1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2014-2016 Intel Corporation 5 */ 6 7 #include <linux/anon_inodes.h> 8 #include <linux/mman.h> 9 #include <linux/pfn_t.h> 10 #include <linux/sizes.h> 11 12 #include "gt/intel_gt.h" 13 #include "gt/intel_gt_requests.h" 14 15 #include "i915_drv.h" 16 #include "i915_gem_gtt.h" 17 #include "i915_gem_ioctls.h" 18 #include "i915_gem_object.h" 19 #include "i915_gem_mman.h" 20 #include "i915_trace.h" 21 #include "i915_user_extensions.h" 22 #include "i915_vma.h" 23 24 static inline bool 25 __vma_matches(struct vm_area_struct *vma, struct file *filp, 26 unsigned long addr, unsigned long size) 27 { 28 if (vma->vm_file != filp) 29 return false; 30 31 return vma->vm_start == addr && 32 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size); 33 } 34 35 /** 36 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 37 * it is mapped to. 38 * @dev: drm device 39 * @data: ioctl data blob 40 * @file: drm file 41 * 42 * While the mapping holds a reference on the contents of the object, it doesn't 43 * imply a ref on the object itself. 44 * 45 * IMPORTANT: 46 * 47 * DRM driver writers who look a this function as an example for how to do GEM 48 * mmap support, please don't implement mmap support like here. The modern way 49 * to implement DRM mmap support is with an mmap offset ioctl (like 50 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 51 * That way debug tooling like valgrind will understand what's going on, hiding 52 * the mmap call in a driver private ioctl will break that. The i915 driver only 53 * does cpu mmaps this way because we didn't know better. 54 */ 55 int 56 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 57 struct drm_file *file) 58 { 59 struct drm_i915_gem_mmap *args = data; 60 struct drm_i915_gem_object *obj; 61 unsigned long addr; 62 63 if (args->flags & ~(I915_MMAP_WC)) 64 return -EINVAL; 65 66 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 67 return -ENODEV; 68 69 obj = i915_gem_object_lookup(file, args->handle); 70 if (!obj) 71 return -ENOENT; 72 73 /* prime objects have no backing filp to GEM mmap 74 * pages from. 75 */ 76 if (!obj->base.filp) { 77 addr = -ENXIO; 78 goto err; 79 } 80 81 if (range_overflows(args->offset, args->size, (u64)obj->base.size)) { 82 addr = -EINVAL; 83 goto err; 84 } 85 86 addr = vm_mmap(obj->base.filp, 0, args->size, 87 PROT_READ | PROT_WRITE, MAP_SHARED, 88 args->offset); 89 if (IS_ERR_VALUE(addr)) 90 goto err; 91 92 if (args->flags & I915_MMAP_WC) { 93 struct mm_struct *mm = current->mm; 94 struct vm_area_struct *vma; 95 96 if (mmap_write_lock_killable(mm)) { 97 addr = -EINTR; 98 goto err; 99 } 100 vma = find_vma(mm, addr); 101 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size)) 102 vma->vm_page_prot = 103 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 104 else 105 addr = -ENOMEM; 106 mmap_write_unlock(mm); 107 if (IS_ERR_VALUE(addr)) 108 goto err; 109 } 110 i915_gem_object_put(obj); 111 112 args->addr_ptr = (u64)addr; 113 return 0; 114 115 err: 116 i915_gem_object_put(obj); 117 return addr; 118 } 119 120 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj) 121 { 122 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 123 } 124 125 /** 126 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 127 * 128 * A history of the GTT mmap interface: 129 * 130 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 131 * aligned and suitable for fencing, and still fit into the available 132 * mappable space left by the pinned display objects. A classic problem 133 * we called the page-fault-of-doom where we would ping-pong between 134 * two objects that could not fit inside the GTT and so the memcpy 135 * would page one object in at the expense of the other between every 136 * single byte. 137 * 138 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 139 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 140 * object is too large for the available space (or simply too large 141 * for the mappable aperture!), a view is created instead and faulted 142 * into userspace. (This view is aligned and sized appropriately for 143 * fenced access.) 144 * 145 * 2 - Recognise WC as a separate cache domain so that we can flush the 146 * delayed writes via GTT before performing direct access via WC. 147 * 148 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial 149 * pagefault; swapin remains transparent. 150 * 151 * 4 - Support multiple fault handlers per object depending on object's 152 * backing storage (a.k.a. MMAP_OFFSET). 153 * 154 * Restrictions: 155 * 156 * * snoopable objects cannot be accessed via the GTT. It can cause machine 157 * hangs on some architectures, corruption on others. An attempt to service 158 * a GTT page fault from a snoopable object will generate a SIGBUS. 159 * 160 * * the object must be able to fit into RAM (physical memory, though no 161 * limited to the mappable aperture). 162 * 163 * 164 * Caveats: 165 * 166 * * a new GTT page fault will synchronize rendering from the GPU and flush 167 * all data to system memory. Subsequent access will not be synchronized. 168 * 169 * * all mappings are revoked on runtime device suspend. 170 * 171 * * there are only 8, 16 or 32 fence registers to share between all users 172 * (older machines require fence register for display and blitter access 173 * as well). Contention of the fence registers will cause the previous users 174 * to be unmapped and any new access will generate new page faults. 175 * 176 * * running out of memory while servicing a fault may generate a SIGBUS, 177 * rather than the expected SIGSEGV. 178 */ 179 int i915_gem_mmap_gtt_version(void) 180 { 181 return 4; 182 } 183 184 static inline struct i915_ggtt_view 185 compute_partial_view(const struct drm_i915_gem_object *obj, 186 pgoff_t page_offset, 187 unsigned int chunk) 188 { 189 struct i915_ggtt_view view; 190 191 if (i915_gem_object_is_tiled(obj)) 192 chunk = roundup(chunk, tile_row_pages(obj)); 193 194 view.type = I915_GGTT_VIEW_PARTIAL; 195 view.partial.offset = rounddown(page_offset, chunk); 196 view.partial.size = 197 min_t(unsigned int, chunk, 198 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 199 200 /* If the partial covers the entire object, just create a normal VMA. */ 201 if (chunk >= obj->base.size >> PAGE_SHIFT) 202 view.type = I915_GGTT_VIEW_NORMAL; 203 204 return view; 205 } 206 207 static vm_fault_t i915_error_to_vmf_fault(int err) 208 { 209 switch (err) { 210 default: 211 WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err); 212 /* fallthrough */ 213 case -EIO: /* shmemfs failure from swap device */ 214 case -EFAULT: /* purged object */ 215 case -ENODEV: /* bad object, how did you get here! */ 216 case -ENXIO: /* unable to access backing store (on device) */ 217 return VM_FAULT_SIGBUS; 218 219 case -ENOMEM: /* our allocation failure */ 220 return VM_FAULT_OOM; 221 222 case 0: 223 case -EAGAIN: 224 case -ENOSPC: /* transient failure to evict? */ 225 case -ERESTARTSYS: 226 case -EINTR: 227 case -EBUSY: 228 /* 229 * EBUSY is ok: this just means that another thread 230 * already did the job. 231 */ 232 return VM_FAULT_NOPAGE; 233 } 234 } 235 236 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf) 237 { 238 struct vm_area_struct *area = vmf->vma; 239 struct i915_mmap_offset *mmo = area->vm_private_data; 240 struct drm_i915_gem_object *obj = mmo->obj; 241 resource_size_t iomap; 242 int err; 243 244 /* Sanity check that we allow writing into this object */ 245 if (unlikely(i915_gem_object_is_readonly(obj) && 246 area->vm_flags & VM_WRITE)) 247 return VM_FAULT_SIGBUS; 248 249 err = i915_gem_object_pin_pages(obj); 250 if (err) 251 goto out; 252 253 iomap = -1; 254 if (!i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_STRUCT_PAGE)) { 255 iomap = obj->mm.region->iomap.base; 256 iomap -= obj->mm.region->region.start; 257 } 258 259 /* PTEs are revoked in obj->ops->put_pages() */ 260 err = remap_io_sg(area, 261 area->vm_start, area->vm_end - area->vm_start, 262 obj->mm.pages->sgl, iomap); 263 264 if (area->vm_flags & VM_WRITE) { 265 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 266 obj->mm.dirty = true; 267 } 268 269 i915_gem_object_unpin_pages(obj); 270 271 out: 272 return i915_error_to_vmf_fault(err); 273 } 274 275 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf) 276 { 277 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT) 278 struct vm_area_struct *area = vmf->vma; 279 struct i915_mmap_offset *mmo = area->vm_private_data; 280 struct drm_i915_gem_object *obj = mmo->obj; 281 struct drm_device *dev = obj->base.dev; 282 struct drm_i915_private *i915 = to_i915(dev); 283 struct intel_runtime_pm *rpm = &i915->runtime_pm; 284 struct i915_ggtt *ggtt = &i915->ggtt; 285 bool write = area->vm_flags & VM_WRITE; 286 intel_wakeref_t wakeref; 287 struct i915_vma *vma; 288 pgoff_t page_offset; 289 int srcu; 290 int ret; 291 292 /* Sanity check that we allow writing into this object */ 293 if (i915_gem_object_is_readonly(obj) && write) 294 return VM_FAULT_SIGBUS; 295 296 /* We don't use vmf->pgoff since that has the fake offset */ 297 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 298 299 trace_i915_gem_object_fault(obj, page_offset, true, write); 300 301 ret = i915_gem_object_pin_pages(obj); 302 if (ret) 303 goto err; 304 305 wakeref = intel_runtime_pm_get(rpm); 306 307 ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu); 308 if (ret) 309 goto err_rpm; 310 311 /* Now pin it into the GTT as needed */ 312 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 313 PIN_MAPPABLE | 314 PIN_NONBLOCK /* NOWARN */ | 315 PIN_NOEVICT); 316 if (IS_ERR(vma)) { 317 /* Use a partial view if it is bigger than available space */ 318 struct i915_ggtt_view view = 319 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 320 unsigned int flags; 321 322 flags = PIN_MAPPABLE | PIN_NOSEARCH; 323 if (view.type == I915_GGTT_VIEW_NORMAL) 324 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */ 325 326 /* 327 * Userspace is now writing through an untracked VMA, abandon 328 * all hope that the hardware is able to track future writes. 329 */ 330 331 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags); 332 if (IS_ERR(vma)) { 333 flags = PIN_MAPPABLE; 334 view.type = I915_GGTT_VIEW_PARTIAL; 335 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags); 336 } 337 338 /* The entire mappable GGTT is pinned? Unexpected! */ 339 GEM_BUG_ON(vma == ERR_PTR(-ENOSPC)); 340 } 341 if (IS_ERR(vma)) { 342 ret = PTR_ERR(vma); 343 goto err_reset; 344 } 345 346 /* Access to snoopable pages through the GTT is incoherent. */ 347 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) { 348 ret = -EFAULT; 349 goto err_unpin; 350 } 351 352 ret = i915_vma_pin_fence(vma); 353 if (ret) 354 goto err_unpin; 355 356 /* Finally, remap it using the new GTT offset */ 357 ret = remap_io_mapping(area, 358 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 359 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, 360 min_t(u64, vma->size, area->vm_end - area->vm_start), 361 &ggtt->iomap); 362 if (ret) 363 goto err_fence; 364 365 assert_rpm_wakelock_held(rpm); 366 367 /* Mark as being mmapped into userspace for later revocation */ 368 mutex_lock(&i915->ggtt.vm.mutex); 369 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 370 list_add(&obj->userfault_link, &i915->ggtt.userfault_list); 371 mutex_unlock(&i915->ggtt.vm.mutex); 372 373 /* Track the mmo associated with the fenced vma */ 374 vma->mmo = mmo; 375 376 if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)) 377 intel_wakeref_auto(&i915->ggtt.userfault_wakeref, 378 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 379 380 if (write) { 381 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 382 i915_vma_set_ggtt_write(vma); 383 obj->mm.dirty = true; 384 } 385 386 err_fence: 387 i915_vma_unpin_fence(vma); 388 err_unpin: 389 __i915_vma_unpin(vma); 390 err_reset: 391 intel_gt_reset_unlock(ggtt->vm.gt, srcu); 392 err_rpm: 393 intel_runtime_pm_put(rpm, wakeref); 394 i915_gem_object_unpin_pages(obj); 395 err: 396 return i915_error_to_vmf_fault(ret); 397 } 398 399 static int 400 vm_access(struct vm_area_struct *area, unsigned long addr, 401 void *buf, int len, int write) 402 { 403 struct i915_mmap_offset *mmo = area->vm_private_data; 404 struct drm_i915_gem_object *obj = mmo->obj; 405 void *vaddr; 406 407 if (i915_gem_object_is_readonly(obj) && write) 408 return -EACCES; 409 410 addr -= area->vm_start; 411 if (addr >= obj->base.size) 412 return -EINVAL; 413 414 /* As this is primarily for debugging, let's focus on simplicity */ 415 vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC); 416 if (IS_ERR(vaddr)) 417 return PTR_ERR(vaddr); 418 419 if (write) { 420 memcpy(vaddr + addr, buf, len); 421 __i915_gem_object_flush_map(obj, addr, len); 422 } else { 423 memcpy(buf, vaddr + addr, len); 424 } 425 426 i915_gem_object_unpin_map(obj); 427 428 return len; 429 } 430 431 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj) 432 { 433 struct i915_vma *vma; 434 435 GEM_BUG_ON(!obj->userfault_count); 436 437 for_each_ggtt_vma(vma, obj) 438 i915_vma_revoke_mmap(vma); 439 440 GEM_BUG_ON(obj->userfault_count); 441 } 442 443 /* 444 * It is vital that we remove the page mapping if we have mapped a tiled 445 * object through the GTT and then lose the fence register due to 446 * resource pressure. Similarly if the object has been moved out of the 447 * aperture, than pages mapped into userspace must be revoked. Removing the 448 * mapping will then trigger a page fault on the next user access, allowing 449 * fixup by vm_fault_gtt(). 450 */ 451 void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj) 452 { 453 struct drm_i915_private *i915 = to_i915(obj->base.dev); 454 intel_wakeref_t wakeref; 455 456 /* 457 * Serialisation between user GTT access and our code depends upon 458 * revoking the CPU's PTE whilst the mutex is held. The next user 459 * pagefault then has to wait until we release the mutex. 460 * 461 * Note that RPM complicates somewhat by adding an additional 462 * requirement that operations to the GGTT be made holding the RPM 463 * wakeref. 464 */ 465 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 466 mutex_lock(&i915->ggtt.vm.mutex); 467 468 if (!obj->userfault_count) 469 goto out; 470 471 __i915_gem_object_release_mmap_gtt(obj); 472 473 /* 474 * Ensure that the CPU's PTE are revoked and there are not outstanding 475 * memory transactions from userspace before we return. The TLB 476 * flushing implied above by changing the PTE above *should* be 477 * sufficient, an extra barrier here just provides us with a bit 478 * of paranoid documentation about our requirement to serialise 479 * memory writes before touching registers / GSM. 480 */ 481 wmb(); 482 483 out: 484 mutex_unlock(&i915->ggtt.vm.mutex); 485 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 486 } 487 488 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj) 489 { 490 struct i915_mmap_offset *mmo, *mn; 491 492 spin_lock(&obj->mmo.lock); 493 rbtree_postorder_for_each_entry_safe(mmo, mn, 494 &obj->mmo.offsets, offset) { 495 /* 496 * vma_node_unmap for GTT mmaps handled already in 497 * __i915_gem_object_release_mmap_gtt 498 */ 499 if (mmo->mmap_type == I915_MMAP_TYPE_GTT) 500 continue; 501 502 spin_unlock(&obj->mmo.lock); 503 drm_vma_node_unmap(&mmo->vma_node, 504 obj->base.dev->anon_inode->i_mapping); 505 spin_lock(&obj->mmo.lock); 506 } 507 spin_unlock(&obj->mmo.lock); 508 } 509 510 static struct i915_mmap_offset * 511 lookup_mmo(struct drm_i915_gem_object *obj, 512 enum i915_mmap_type mmap_type) 513 { 514 struct rb_node *rb; 515 516 spin_lock(&obj->mmo.lock); 517 rb = obj->mmo.offsets.rb_node; 518 while (rb) { 519 struct i915_mmap_offset *mmo = 520 rb_entry(rb, typeof(*mmo), offset); 521 522 if (mmo->mmap_type == mmap_type) { 523 spin_unlock(&obj->mmo.lock); 524 return mmo; 525 } 526 527 if (mmo->mmap_type < mmap_type) 528 rb = rb->rb_right; 529 else 530 rb = rb->rb_left; 531 } 532 spin_unlock(&obj->mmo.lock); 533 534 return NULL; 535 } 536 537 static struct i915_mmap_offset * 538 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo) 539 { 540 struct rb_node *rb, **p; 541 542 spin_lock(&obj->mmo.lock); 543 rb = NULL; 544 p = &obj->mmo.offsets.rb_node; 545 while (*p) { 546 struct i915_mmap_offset *pos; 547 548 rb = *p; 549 pos = rb_entry(rb, typeof(*pos), offset); 550 551 if (pos->mmap_type == mmo->mmap_type) { 552 spin_unlock(&obj->mmo.lock); 553 drm_vma_offset_remove(obj->base.dev->vma_offset_manager, 554 &mmo->vma_node); 555 kfree(mmo); 556 return pos; 557 } 558 559 if (pos->mmap_type < mmo->mmap_type) 560 p = &rb->rb_right; 561 else 562 p = &rb->rb_left; 563 } 564 rb_link_node(&mmo->offset, rb, p); 565 rb_insert_color(&mmo->offset, &obj->mmo.offsets); 566 spin_unlock(&obj->mmo.lock); 567 568 return mmo; 569 } 570 571 static struct i915_mmap_offset * 572 mmap_offset_attach(struct drm_i915_gem_object *obj, 573 enum i915_mmap_type mmap_type, 574 struct drm_file *file) 575 { 576 struct drm_i915_private *i915 = to_i915(obj->base.dev); 577 struct i915_mmap_offset *mmo; 578 int err; 579 580 mmo = lookup_mmo(obj, mmap_type); 581 if (mmo) 582 goto out; 583 584 mmo = kmalloc(sizeof(*mmo), GFP_KERNEL); 585 if (!mmo) 586 return ERR_PTR(-ENOMEM); 587 588 mmo->obj = obj; 589 mmo->mmap_type = mmap_type; 590 drm_vma_node_reset(&mmo->vma_node); 591 592 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager, 593 &mmo->vma_node, obj->base.size / PAGE_SIZE); 594 if (likely(!err)) 595 goto insert; 596 597 /* Attempt to reap some mmap space from dead objects */ 598 err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT); 599 if (err) 600 goto err; 601 602 i915_gem_drain_freed_objects(i915); 603 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager, 604 &mmo->vma_node, obj->base.size / PAGE_SIZE); 605 if (err) 606 goto err; 607 608 insert: 609 mmo = insert_mmo(obj, mmo); 610 GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo); 611 out: 612 if (file) 613 drm_vma_node_allow(&mmo->vma_node, file); 614 return mmo; 615 616 err: 617 kfree(mmo); 618 return ERR_PTR(err); 619 } 620 621 static int 622 __assign_mmap_offset(struct drm_file *file, 623 u32 handle, 624 enum i915_mmap_type mmap_type, 625 u64 *offset) 626 { 627 struct drm_i915_gem_object *obj; 628 struct i915_mmap_offset *mmo; 629 int err; 630 631 obj = i915_gem_object_lookup(file, handle); 632 if (!obj) 633 return -ENOENT; 634 635 if (i915_gem_object_never_mmap(obj)) { 636 err = -ENODEV; 637 goto out; 638 } 639 640 if (mmap_type != I915_MMAP_TYPE_GTT && 641 !i915_gem_object_type_has(obj, 642 I915_GEM_OBJECT_HAS_STRUCT_PAGE | 643 I915_GEM_OBJECT_HAS_IOMEM)) { 644 err = -ENODEV; 645 goto out; 646 } 647 648 mmo = mmap_offset_attach(obj, mmap_type, file); 649 if (IS_ERR(mmo)) { 650 err = PTR_ERR(mmo); 651 goto out; 652 } 653 654 *offset = drm_vma_node_offset_addr(&mmo->vma_node); 655 err = 0; 656 out: 657 i915_gem_object_put(obj); 658 return err; 659 } 660 661 int 662 i915_gem_dumb_mmap_offset(struct drm_file *file, 663 struct drm_device *dev, 664 u32 handle, 665 u64 *offset) 666 { 667 enum i915_mmap_type mmap_type; 668 669 if (boot_cpu_has(X86_FEATURE_PAT)) 670 mmap_type = I915_MMAP_TYPE_WC; 671 else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt)) 672 return -ENODEV; 673 else 674 mmap_type = I915_MMAP_TYPE_GTT; 675 676 return __assign_mmap_offset(file, handle, mmap_type, offset); 677 } 678 679 /** 680 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing 681 * @dev: DRM device 682 * @data: GTT mapping ioctl data 683 * @file: GEM object info 684 * 685 * Simply returns the fake offset to userspace so it can mmap it. 686 * The mmap call will end up in drm_gem_mmap(), which will set things 687 * up so we can get faults in the handler above. 688 * 689 * The fault handler will take care of binding the object into the GTT 690 * (since it may have been evicted to make room for something), allocating 691 * a fence register, and mapping the appropriate aperture address into 692 * userspace. 693 */ 694 int 695 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 696 struct drm_file *file) 697 { 698 struct drm_i915_private *i915 = to_i915(dev); 699 struct drm_i915_gem_mmap_offset *args = data; 700 enum i915_mmap_type type; 701 int err; 702 703 /* 704 * Historically we failed to check args.pad and args.offset 705 * and so we cannot use those fields for user input and we cannot 706 * add -EINVAL for them as the ABI is fixed, i.e. old userspace 707 * may be feeding in garbage in those fields. 708 * 709 * if (args->pad) return -EINVAL; is verbotten! 710 */ 711 712 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 713 NULL, 0, NULL); 714 if (err) 715 return err; 716 717 switch (args->flags) { 718 case I915_MMAP_OFFSET_GTT: 719 if (!i915_ggtt_has_aperture(&i915->ggtt)) 720 return -ENODEV; 721 type = I915_MMAP_TYPE_GTT; 722 break; 723 724 case I915_MMAP_OFFSET_WC: 725 if (!boot_cpu_has(X86_FEATURE_PAT)) 726 return -ENODEV; 727 type = I915_MMAP_TYPE_WC; 728 break; 729 730 case I915_MMAP_OFFSET_WB: 731 type = I915_MMAP_TYPE_WB; 732 break; 733 734 case I915_MMAP_OFFSET_UC: 735 if (!boot_cpu_has(X86_FEATURE_PAT)) 736 return -ENODEV; 737 type = I915_MMAP_TYPE_UC; 738 break; 739 740 default: 741 return -EINVAL; 742 } 743 744 return __assign_mmap_offset(file, args->handle, type, &args->offset); 745 } 746 747 static void vm_open(struct vm_area_struct *vma) 748 { 749 struct i915_mmap_offset *mmo = vma->vm_private_data; 750 struct drm_i915_gem_object *obj = mmo->obj; 751 752 GEM_BUG_ON(!obj); 753 i915_gem_object_get(obj); 754 } 755 756 static void vm_close(struct vm_area_struct *vma) 757 { 758 struct i915_mmap_offset *mmo = vma->vm_private_data; 759 struct drm_i915_gem_object *obj = mmo->obj; 760 761 GEM_BUG_ON(!obj); 762 i915_gem_object_put(obj); 763 } 764 765 static const struct vm_operations_struct vm_ops_gtt = { 766 .fault = vm_fault_gtt, 767 .access = vm_access, 768 .open = vm_open, 769 .close = vm_close, 770 }; 771 772 static const struct vm_operations_struct vm_ops_cpu = { 773 .fault = vm_fault_cpu, 774 .access = vm_access, 775 .open = vm_open, 776 .close = vm_close, 777 }; 778 779 static int singleton_release(struct inode *inode, struct file *file) 780 { 781 struct drm_i915_private *i915 = file->private_data; 782 783 cmpxchg(&i915->gem.mmap_singleton, file, NULL); 784 drm_dev_put(&i915->drm); 785 786 return 0; 787 } 788 789 static const struct file_operations singleton_fops = { 790 .owner = THIS_MODULE, 791 .release = singleton_release, 792 }; 793 794 static struct file *mmap_singleton(struct drm_i915_private *i915) 795 { 796 struct file *file; 797 798 rcu_read_lock(); 799 file = READ_ONCE(i915->gem.mmap_singleton); 800 if (file && !get_file_rcu(file)) 801 file = NULL; 802 rcu_read_unlock(); 803 if (file) 804 return file; 805 806 file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR); 807 if (IS_ERR(file)) 808 return file; 809 810 /* Everyone shares a single global address space */ 811 file->f_mapping = i915->drm.anon_inode->i_mapping; 812 813 smp_store_mb(i915->gem.mmap_singleton, file); 814 drm_dev_get(&i915->drm); 815 816 return file; 817 } 818 819 /* 820 * This overcomes the limitation in drm_gem_mmap's assignment of a 821 * drm_gem_object as the vma->vm_private_data. Since we need to 822 * be able to resolve multiple mmap offsets which could be tied 823 * to a single gem object. 824 */ 825 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma) 826 { 827 struct drm_vma_offset_node *node; 828 struct drm_file *priv = filp->private_data; 829 struct drm_device *dev = priv->minor->dev; 830 struct drm_i915_gem_object *obj = NULL; 831 struct i915_mmap_offset *mmo = NULL; 832 struct file *anon; 833 834 if (drm_dev_is_unplugged(dev)) 835 return -ENODEV; 836 837 rcu_read_lock(); 838 drm_vma_offset_lock_lookup(dev->vma_offset_manager); 839 node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager, 840 vma->vm_pgoff, 841 vma_pages(vma)); 842 if (node && drm_vma_node_is_allowed(node, priv)) { 843 /* 844 * Skip 0-refcnted objects as it is in the process of being 845 * destroyed and will be invalid when the vma manager lock 846 * is released. 847 */ 848 mmo = container_of(node, struct i915_mmap_offset, vma_node); 849 obj = i915_gem_object_get_rcu(mmo->obj); 850 } 851 drm_vma_offset_unlock_lookup(dev->vma_offset_manager); 852 rcu_read_unlock(); 853 if (!obj) 854 return node ? -EACCES : -EINVAL; 855 856 if (i915_gem_object_is_readonly(obj)) { 857 if (vma->vm_flags & VM_WRITE) { 858 i915_gem_object_put(obj); 859 return -EINVAL; 860 } 861 vma->vm_flags &= ~VM_MAYWRITE; 862 } 863 864 anon = mmap_singleton(to_i915(dev)); 865 if (IS_ERR(anon)) { 866 i915_gem_object_put(obj); 867 return PTR_ERR(anon); 868 } 869 870 vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 871 vma->vm_private_data = mmo; 872 873 /* 874 * We keep the ref on mmo->obj, not vm_file, but we require 875 * vma->vm_file->f_mapping, see vma_link(), for later revocation. 876 * Our userspace is accustomed to having per-file resource cleanup 877 * (i.e. contexts, objects and requests) on their close(fd), which 878 * requires avoiding extraneous references to their filp, hence why 879 * we prefer to use an anonymous file for their mmaps. 880 */ 881 fput(vma->vm_file); 882 vma->vm_file = anon; 883 884 switch (mmo->mmap_type) { 885 case I915_MMAP_TYPE_WC: 886 vma->vm_page_prot = 887 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 888 vma->vm_ops = &vm_ops_cpu; 889 break; 890 891 case I915_MMAP_TYPE_WB: 892 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 893 vma->vm_ops = &vm_ops_cpu; 894 break; 895 896 case I915_MMAP_TYPE_UC: 897 vma->vm_page_prot = 898 pgprot_noncached(vm_get_page_prot(vma->vm_flags)); 899 vma->vm_ops = &vm_ops_cpu; 900 break; 901 902 case I915_MMAP_TYPE_GTT: 903 vma->vm_page_prot = 904 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 905 vma->vm_ops = &vm_ops_gtt; 906 break; 907 } 908 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 909 910 return 0; 911 } 912 913 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 914 #include "selftests/i915_gem_mman.c" 915 #endif 916