xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_mman.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/anon_inodes.h>
8 #include <linux/mman.h>
9 #include <linux/pfn_t.h>
10 #include <linux/sizes.h>
11 
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_requests.h"
14 
15 #include "i915_drv.h"
16 #include "i915_gem_gtt.h"
17 #include "i915_gem_ioctls.h"
18 #include "i915_gem_object.h"
19 #include "i915_gem_mman.h"
20 #include "i915_trace.h"
21 #include "i915_user_extensions.h"
22 #include "i915_vma.h"
23 
24 static inline bool
25 __vma_matches(struct vm_area_struct *vma, struct file *filp,
26 	      unsigned long addr, unsigned long size)
27 {
28 	if (vma->vm_file != filp)
29 		return false;
30 
31 	return vma->vm_start == addr &&
32 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
33 }
34 
35 /**
36  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
37  *			 it is mapped to.
38  * @dev: drm device
39  * @data: ioctl data blob
40  * @file: drm file
41  *
42  * While the mapping holds a reference on the contents of the object, it doesn't
43  * imply a ref on the object itself.
44  *
45  * IMPORTANT:
46  *
47  * DRM driver writers who look a this function as an example for how to do GEM
48  * mmap support, please don't implement mmap support like here. The modern way
49  * to implement DRM mmap support is with an mmap offset ioctl (like
50  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
51  * That way debug tooling like valgrind will understand what's going on, hiding
52  * the mmap call in a driver private ioctl will break that. The i915 driver only
53  * does cpu mmaps this way because we didn't know better.
54  */
55 int
56 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
57 		    struct drm_file *file)
58 {
59 	struct drm_i915_gem_mmap *args = data;
60 	struct drm_i915_gem_object *obj;
61 	unsigned long addr;
62 
63 	if (args->flags & ~(I915_MMAP_WC))
64 		return -EINVAL;
65 
66 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
67 		return -ENODEV;
68 
69 	obj = i915_gem_object_lookup(file, args->handle);
70 	if (!obj)
71 		return -ENOENT;
72 
73 	/* prime objects have no backing filp to GEM mmap
74 	 * pages from.
75 	 */
76 	if (!obj->base.filp) {
77 		addr = -ENXIO;
78 		goto err;
79 	}
80 
81 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
82 		addr = -EINVAL;
83 		goto err;
84 	}
85 
86 	addr = vm_mmap(obj->base.filp, 0, args->size,
87 		       PROT_READ | PROT_WRITE, MAP_SHARED,
88 		       args->offset);
89 	if (IS_ERR_VALUE(addr))
90 		goto err;
91 
92 	if (args->flags & I915_MMAP_WC) {
93 		struct mm_struct *mm = current->mm;
94 		struct vm_area_struct *vma;
95 
96 		if (mmap_write_lock_killable(mm)) {
97 			addr = -EINTR;
98 			goto err;
99 		}
100 		vma = find_vma(mm, addr);
101 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
102 			vma->vm_page_prot =
103 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
104 		else
105 			addr = -ENOMEM;
106 		mmap_write_unlock(mm);
107 		if (IS_ERR_VALUE(addr))
108 			goto err;
109 	}
110 	i915_gem_object_put(obj);
111 
112 	args->addr_ptr = (u64)addr;
113 	return 0;
114 
115 err:
116 	i915_gem_object_put(obj);
117 	return addr;
118 }
119 
120 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
121 {
122 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
123 }
124 
125 /**
126  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
127  *
128  * A history of the GTT mmap interface:
129  *
130  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
131  *     aligned and suitable for fencing, and still fit into the available
132  *     mappable space left by the pinned display objects. A classic problem
133  *     we called the page-fault-of-doom where we would ping-pong between
134  *     two objects that could not fit inside the GTT and so the memcpy
135  *     would page one object in at the expense of the other between every
136  *     single byte.
137  *
138  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
139  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
140  *     object is too large for the available space (or simply too large
141  *     for the mappable aperture!), a view is created instead and faulted
142  *     into userspace. (This view is aligned and sized appropriately for
143  *     fenced access.)
144  *
145  * 2 - Recognise WC as a separate cache domain so that we can flush the
146  *     delayed writes via GTT before performing direct access via WC.
147  *
148  * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
149  *     pagefault; swapin remains transparent.
150  *
151  * 4 - Support multiple fault handlers per object depending on object's
152  *     backing storage (a.k.a. MMAP_OFFSET).
153  *
154  * Restrictions:
155  *
156  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
157  *    hangs on some architectures, corruption on others. An attempt to service
158  *    a GTT page fault from a snoopable object will generate a SIGBUS.
159  *
160  *  * the object must be able to fit into RAM (physical memory, though no
161  *    limited to the mappable aperture).
162  *
163  *
164  * Caveats:
165  *
166  *  * a new GTT page fault will synchronize rendering from the GPU and flush
167  *    all data to system memory. Subsequent access will not be synchronized.
168  *
169  *  * all mappings are revoked on runtime device suspend.
170  *
171  *  * there are only 8, 16 or 32 fence registers to share between all users
172  *    (older machines require fence register for display and blitter access
173  *    as well). Contention of the fence registers will cause the previous users
174  *    to be unmapped and any new access will generate new page faults.
175  *
176  *  * running out of memory while servicing a fault may generate a SIGBUS,
177  *    rather than the expected SIGSEGV.
178  */
179 int i915_gem_mmap_gtt_version(void)
180 {
181 	return 4;
182 }
183 
184 static inline struct i915_ggtt_view
185 compute_partial_view(const struct drm_i915_gem_object *obj,
186 		     pgoff_t page_offset,
187 		     unsigned int chunk)
188 {
189 	struct i915_ggtt_view view;
190 
191 	if (i915_gem_object_is_tiled(obj))
192 		chunk = roundup(chunk, tile_row_pages(obj));
193 
194 	view.type = I915_GGTT_VIEW_PARTIAL;
195 	view.partial.offset = rounddown(page_offset, chunk);
196 	view.partial.size =
197 		min_t(unsigned int, chunk,
198 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
199 
200 	/* If the partial covers the entire object, just create a normal VMA. */
201 	if (chunk >= obj->base.size >> PAGE_SHIFT)
202 		view.type = I915_GGTT_VIEW_NORMAL;
203 
204 	return view;
205 }
206 
207 static vm_fault_t i915_error_to_vmf_fault(int err)
208 {
209 	switch (err) {
210 	default:
211 		WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
212 		/* fallthrough */
213 	case -EIO: /* shmemfs failure from swap device */
214 	case -EFAULT: /* purged object */
215 	case -ENODEV: /* bad object, how did you get here! */
216 	case -ENXIO: /* unable to access backing store (on device) */
217 		return VM_FAULT_SIGBUS;
218 
219 	case -ENOMEM: /* our allocation failure */
220 		return VM_FAULT_OOM;
221 
222 	case 0:
223 	case -EAGAIN:
224 	case -ENOSPC: /* transient failure to evict? */
225 	case -ERESTARTSYS:
226 	case -EINTR:
227 	case -EBUSY:
228 		/*
229 		 * EBUSY is ok: this just means that another thread
230 		 * already did the job.
231 		 */
232 		return VM_FAULT_NOPAGE;
233 	}
234 }
235 
236 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
237 {
238 	struct vm_area_struct *area = vmf->vma;
239 	struct i915_mmap_offset *mmo = area->vm_private_data;
240 	struct drm_i915_gem_object *obj = mmo->obj;
241 	resource_size_t iomap;
242 	int err;
243 
244 	/* Sanity check that we allow writing into this object */
245 	if (unlikely(i915_gem_object_is_readonly(obj) &&
246 		     area->vm_flags & VM_WRITE))
247 		return VM_FAULT_SIGBUS;
248 
249 	err = i915_gem_object_pin_pages(obj);
250 	if (err)
251 		goto out;
252 
253 	iomap = -1;
254 	if (!i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_STRUCT_PAGE)) {
255 		iomap = obj->mm.region->iomap.base;
256 		iomap -= obj->mm.region->region.start;
257 	}
258 
259 	/* PTEs are revoked in obj->ops->put_pages() */
260 	err = remap_io_sg(area,
261 			  area->vm_start, area->vm_end - area->vm_start,
262 			  obj->mm.pages->sgl, iomap);
263 
264 	if (area->vm_flags & VM_WRITE) {
265 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
266 		obj->mm.dirty = true;
267 	}
268 
269 	i915_gem_object_unpin_pages(obj);
270 
271 out:
272 	return i915_error_to_vmf_fault(err);
273 }
274 
275 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
276 {
277 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
278 	struct vm_area_struct *area = vmf->vma;
279 	struct i915_mmap_offset *mmo = area->vm_private_data;
280 	struct drm_i915_gem_object *obj = mmo->obj;
281 	struct drm_device *dev = obj->base.dev;
282 	struct drm_i915_private *i915 = to_i915(dev);
283 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
284 	struct i915_ggtt *ggtt = &i915->ggtt;
285 	bool write = area->vm_flags & VM_WRITE;
286 	intel_wakeref_t wakeref;
287 	struct i915_vma *vma;
288 	pgoff_t page_offset;
289 	int srcu;
290 	int ret;
291 
292 	/* Sanity check that we allow writing into this object */
293 	if (i915_gem_object_is_readonly(obj) && write)
294 		return VM_FAULT_SIGBUS;
295 
296 	/* We don't use vmf->pgoff since that has the fake offset */
297 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
298 
299 	trace_i915_gem_object_fault(obj, page_offset, true, write);
300 
301 	ret = i915_gem_object_pin_pages(obj);
302 	if (ret)
303 		goto err;
304 
305 	wakeref = intel_runtime_pm_get(rpm);
306 
307 	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
308 	if (ret)
309 		goto err_rpm;
310 
311 	/* Now pin it into the GTT as needed */
312 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
313 				       PIN_MAPPABLE |
314 				       PIN_NONBLOCK /* NOWARN */ |
315 				       PIN_NOEVICT);
316 	if (IS_ERR(vma)) {
317 		/* Use a partial view if it is bigger than available space */
318 		struct i915_ggtt_view view =
319 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
320 		unsigned int flags;
321 
322 		flags = PIN_MAPPABLE | PIN_NOSEARCH;
323 		if (view.type == I915_GGTT_VIEW_NORMAL)
324 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
325 
326 		/*
327 		 * Userspace is now writing through an untracked VMA, abandon
328 		 * all hope that the hardware is able to track future writes.
329 		 */
330 
331 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
332 		if (IS_ERR(vma)) {
333 			flags = PIN_MAPPABLE;
334 			view.type = I915_GGTT_VIEW_PARTIAL;
335 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
336 		}
337 
338 		/* The entire mappable GGTT is pinned? Unexpected! */
339 		GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
340 	}
341 	if (IS_ERR(vma)) {
342 		ret = PTR_ERR(vma);
343 		goto err_reset;
344 	}
345 
346 	/* Access to snoopable pages through the GTT is incoherent. */
347 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
348 		ret = -EFAULT;
349 		goto err_unpin;
350 	}
351 
352 	ret = i915_vma_pin_fence(vma);
353 	if (ret)
354 		goto err_unpin;
355 
356 	/* Finally, remap it using the new GTT offset */
357 	ret = remap_io_mapping(area,
358 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
359 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
360 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
361 			       &ggtt->iomap);
362 	if (ret)
363 		goto err_fence;
364 
365 	assert_rpm_wakelock_held(rpm);
366 
367 	/* Mark as being mmapped into userspace for later revocation */
368 	mutex_lock(&i915->ggtt.vm.mutex);
369 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
370 		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
371 	mutex_unlock(&i915->ggtt.vm.mutex);
372 
373 	/* Track the mmo associated with the fenced vma */
374 	vma->mmo = mmo;
375 
376 	if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
377 		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
378 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
379 
380 	if (write) {
381 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
382 		i915_vma_set_ggtt_write(vma);
383 		obj->mm.dirty = true;
384 	}
385 
386 err_fence:
387 	i915_vma_unpin_fence(vma);
388 err_unpin:
389 	__i915_vma_unpin(vma);
390 err_reset:
391 	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
392 err_rpm:
393 	intel_runtime_pm_put(rpm, wakeref);
394 	i915_gem_object_unpin_pages(obj);
395 err:
396 	return i915_error_to_vmf_fault(ret);
397 }
398 
399 static int
400 vm_access(struct vm_area_struct *area, unsigned long addr,
401 	  void *buf, int len, int write)
402 {
403 	struct i915_mmap_offset *mmo = area->vm_private_data;
404 	struct drm_i915_gem_object *obj = mmo->obj;
405 	void *vaddr;
406 
407 	if (i915_gem_object_is_readonly(obj) && write)
408 		return -EACCES;
409 
410 	addr -= area->vm_start;
411 	if (addr >= obj->base.size)
412 		return -EINVAL;
413 
414 	/* As this is primarily for debugging, let's focus on simplicity */
415 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
416 	if (IS_ERR(vaddr))
417 		return PTR_ERR(vaddr);
418 
419 	if (write) {
420 		memcpy(vaddr + addr, buf, len);
421 		__i915_gem_object_flush_map(obj, addr, len);
422 	} else {
423 		memcpy(buf, vaddr + addr, len);
424 	}
425 
426 	i915_gem_object_unpin_map(obj);
427 
428 	return len;
429 }
430 
431 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
432 {
433 	struct i915_vma *vma;
434 
435 	GEM_BUG_ON(!obj->userfault_count);
436 
437 	for_each_ggtt_vma(vma, obj)
438 		i915_vma_revoke_mmap(vma);
439 
440 	GEM_BUG_ON(obj->userfault_count);
441 }
442 
443 /*
444  * It is vital that we remove the page mapping if we have mapped a tiled
445  * object through the GTT and then lose the fence register due to
446  * resource pressure. Similarly if the object has been moved out of the
447  * aperture, than pages mapped into userspace must be revoked. Removing the
448  * mapping will then trigger a page fault on the next user access, allowing
449  * fixup by vm_fault_gtt().
450  */
451 void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
452 {
453 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
454 	intel_wakeref_t wakeref;
455 
456 	/*
457 	 * Serialisation between user GTT access and our code depends upon
458 	 * revoking the CPU's PTE whilst the mutex is held. The next user
459 	 * pagefault then has to wait until we release the mutex.
460 	 *
461 	 * Note that RPM complicates somewhat by adding an additional
462 	 * requirement that operations to the GGTT be made holding the RPM
463 	 * wakeref.
464 	 */
465 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
466 	mutex_lock(&i915->ggtt.vm.mutex);
467 
468 	if (!obj->userfault_count)
469 		goto out;
470 
471 	__i915_gem_object_release_mmap_gtt(obj);
472 
473 	/*
474 	 * Ensure that the CPU's PTE are revoked and there are not outstanding
475 	 * memory transactions from userspace before we return. The TLB
476 	 * flushing implied above by changing the PTE above *should* be
477 	 * sufficient, an extra barrier here just provides us with a bit
478 	 * of paranoid documentation about our requirement to serialise
479 	 * memory writes before touching registers / GSM.
480 	 */
481 	wmb();
482 
483 out:
484 	mutex_unlock(&i915->ggtt.vm.mutex);
485 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
486 }
487 
488 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
489 {
490 	struct i915_mmap_offset *mmo, *mn;
491 
492 	spin_lock(&obj->mmo.lock);
493 	rbtree_postorder_for_each_entry_safe(mmo, mn,
494 					     &obj->mmo.offsets, offset) {
495 		/*
496 		 * vma_node_unmap for GTT mmaps handled already in
497 		 * __i915_gem_object_release_mmap_gtt
498 		 */
499 		if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
500 			continue;
501 
502 		spin_unlock(&obj->mmo.lock);
503 		drm_vma_node_unmap(&mmo->vma_node,
504 				   obj->base.dev->anon_inode->i_mapping);
505 		spin_lock(&obj->mmo.lock);
506 	}
507 	spin_unlock(&obj->mmo.lock);
508 }
509 
510 static struct i915_mmap_offset *
511 lookup_mmo(struct drm_i915_gem_object *obj,
512 	   enum i915_mmap_type mmap_type)
513 {
514 	struct rb_node *rb;
515 
516 	spin_lock(&obj->mmo.lock);
517 	rb = obj->mmo.offsets.rb_node;
518 	while (rb) {
519 		struct i915_mmap_offset *mmo =
520 			rb_entry(rb, typeof(*mmo), offset);
521 
522 		if (mmo->mmap_type == mmap_type) {
523 			spin_unlock(&obj->mmo.lock);
524 			return mmo;
525 		}
526 
527 		if (mmo->mmap_type < mmap_type)
528 			rb = rb->rb_right;
529 		else
530 			rb = rb->rb_left;
531 	}
532 	spin_unlock(&obj->mmo.lock);
533 
534 	return NULL;
535 }
536 
537 static struct i915_mmap_offset *
538 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
539 {
540 	struct rb_node *rb, **p;
541 
542 	spin_lock(&obj->mmo.lock);
543 	rb = NULL;
544 	p = &obj->mmo.offsets.rb_node;
545 	while (*p) {
546 		struct i915_mmap_offset *pos;
547 
548 		rb = *p;
549 		pos = rb_entry(rb, typeof(*pos), offset);
550 
551 		if (pos->mmap_type == mmo->mmap_type) {
552 			spin_unlock(&obj->mmo.lock);
553 			drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
554 					      &mmo->vma_node);
555 			kfree(mmo);
556 			return pos;
557 		}
558 
559 		if (pos->mmap_type < mmo->mmap_type)
560 			p = &rb->rb_right;
561 		else
562 			p = &rb->rb_left;
563 	}
564 	rb_link_node(&mmo->offset, rb, p);
565 	rb_insert_color(&mmo->offset, &obj->mmo.offsets);
566 	spin_unlock(&obj->mmo.lock);
567 
568 	return mmo;
569 }
570 
571 static struct i915_mmap_offset *
572 mmap_offset_attach(struct drm_i915_gem_object *obj,
573 		   enum i915_mmap_type mmap_type,
574 		   struct drm_file *file)
575 {
576 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
577 	struct i915_mmap_offset *mmo;
578 	int err;
579 
580 	mmo = lookup_mmo(obj, mmap_type);
581 	if (mmo)
582 		goto out;
583 
584 	mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
585 	if (!mmo)
586 		return ERR_PTR(-ENOMEM);
587 
588 	mmo->obj = obj;
589 	mmo->mmap_type = mmap_type;
590 	drm_vma_node_reset(&mmo->vma_node);
591 
592 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
593 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
594 	if (likely(!err))
595 		goto insert;
596 
597 	/* Attempt to reap some mmap space from dead objects */
598 	err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
599 	if (err)
600 		goto err;
601 
602 	i915_gem_drain_freed_objects(i915);
603 	err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
604 				 &mmo->vma_node, obj->base.size / PAGE_SIZE);
605 	if (err)
606 		goto err;
607 
608 insert:
609 	mmo = insert_mmo(obj, mmo);
610 	GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
611 out:
612 	if (file)
613 		drm_vma_node_allow(&mmo->vma_node, file);
614 	return mmo;
615 
616 err:
617 	kfree(mmo);
618 	return ERR_PTR(err);
619 }
620 
621 static int
622 __assign_mmap_offset(struct drm_file *file,
623 		     u32 handle,
624 		     enum i915_mmap_type mmap_type,
625 		     u64 *offset)
626 {
627 	struct drm_i915_gem_object *obj;
628 	struct i915_mmap_offset *mmo;
629 	int err;
630 
631 	obj = i915_gem_object_lookup(file, handle);
632 	if (!obj)
633 		return -ENOENT;
634 
635 	if (i915_gem_object_never_mmap(obj)) {
636 		err = -ENODEV;
637 		goto out;
638 	}
639 
640 	if (mmap_type != I915_MMAP_TYPE_GTT &&
641 	    !i915_gem_object_type_has(obj,
642 				      I915_GEM_OBJECT_HAS_STRUCT_PAGE |
643 				      I915_GEM_OBJECT_HAS_IOMEM)) {
644 		err = -ENODEV;
645 		goto out;
646 	}
647 
648 	mmo = mmap_offset_attach(obj, mmap_type, file);
649 	if (IS_ERR(mmo)) {
650 		err = PTR_ERR(mmo);
651 		goto out;
652 	}
653 
654 	*offset = drm_vma_node_offset_addr(&mmo->vma_node);
655 	err = 0;
656 out:
657 	i915_gem_object_put(obj);
658 	return err;
659 }
660 
661 int
662 i915_gem_dumb_mmap_offset(struct drm_file *file,
663 			  struct drm_device *dev,
664 			  u32 handle,
665 			  u64 *offset)
666 {
667 	enum i915_mmap_type mmap_type;
668 
669 	if (boot_cpu_has(X86_FEATURE_PAT))
670 		mmap_type = I915_MMAP_TYPE_WC;
671 	else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
672 		return -ENODEV;
673 	else
674 		mmap_type = I915_MMAP_TYPE_GTT;
675 
676 	return __assign_mmap_offset(file, handle, mmap_type, offset);
677 }
678 
679 /**
680  * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
681  * @dev: DRM device
682  * @data: GTT mapping ioctl data
683  * @file: GEM object info
684  *
685  * Simply returns the fake offset to userspace so it can mmap it.
686  * The mmap call will end up in drm_gem_mmap(), which will set things
687  * up so we can get faults in the handler above.
688  *
689  * The fault handler will take care of binding the object into the GTT
690  * (since it may have been evicted to make room for something), allocating
691  * a fence register, and mapping the appropriate aperture address into
692  * userspace.
693  */
694 int
695 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
696 			   struct drm_file *file)
697 {
698 	struct drm_i915_private *i915 = to_i915(dev);
699 	struct drm_i915_gem_mmap_offset *args = data;
700 	enum i915_mmap_type type;
701 	int err;
702 
703 	/*
704 	 * Historically we failed to check args.pad and args.offset
705 	 * and so we cannot use those fields for user input and we cannot
706 	 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
707 	 * may be feeding in garbage in those fields.
708 	 *
709 	 * if (args->pad) return -EINVAL; is verbotten!
710 	 */
711 
712 	err = i915_user_extensions(u64_to_user_ptr(args->extensions),
713 				   NULL, 0, NULL);
714 	if (err)
715 		return err;
716 
717 	switch (args->flags) {
718 	case I915_MMAP_OFFSET_GTT:
719 		if (!i915_ggtt_has_aperture(&i915->ggtt))
720 			return -ENODEV;
721 		type = I915_MMAP_TYPE_GTT;
722 		break;
723 
724 	case I915_MMAP_OFFSET_WC:
725 		if (!boot_cpu_has(X86_FEATURE_PAT))
726 			return -ENODEV;
727 		type = I915_MMAP_TYPE_WC;
728 		break;
729 
730 	case I915_MMAP_OFFSET_WB:
731 		type = I915_MMAP_TYPE_WB;
732 		break;
733 
734 	case I915_MMAP_OFFSET_UC:
735 		if (!boot_cpu_has(X86_FEATURE_PAT))
736 			return -ENODEV;
737 		type = I915_MMAP_TYPE_UC;
738 		break;
739 
740 	default:
741 		return -EINVAL;
742 	}
743 
744 	return __assign_mmap_offset(file, args->handle, type, &args->offset);
745 }
746 
747 static void vm_open(struct vm_area_struct *vma)
748 {
749 	struct i915_mmap_offset *mmo = vma->vm_private_data;
750 	struct drm_i915_gem_object *obj = mmo->obj;
751 
752 	GEM_BUG_ON(!obj);
753 	i915_gem_object_get(obj);
754 }
755 
756 static void vm_close(struct vm_area_struct *vma)
757 {
758 	struct i915_mmap_offset *mmo = vma->vm_private_data;
759 	struct drm_i915_gem_object *obj = mmo->obj;
760 
761 	GEM_BUG_ON(!obj);
762 	i915_gem_object_put(obj);
763 }
764 
765 static const struct vm_operations_struct vm_ops_gtt = {
766 	.fault = vm_fault_gtt,
767 	.access = vm_access,
768 	.open = vm_open,
769 	.close = vm_close,
770 };
771 
772 static const struct vm_operations_struct vm_ops_cpu = {
773 	.fault = vm_fault_cpu,
774 	.access = vm_access,
775 	.open = vm_open,
776 	.close = vm_close,
777 };
778 
779 static int singleton_release(struct inode *inode, struct file *file)
780 {
781 	struct drm_i915_private *i915 = file->private_data;
782 
783 	cmpxchg(&i915->gem.mmap_singleton, file, NULL);
784 	drm_dev_put(&i915->drm);
785 
786 	return 0;
787 }
788 
789 static const struct file_operations singleton_fops = {
790 	.owner = THIS_MODULE,
791 	.release = singleton_release,
792 };
793 
794 static struct file *mmap_singleton(struct drm_i915_private *i915)
795 {
796 	struct file *file;
797 
798 	rcu_read_lock();
799 	file = READ_ONCE(i915->gem.mmap_singleton);
800 	if (file && !get_file_rcu(file))
801 		file = NULL;
802 	rcu_read_unlock();
803 	if (file)
804 		return file;
805 
806 	file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
807 	if (IS_ERR(file))
808 		return file;
809 
810 	/* Everyone shares a single global address space */
811 	file->f_mapping = i915->drm.anon_inode->i_mapping;
812 
813 	smp_store_mb(i915->gem.mmap_singleton, file);
814 	drm_dev_get(&i915->drm);
815 
816 	return file;
817 }
818 
819 /*
820  * This overcomes the limitation in drm_gem_mmap's assignment of a
821  * drm_gem_object as the vma->vm_private_data. Since we need to
822  * be able to resolve multiple mmap offsets which could be tied
823  * to a single gem object.
824  */
825 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
826 {
827 	struct drm_vma_offset_node *node;
828 	struct drm_file *priv = filp->private_data;
829 	struct drm_device *dev = priv->minor->dev;
830 	struct drm_i915_gem_object *obj = NULL;
831 	struct i915_mmap_offset *mmo = NULL;
832 	struct file *anon;
833 
834 	if (drm_dev_is_unplugged(dev))
835 		return -ENODEV;
836 
837 	rcu_read_lock();
838 	drm_vma_offset_lock_lookup(dev->vma_offset_manager);
839 	node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
840 						  vma->vm_pgoff,
841 						  vma_pages(vma));
842 	if (node && drm_vma_node_is_allowed(node, priv)) {
843 		/*
844 		 * Skip 0-refcnted objects as it is in the process of being
845 		 * destroyed and will be invalid when the vma manager lock
846 		 * is released.
847 		 */
848 		mmo = container_of(node, struct i915_mmap_offset, vma_node);
849 		obj = i915_gem_object_get_rcu(mmo->obj);
850 	}
851 	drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
852 	rcu_read_unlock();
853 	if (!obj)
854 		return node ? -EACCES : -EINVAL;
855 
856 	if (i915_gem_object_is_readonly(obj)) {
857 		if (vma->vm_flags & VM_WRITE) {
858 			i915_gem_object_put(obj);
859 			return -EINVAL;
860 		}
861 		vma->vm_flags &= ~VM_MAYWRITE;
862 	}
863 
864 	anon = mmap_singleton(to_i915(dev));
865 	if (IS_ERR(anon)) {
866 		i915_gem_object_put(obj);
867 		return PTR_ERR(anon);
868 	}
869 
870 	vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
871 	vma->vm_private_data = mmo;
872 
873 	/*
874 	 * We keep the ref on mmo->obj, not vm_file, but we require
875 	 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
876 	 * Our userspace is accustomed to having per-file resource cleanup
877 	 * (i.e. contexts, objects and requests) on their close(fd), which
878 	 * requires avoiding extraneous references to their filp, hence why
879 	 * we prefer to use an anonymous file for their mmaps.
880 	 */
881 	fput(vma->vm_file);
882 	vma->vm_file = anon;
883 
884 	switch (mmo->mmap_type) {
885 	case I915_MMAP_TYPE_WC:
886 		vma->vm_page_prot =
887 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
888 		vma->vm_ops = &vm_ops_cpu;
889 		break;
890 
891 	case I915_MMAP_TYPE_WB:
892 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
893 		vma->vm_ops = &vm_ops_cpu;
894 		break;
895 
896 	case I915_MMAP_TYPE_UC:
897 		vma->vm_page_prot =
898 			pgprot_noncached(vm_get_page_prot(vma->vm_flags));
899 		vma->vm_ops = &vm_ops_cpu;
900 		break;
901 
902 	case I915_MMAP_TYPE_GTT:
903 		vma->vm_page_prot =
904 			pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
905 		vma->vm_ops = &vm_ops_gtt;
906 		break;
907 	}
908 	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
909 
910 	return 0;
911 }
912 
913 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
914 #include "selftests/i915_gem_mman.c"
915 #endif
916