214 	case -EFAULT: /* purged object */
215 	case -ENODEV: /* bad object, how did you get here! */
216 	case -ENXIO: /* unable to access backing store (on device) */
217 		return VM_FAULT_SIGBUS;
218 
219 	case -ENOSPC: /* shmemfs allocation failure */
220 	case -ENOMEM: /* our allocation failure */
221 		return VM_FAULT_OOM;
222 
223 	case 0:
224 	case -EAGAIN:
225 	case -ERESTARTSYS:
226 	case -EINTR:
227 	case -EBUSY:
228 		/*
229 		 * EBUSY is ok: this just means that another thread
230 		 * already did the job.
231 		 */
232 		return VM_FAULT_NOPAGE;
233 	}
234 }
235 
236 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
237 {
238 	struct vm_area_struct *area = vmf->vma;
239 	struct i915_mmap_offset *mmo = area->vm_private_data;
240 	struct drm_i915_gem_object *obj = mmo->obj;
241 	resource_size_t iomap;
242 	int err;
243 
244 	/* Sanity check that we allow writing into this object */
245 	if (unlikely(i915_gem_object_is_readonly(obj) &&
246 		     area->vm_flags & VM_WRITE))
247 		return VM_FAULT_SIGBUS;
248 
249 	err = i915_gem_object_pin_pages(obj);
250 	if (err)
251 		goto out;
252 
253 	iomap = -1;
254 	if (!i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_STRUCT_PAGE)) {
255 		iomap = obj->mm.region->iomap.base;
256 		iomap -= obj->mm.region->region.start;
257 	}
258 
259 	/* PTEs are revoked in obj->ops->put_pages() */
260 	err = remap_io_sg(area,
261 			  area->vm_start, area->vm_end - area->vm_start,
262 			  obj->mm.pages->sgl, iomap);
263 
264 	if (area->vm_flags & VM_WRITE) {
265 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
266 		obj->mm.dirty = true;
267 	}
268 
269 	i915_gem_object_unpin_pages(obj);
270 
271 out:
272 	return i915_error_to_vmf_fault(err);
273 }
274 
275 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
276 {
277 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
278 	struct vm_area_struct *area = vmf->vma;
279 	struct i915_mmap_offset *mmo = area->vm_private_data;
280 	struct drm_i915_gem_object *obj = mmo->obj;
281 	struct drm_device *dev = obj->base.dev;
282 	struct drm_i915_private *i915 = to_i915(dev);
283 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
284 	struct i915_ggtt *ggtt = &i915->ggtt;
285 	bool write = area->vm_flags & VM_WRITE;
286 	intel_wakeref_t wakeref;
287 	struct i915_vma *vma;
288 	pgoff_t page_offset;
289 	int srcu;
290 	int ret;
291 
292 	/* Sanity check that we allow writing into this object */
293 	if (i915_gem_object_is_readonly(obj) && write)
294 		return VM_FAULT_SIGBUS;
295 
296 	/* We don't use vmf->pgoff since that has the fake offset */
297 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
298 
299 	trace_i915_gem_object_fault(obj, page_offset, true, write);
300 
301 	ret = i915_gem_object_pin_pages(obj);
302 	if (ret)
303 		goto err;
304 
305 	wakeref = intel_runtime_pm_get(rpm);
306 
307 	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
308 	if (ret)
309 		goto err_rpm;
310 
311 	/* Now pin it into the GTT as needed */
312 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
313 				       PIN_MAPPABLE |
314 				       PIN_NONBLOCK /* NOWARN */ |
315 				       PIN_NOEVICT);
316 	if (IS_ERR(vma)) {
317 		/* Use a partial view if it is bigger than available space */
318 		struct i915_ggtt_view view =
319 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
320 		unsigned int flags;
321 
322 		flags = PIN_MAPPABLE | PIN_NOSEARCH;
323 		if (view.type == I915_GGTT_VIEW_NORMAL)
324 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
325 
326 		/*
327 		 * Userspace is now writing through an untracked VMA, abandon
328 		 * all hope that the hardware is able to track future writes.
329 		 */
330 
331 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
332 		if (IS_ERR(vma)) {
333 			flags = PIN_MAPPABLE;
334 			view.type = I915_GGTT_VIEW_PARTIAL;
335 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
336 		}
337 
338 		/* The entire mappable GGTT is pinned? Unexpected! */
339 		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
340 	}
341 	if (IS_ERR(vma)) {
342 		ret = PTR_ERR(vma);
343 		goto err_reset;
344 	}
345 
346 	/* Access to snoopable pages through the GTT is incoherent. */
347 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
348 		ret = -EFAULT;
349 		goto err_unpin;
350 	}
351 
352 	ret = i915_vma_pin_fence(vma);
353 	if (ret)
354 		goto err_unpin;
355 
356 	/* Finally, remap it using the new GTT offset */
357 	ret = remap_io_mapping(area,
358 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
359 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
360 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
361 			       &ggtt->iomap);
362 	if (ret)
363 		goto err_fence;
364 
365 	assert_rpm_wakelock_held(rpm);
366 
367 	/* Mark as being mmapped into userspace for later revocation */
368 	mutex_lock(&i915->ggtt.vm.mutex);
369 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
370 		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
371 	mutex_unlock(&i915->ggtt.vm.mutex);
372 
373 	/* Track the mmo associated with the fenced vma */
374 	vma->mmo = mmo;
375 
376 	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
377 		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
378 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
379 
380 	if (write) {
381 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
382 		i915_vma_set_ggtt_write(vma);
383 		obj->mm.dirty = true;
384 	}
385 
386 err_fence:
387 	i915_vma_unpin_fence(vma);
388 err_unpin:
389 	__i915_vma_unpin(vma);
390 err_reset:
391 	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
392 err_rpm:
393 	intel_runtime_pm_put(rpm, wakeref);
394 	i915_gem_object_unpin_pages(obj);
395 err:
396 	return i915_error_to_vmf_fault(ret);
397 }
398 
399 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
400 {
401 	struct i915_vma *vma;
402 
403 	GEM_BUG_ON(!obj->userfault_count);
404 
405 	for_each_ggtt_vma(vma, obj)
406 		i915_vma_revoke_mmap(vma);
407 
408 	GEM_BUG_ON(obj->userfault_count);
409 }
410 
411 /*
412  * It is vital that we remove the page mapping if we have mapped a tiled
413  * object through the GTT and then lose the fence register due to
414  * resource pressure. Similarly if the object has been moved out of the
415  * aperture, than pages mapped into userspace must be revoked. Removing the
416  * mapping will then trigger a page fault on the next user access, allowing
417  * fixup by vm_fault_gtt().
418  */
419 static void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
420 {
421 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
422 	intel_wakeref_t wakeref;
423 
424 	/*
425 	 * Serialisation between user GTT access and our code depends upon
426 	 * revoking the CPU's PTE whilst the mutex is held. The next user
427 	 * pagefault then has to wait until we release the mutex.
428 	 *
429 	 * Note that RPM complicates somewhat by adding an additional
430 	 * requirement that operations to the GGTT be made holding the RPM
431 	 * wakeref.
432 	 */
433 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
434 	mutex_lock(&i915->ggtt.vm.mutex);
435 
436 	if (!obj->userfault_count)
437 		goto out;
438 
439 	__i915_gem_object_release_mmap_gtt(obj);
440 
441 	/*
442 	 * Ensure that the CPU's PTE are revoked and there are not outstanding
443 	 * memory transactions from userspace before we return. The TLB
444 	 * flushing implied above by changing the PTE above *should* be
445 	 * sufficient, an extra barrier here just provides us with a bit
446 	 * of paranoid documentation about our requirement to serialise
447 	 * memory writes before touching registers / GSM.
448 	 */
449 	wmb();
450 
451 out:
452 	mutex_unlock(&i915->ggtt.vm.mutex);
453 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
454 }
455 
456 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
457 {
458 	struct i915_mmap_offset *mmo, *mn;
459 
460 	spin_lock(&obj->mmo.lock);
461 	rbtree_postorder_for_each_entry_safe(mmo, mn,
462 					     &obj->mmo.offsets, offset) {
463 		/*
464 		 * vma_node_unmap for GTT mmaps handled already in
465 		 * __i915_gem_object_release_mmap_gtt
466 		 */
467 		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
468 			continue;
469 
470 		spin_unlock(&obj->mmo.lock);
471 		drm_vma_node_unmap(&mmo->vma_node,
472 				   obj->base.dev->anon_inode->i_mapping);
473 		spin_lock(&obj->mmo.lock);
474 	}
475 	spin_unlock(&obj->mmo.lock);
476 }
477 
478 /**
479  * i915_gem_object_release_mmap - remove physical page mappings
480  * @obj: obj in question
481  *
482  * Preserve the reservation of the mmapping with the DRM core code, but
483  * relinquish ownership of the pages back to the system.
484  */
485 void i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
486 {
487 	i915_gem_object_release_mmap_gtt(obj);
488 	i915_gem_object_release_mmap_offset(obj);
489 }
490 
491 static struct i915_mmap_offset *
492 lookup_mmo(struct drm_i915_gem_object *obj,
493 	   enum i915_mmap_type mmap_type)
494 {
495 	struct rb_node *rb;
496 
497 	spin_lock(&obj->mmo.lock);
498 	rb = obj->mmo.offsets.rb_node;
499 	while (rb) {
500 		struct i915_mmap_offset *mmo =
501 			rb_entry(rb, typeof(*mmo), offset);
502 
503 		if (mmo->mmap_type == mmap_type) {
504 			spin_unlock(&obj->mmo.lock);
505 			return mmo;
506 		}
507 
508 		if (mmo->mmap_type < mmap_type)
509 			rb = rb->rb_right;
510 		else
511 			rb = rb->rb_left;
512 	}
513 	spin_unlock(&obj->mmo.lock);
514 
515 	return NULL;
516 }
517 
518 static struct i915_mmap_offset *
519 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
520 {
521 	struct rb_node *rb, **p;
522 
523 	spin_lock(&obj->mmo.lock);
524 	rb = NULL;
525 	p = &obj->mmo.offsets.rb_node;
526 	while (*p) {
527 		struct i915_mmap_offset *pos;
528 
529 		rb = *p;
530 		pos = rb_entry(rb, typeof(*pos), offset);
531 
532 		if (pos->mmap_type == mmo->mmap_type) {
533 			spin_unlock(&obj->mmo.lock);
534 			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
535 					      &mmo->vma_node);
536 			kfree(mmo);
537 			return pos;
538 		}
539 
540 		if (pos->mmap_type < mmo->mmap_type)
541 			p = &rb->rb_right;
542 		else
543 			p = &rb->rb_left;
544 	}
545 	rb_link_node(&mmo->offset, rb, p);
546 	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
547 	spin_unlock(&obj->mmo.lock);
548 
549 	return mmo;
550 }
551 
552 static struct i915_mmap_offset *
553 mmap_offset_attach(struct drm_i915_gem_object *obj,
554 		   enum i915_mmap_type mmap_type,
555 		   struct drm_file *file)
556 {
557 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
558 	struct i915_mmap_offset *mmo;
559 	int err;
560 
561 	mmo = lookup_mmo(obj, mmap_type);
562 	if (mmo)
563 		goto out;
564 
565 	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
566 	if (!mmo)
567 		return ERR_PTR(-ENOMEM);
568 
569 	mmo->obj = obj;
570 	mmo->mmap_type = mmap_type;
571 	drm_vma_node_reset(&mmo->vma_node);
572 
573 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
574 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
575 	if (likely(!err))
576 		goto insert;
577 
578 	/* Attempt to reap some mmap space from dead objects */
579 	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
580 	if (err)
581 		goto err;
582 
583 	i915_gem_drain_freed_objects(i915);
584 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
585 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
586 	if (err)
587 		goto err;
588 
589 insert:
590 	mmo = insert_mmo(obj, mmo);
591 	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
592 out:
593 	if (file)
594 		drm_vma_node_allow(&mmo->vma_node, file);
595 	return mmo;
596 
597 err:
598 	kfree(mmo);
599 	return ERR_PTR(err);
600 }
601 
602 static int
603 __assign_mmap_offset(struct drm_file *file,
604 		     u32 handle,
605 		     enum i915_mmap_type mmap_type,
606 		     u64 *offset)
607 {
608 	struct drm_i915_gem_object *obj;
609 	struct i915_mmap_offset *mmo;
610 	int err;
611 
612 	obj = i915_gem_object_lookup(file, handle);
613 	if (!obj)
614 		return -ENOENT;
615 
616 	if (i915_gem_object_never_mmap(obj)) {
617 		err = -ENODEV;
618 		goto out;
619 	}
620 
621 	if (mmap_type != I915_MMAP_TYPE_GTT &&
622 	    !i915_gem_object_type_has(obj,
623 				      I915_GEM_OBJECT_HAS_STRUCT_PAGE |
624 				      I915_GEM_OBJECT_HAS_IOMEM)) {
625 		err = -ENODEV;
626 		goto out;
627 	}
628 
629 	mmo = mmap_offset_attach(obj, mmap_type, file);
630 	if (IS_ERR(mmo)) {
631 		err = PTR_ERR(mmo);
632 		goto out;
633 	}
634 
635 	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
636 	err = 0;
637 out:
638 	i915_gem_object_put(obj);
639 	return err;
640 }
641 
642 int
643 i915_gem_dumb_mmap_offset(struct drm_file *file,
644 			  struct drm_device *dev,
645 			  u32 handle,
646 			  u64 *offset)
647 {
648 	enum i915_mmap_type mmap_type;
649 
650 	if (boot_cpu_has(X86_FEATURE_PAT))
651 		mmap_type = I915_MMAP_TYPE_WC;
652 	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
653 		return -ENODEV;
654 	else
655 		mmap_type = I915_MMAP_TYPE_GTT;
656 
657 	return __assign_mmap_offset(file, handle, mmap_type, offset);
658 }
659 
660 /**
661  * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
662  * @dev: DRM device
663  * @data: GTT mapping ioctl data
664  * @file: GEM object info
665  *
666  * Simply returns the fake offset to userspace so it can mmap it.
667  * The mmap call will end up in drm_gem_mmap(), which will set things
668  * up so we can get faults in the handler above.
669  *
670  * The fault handler will take care of binding the object into the GTT
671  * (since it may have been evicted to make room for something), allocating
672  * a fence register, and mapping the appropriate aperture address into
673  * userspace.
674  */
675 int
676 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
677 			   struct drm_file *file)
678 {
679 	struct drm_i915_private *i915 = to_i915(dev);
680 	struct drm_i915_gem_mmap_offset *args = data;
681 	enum i915_mmap_type type;
682 	int err;
683 
684 	/*
685 	 * Historically we failed to check args.pad and args.offset
686 	 * and so we cannot use those fields for user input and we cannot
687 	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
688 	 * may be feeding in garbage in those fields.
689 	 *
690 	 * if (args->pad) return -EINVAL; is verbotten!
691 	 */
692 
693 	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
694 				   NULL, 0, NULL);
695 	if (err)
696 		return err;
697 
698 	switch (args->flags) {
699 	case I915_MMAP_OFFSET_GTT:
700 		if (!i915_ggtt_has_aperture(&i915->ggtt))
701 			return -ENODEV;
702 		type = I915_MMAP_TYPE_GTT;
703 		break;
704 
705 	case I915_MMAP_OFFSET_WC:
706 		if (!boot_cpu_has(X86_FEATURE_PAT))
707 			return -ENODEV;
708 		type = I915_MMAP_TYPE_WC;
709 		break;
710 
711 	case I915_MMAP_OFFSET_WB:
712 		type = I915_MMAP_TYPE_WB;
713 		break;
714 
715 	case I915_MMAP_OFFSET_UC:
716 		if (!boot_cpu_has(X86_FEATURE_PAT))
717 			return -ENODEV;
718 		type = I915_MMAP_TYPE_UC;
719 		break;
720 
721 	default:
722 		return -EINVAL;
723 	}
724 
725 	return __assign_mmap_offset(file, args->handle, type, &args->offset);
726 }
727 
728 static void vm_open(struct vm_area_struct *vma)
729 {
730 	struct i915_mmap_offset *mmo = vma->vm_private_data;
731 	struct drm_i915_gem_object *obj = mmo->obj;
732 
733 	GEM_BUG_ON(!obj);
734 	i915_gem_object_get(obj);
735 }
736 
737 static void vm_close(struct vm_area_struct *vma)
738 {
739 	struct i915_mmap_offset *mmo = vma->vm_private_data;
740 	struct drm_i915_gem_object *obj = mmo->obj;
741 
742 	GEM_BUG_ON(!obj);
743 	i915_gem_object_put(obj);
744 }
745 
746 static const struct vm_operations_struct vm_ops_gtt = {
747 	.fault = vm_fault_gtt,
748 	.open = vm_open,
749 	.close = vm_close,
750 };
751 
752 static const struct vm_operations_struct vm_ops_cpu = {
753 	.fault = vm_fault_cpu,
754 	.open = vm_open,
755 	.close = vm_close,
756 };
757 
758 static int singleton_release(struct inode *inode, struct file *file)
759 {
760 	struct drm_i915_private *i915 = file->private_data;
761 
762 	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
763 	drm_dev_put(&i915->drm);
764 
765 	return 0;
766 }
767 
768 static const struct file_operations singleton_fops = {
769 	.owner = THIS_MODULE,
770 	.release = singleton_release,
771 };
772 
773 static struct file *mmap_singleton(struct drm_i915_private *i915)
774 {
775 	struct file *file;
776 
777 	rcu_read_lock();
778 	file = READ_ONCE(i915->gem.mmap_singleton);
779 	if (file && !get_file_rcu(file))
780 		file = NULL;
781 	rcu_read_unlock();
782 	if (file)
783 		return file;
784 
785 	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
786 	if (IS_ERR(file))
787 		return file;
788 
789 	/* Everyone shares a single global address space */
790 	file->f_mapping = i915->drm.anon_inode->i_mapping;
791 
792 	smp_store_mb(i915->gem.mmap_singleton, file);
793 	drm_dev_get(&i915->drm);
794 
795 	return file;
796 }
797 
798 /*
799  * This overcomes the limitation in drm_gem_mmap's assignment of a
800  * drm_gem_object as the vma->vm_private_data. Since we need to
801  * be able to resolve multiple mmap offsets which could be tied
802  * to a single gem object.
803  */
804 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
805 {
806 	struct drm_vma_offset_node *node;
807 	struct drm_file *priv = filp->private_data;
808 	struct drm_device *dev = priv->minor->dev;
809 	struct drm_i915_gem_object *obj = NULL;
810 	struct i915_mmap_offset *mmo = NULL;
811 	struct file *anon;
812 
813 	if (drm_dev_is_unplugged(dev))
814 		return -ENODEV;
815 
816 	rcu_read_lock();
817 	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
818 	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
819 						  vma->vm_pgoff,
820 						  vma_pages(vma));
821 	if (node && drm_vma_node_is_allowed(node, priv)) {
822 		/*
823 		 * Skip 0-refcnted objects as it is in the process of being
824 		 * destroyed and will be invalid when the vma manager lock
825 		 * is released.
826 		 */
827 		mmo = container_of(node, struct i915_mmap_offset, vma_node);
828 		obj = i915_gem_object_get_rcu(mmo->obj);
829 	}
830 	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
831 	rcu_read_unlock();
832 	if (!obj)
833 		return node ? -EACCES : -EINVAL;
834 
835 	if (i915_gem_object_is_readonly(obj)) {
836 		if (vma->vm_flags & VM_WRITE) {
837 			i915_gem_object_put(obj);
838 			return -EINVAL;
839 		}
840 		vma->vm_flags &= ~VM_MAYWRITE;
841 	}
842 
843 	anon = mmap_singleton(to_i915(dev));
844 	if (IS_ERR(anon)) {
845 		i915_gem_object_put(obj);
846 		return PTR_ERR(anon);
847 	}
848 
849 	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
850 	vma->vm_private_data = mmo;
851 
852 	/*
853 	 * We keep the ref on mmo->obj, not vm_file, but we require
854 	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
855 	 * Our userspace is accustomed to having per-file resource cleanup
856 	 * (i.e. contexts, objects and requests) on their close(fd), which
857 	 * requires avoiding extraneous references to their filp, hence why
858 	 * we prefer to use an anonymous file for their mmaps.
859 	 */
860 	fput(vma->vm_file);
861 	vma->vm_file = anon;
862 
863 	switch (mmo->mmap_type) {
864 	case I915_MMAP_TYPE_WC:
865 		vma->vm_page_prot =
866 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
867 		vma->vm_ops = &vm_ops_cpu;
868 		break;
869 
870 	case I915_MMAP_TYPE_WB:
871 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
872 		vma->vm_ops = &vm_ops_cpu;
873 		break;
874 
875 	case I915_MMAP_TYPE_UC:
876 		vma->vm_page_prot =
877 			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
878 		vma->vm_ops = &vm_ops_cpu;
879 		break;
880 
881 	case I915_MMAP_TYPE_GTT:
882 		vma->vm_page_prot =
883 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
884 		vma->vm_ops = &vm_ops_gtt;
885 		break;
886 	}
887 	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
888 
889 	return 0;
890 }
891 
892 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
893 #include "selftests/i915_gem_mman.c"
894 #endif
895