1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/sizes.h>
9 
10 #include "gt/intel_gt.h"
11 
12 #include "i915_drv.h"
13 #include "i915_gem_gtt.h"
14 #include "i915_gem_ioctls.h"
15 #include "i915_gem_object.h"
16 #include "i915_trace.h"
17 #include "i915_vma.h"
18 
19 static inline bool
20 __vma_matches(struct vm_area_struct *vma, struct file *filp,
21 	      unsigned long addr, unsigned long size)
22 {
23 	if (vma->vm_file != filp)
24 		return false;
25 
26 	return vma->vm_start == addr &&
27 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
28 }
29 
30 /**
31  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
32  *			 it is mapped to.
33  * @dev: drm device
34  * @data: ioctl data blob
35  * @file: drm file
36  *
37  * While the mapping holds a reference on the contents of the object, it doesn't
38  * imply a ref on the object itself.
39  *
40  * IMPORTANT:
41  *
42  * DRM driver writers who look a this function as an example for how to do GEM
43  * mmap support, please don't implement mmap support like here. The modern way
44  * to implement DRM mmap support is with an mmap offset ioctl (like
45  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
46  * That way debug tooling like valgrind will understand what's going on, hiding
47  * the mmap call in a driver private ioctl will break that. The i915 driver only
48  * does cpu mmaps this way because we didn't know better.
49  */
50 int
51 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
52 		    struct drm_file *file)
53 {
54 	struct drm_i915_gem_mmap *args = data;
55 	struct drm_i915_gem_object *obj;
56 	unsigned long addr;
57 
58 	if (args->flags & ~(I915_MMAP_WC))
59 		return -EINVAL;
60 
61 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
62 		return -ENODEV;
63 
64 	obj = i915_gem_object_lookup(file, args->handle);
65 	if (!obj)
66 		return -ENOENT;
67 
68 	/* prime objects have no backing filp to GEM mmap
69 	 * pages from.
70 	 */
71 	if (!obj->base.filp) {
72 		addr = -ENXIO;
73 		goto err;
74 	}
75 
76 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
77 		addr = -EINVAL;
78 		goto err;
79 	}
80 
81 	addr = vm_mmap(obj->base.filp, 0, args->size,
82 		       PROT_READ | PROT_WRITE, MAP_SHARED,
83 		       args->offset);
84 	if (IS_ERR_VALUE(addr))
85 		goto err;
86 
87 	if (args->flags & I915_MMAP_WC) {
88 		struct mm_struct *mm = current->mm;
89 		struct vm_area_struct *vma;
90 
91 		if (down_write_killable(&mm->mmap_sem)) {
92 			addr = -EINTR;
93 			goto err;
94 		}
95 		vma = find_vma(mm, addr);
96 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
97 			vma->vm_page_prot =
98 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
99 		else
100 			addr = -ENOMEM;
101 		up_write(&mm->mmap_sem);
102 		if (IS_ERR_VALUE(addr))
103 			goto err;
104 	}
105 	i915_gem_object_put(obj);
106 
107 	args->addr_ptr = (u64)addr;
108 	return 0;
109 
110 err:
111 	i915_gem_object_put(obj);
112 	return addr;
113 }
114 
115 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
116 {
117 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
118 }
119 
120 /**
121  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
122  *
123  * A history of the GTT mmap interface:
124  *
125  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
126  *     aligned and suitable for fencing, and still fit into the available
127  *     mappable space left by the pinned display objects. A classic problem
128  *     we called the page-fault-of-doom where we would ping-pong between
129  *     two objects that could not fit inside the GTT and so the memcpy
130  *     would page one object in at the expense of the other between every
131  *     single byte.
132  *
133  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
134  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
135  *     object is too large for the available space (or simply too large
136  *     for the mappable aperture!), a view is created instead and faulted
137  *     into userspace. (This view is aligned and sized appropriately for
138  *     fenced access.)
139  *
140  * 2 - Recognise WC as a separate cache domain so that we can flush the
141  *     delayed writes via GTT before performing direct access via WC.
142  *
143  * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
144  *     pagefault; swapin remains transparent.
145  *
146  * Restrictions:
147  *
148  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
149  *    hangs on some architectures, corruption on others. An attempt to service
150  *    a GTT page fault from a snoopable object will generate a SIGBUS.
151  *
152  *  * the object must be able to fit into RAM (physical memory, though no
153  *    limited to the mappable aperture).
154  *
155  *
156  * Caveats:
157  *
158  *  * a new GTT page fault will synchronize rendering from the GPU and flush
159  *    all data to system memory. Subsequent access will not be synchronized.
160  *
161  *  * all mappings are revoked on runtime device suspend.
162  *
163  *  * there are only 8, 16 or 32 fence registers to share between all users
164  *    (older machines require fence register for display and blitter access
165  *    as well). Contention of the fence registers will cause the previous users
166  *    to be unmapped and any new access will generate new page faults.
167  *
168  *  * running out of memory while servicing a fault may generate a SIGBUS,
169  *    rather than the expected SIGSEGV.
170  */
171 int i915_gem_mmap_gtt_version(void)
172 {
173 	return 3;
174 }
175 
176 static inline struct i915_ggtt_view
177 compute_partial_view(const struct drm_i915_gem_object *obj,
178 		     pgoff_t page_offset,
179 		     unsigned int chunk)
180 {
181 	struct i915_ggtt_view view;
182 
183 	if (i915_gem_object_is_tiled(obj))
184 		chunk = roundup(chunk, tile_row_pages(obj));
185 
186 	view.type = I915_GGTT_VIEW_PARTIAL;
187 	view.partial.offset = rounddown(page_offset, chunk);
188 	view.partial.size =
189 		min_t(unsigned int, chunk,
190 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
191 
192 	/* If the partial covers the entire object, just create a normal VMA. */
193 	if (chunk >= obj->base.size >> PAGE_SHIFT)
194 		view.type = I915_GGTT_VIEW_NORMAL;
195 
196 	return view;
197 }
198 
199 /**
200  * i915_gem_fault - fault a page into the GTT
201  * @vmf: fault info
202  *
203  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
204  * from userspace.  The fault handler takes care of binding the object to
205  * the GTT (if needed), allocating and programming a fence register (again,
206  * only if needed based on whether the old reg is still valid or the object
207  * is tiled) and inserting a new PTE into the faulting process.
208  *
209  * Note that the faulting process may involve evicting existing objects
210  * from the GTT and/or fence registers to make room.  So performance may
211  * suffer if the GTT working set is large or there are few fence registers
212  * left.
213  *
214  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
215  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
216  */
217 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
218 {
219 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
220 	struct vm_area_struct *area = vmf->vma;
221 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
222 	struct drm_device *dev = obj->base.dev;
223 	struct drm_i915_private *i915 = to_i915(dev);
224 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
225 	struct i915_ggtt *ggtt = &i915->ggtt;
226 	bool write = area->vm_flags & VM_WRITE;
227 	intel_wakeref_t wakeref;
228 	struct i915_vma *vma;
229 	pgoff_t page_offset;
230 	int srcu;
231 	int ret;
232 
233 	/* Sanity check that we allow writing into this object */
234 	if (i915_gem_object_is_readonly(obj) && write)
235 		return VM_FAULT_SIGBUS;
236 
237 	/* We don't use vmf->pgoff since that has the fake offset */
238 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
239 
240 	trace_i915_gem_object_fault(obj, page_offset, true, write);
241 
242 	ret = i915_gem_object_pin_pages(obj);
243 	if (ret)
244 		goto err;
245 
246 	wakeref = intel_runtime_pm_get(rpm);
247 
248 	ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
249 	if (ret)
250 		goto err_rpm;
251 
252 	ret = i915_mutex_lock_interruptible(dev);
253 	if (ret)
254 		goto err_reset;
255 
256 	/* Access to snoopable pages through the GTT is incoherent. */
257 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
258 		ret = -EFAULT;
259 		goto err_unlock;
260 	}
261 
262 	/* Now pin it into the GTT as needed */
263 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
264 				       PIN_MAPPABLE |
265 				       PIN_NONBLOCK /* NOWARN */ |
266 				       PIN_NOEVICT);
267 	if (IS_ERR(vma)) {
268 		/* Use a partial view if it is bigger than available space */
269 		struct i915_ggtt_view view =
270 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
271 		unsigned int flags;
272 
273 		flags = PIN_MAPPABLE | PIN_NOSEARCH;
274 		if (view.type == I915_GGTT_VIEW_NORMAL)
275 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
276 
277 		/*
278 		 * Userspace is now writing through an untracked VMA, abandon
279 		 * all hope that the hardware is able to track future writes.
280 		 */
281 
282 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
283 		if (IS_ERR(vma)) {
284 			flags = PIN_MAPPABLE;
285 			view.type = I915_GGTT_VIEW_PARTIAL;
286 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
287 		}
288 	}
289 	if (IS_ERR(vma)) {
290 		ret = PTR_ERR(vma);
291 		goto err_unlock;
292 	}
293 
294 	ret = i915_vma_pin_fence(vma);
295 	if (ret)
296 		goto err_unpin;
297 
298 	/* Finally, remap it using the new GTT offset */
299 	ret = remap_io_mapping(area,
300 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
301 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
302 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
303 			       &ggtt->iomap);
304 	if (ret)
305 		goto err_fence;
306 
307 	assert_rpm_wakelock_held(rpm);
308 
309 	/* Mark as being mmapped into userspace for later revocation */
310 	mutex_lock(&i915->ggtt.vm.mutex);
311 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
312 		list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
313 	mutex_unlock(&i915->ggtt.vm.mutex);
314 
315 	if (CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
316 		intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
317 				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
318 
319 	if (write) {
320 		GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
321 		i915_vma_set_ggtt_write(vma);
322 		obj->mm.dirty = true;
323 	}
324 
325 err_fence:
326 	i915_vma_unpin_fence(vma);
327 err_unpin:
328 	__i915_vma_unpin(vma);
329 err_unlock:
330 	mutex_unlock(&dev->struct_mutex);
331 err_reset:
332 	intel_gt_reset_unlock(ggtt->vm.gt, srcu);
333 err_rpm:
334 	intel_runtime_pm_put(rpm, wakeref);
335 	i915_gem_object_unpin_pages(obj);
336 err:
337 	switch (ret) {
338 	case -EIO:
339 		/*
340 		 * We eat errors when the gpu is terminally wedged to avoid
341 		 * userspace unduly crashing (gl has no provisions for mmaps to
342 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
343 		 * and so needs to be reported.
344 		 */
345 		if (!intel_gt_is_wedged(ggtt->vm.gt))
346 			return VM_FAULT_SIGBUS;
347 		/* else, fall through */
348 	case -EAGAIN:
349 		/*
350 		 * EAGAIN means the gpu is hung and we'll wait for the error
351 		 * handler to reset everything when re-faulting in
352 		 * i915_mutex_lock_interruptible.
353 		 */
354 	case 0:
355 	case -ERESTARTSYS:
356 	case -EINTR:
357 	case -EBUSY:
358 		/*
359 		 * EBUSY is ok: this just means that another thread
360 		 * already did the job.
361 		 */
362 		return VM_FAULT_NOPAGE;
363 	case -ENOMEM:
364 		return VM_FAULT_OOM;
365 	case -ENOSPC:
366 	case -EFAULT:
367 	case -ENODEV: /* bad object, how did you get here! */
368 		return VM_FAULT_SIGBUS;
369 	default:
370 		WARN_ONCE(ret, "unhandled error in %s: %i\n", __func__, ret);
371 		return VM_FAULT_SIGBUS;
372 	}
373 }
374 
375 void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
376 {
377 	struct i915_vma *vma;
378 
379 	GEM_BUG_ON(!obj->userfault_count);
380 
381 	obj->userfault_count = 0;
382 	list_del(&obj->userfault_link);
383 	drm_vma_node_unmap(&obj->base.vma_node,
384 			   obj->base.dev->anon_inode->i_mapping);
385 
386 	for_each_ggtt_vma(vma, obj)
387 		i915_vma_unset_userfault(vma);
388 }
389 
390 /**
391  * i915_gem_object_release_mmap - remove physical page mappings
392  * @obj: obj in question
393  *
394  * Preserve the reservation of the mmapping with the DRM core code, but
395  * relinquish ownership of the pages back to the system.
396  *
397  * It is vital that we remove the page mapping if we have mapped a tiled
398  * object through the GTT and then lose the fence register due to
399  * resource pressure. Similarly if the object has been moved out of the
400  * aperture, than pages mapped into userspace must be revoked. Removing the
401  * mapping will then trigger a page fault on the next user access, allowing
402  * fixup by i915_gem_fault().
403  */
404 void i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
405 {
406 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
407 	intel_wakeref_t wakeref;
408 
409 	/* Serialisation between user GTT access and our code depends upon
410 	 * revoking the CPU's PTE whilst the mutex is held. The next user
411 	 * pagefault then has to wait until we release the mutex.
412 	 *
413 	 * Note that RPM complicates somewhat by adding an additional
414 	 * requirement that operations to the GGTT be made holding the RPM
415 	 * wakeref.
416 	 */
417 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
418 	mutex_lock(&i915->ggtt.vm.mutex);
419 
420 	if (!obj->userfault_count)
421 		goto out;
422 
423 	__i915_gem_object_release_mmap(obj);
424 
425 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
426 	 * memory transactions from userspace before we return. The TLB
427 	 * flushing implied above by changing the PTE above *should* be
428 	 * sufficient, an extra barrier here just provides us with a bit
429 	 * of paranoid documentation about our requirement to serialise
430 	 * memory writes before touching registers / GSM.
431 	 */
432 	wmb();
433 
434 out:
435 	mutex_unlock(&i915->ggtt.vm.mutex);
436 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
437 }
438 
439 static int create_mmap_offset(struct drm_i915_gem_object *obj)
440 {
441 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
442 	int err;
443 
444 	err = drm_gem_create_mmap_offset(&obj->base);
445 	if (likely(!err))
446 		return 0;
447 
448 	/* Attempt to reap some mmap space from dead objects */
449 	do {
450 		err = i915_gem_wait_for_idle(i915,
451 					     I915_WAIT_INTERRUPTIBLE,
452 					     MAX_SCHEDULE_TIMEOUT);
453 		if (err)
454 			break;
455 
456 		i915_gem_drain_freed_objects(i915);
457 		err = drm_gem_create_mmap_offset(&obj->base);
458 		if (!err)
459 			break;
460 
461 	} while (flush_delayed_work(&i915->gem.retire_work));
462 
463 	return err;
464 }
465 
466 int
467 i915_gem_mmap_gtt(struct drm_file *file,
468 		  struct drm_device *dev,
469 		  u32 handle,
470 		  u64 *offset)
471 {
472 	struct drm_i915_gem_object *obj;
473 	int ret;
474 
475 	obj = i915_gem_object_lookup(file, handle);
476 	if (!obj)
477 		return -ENOENT;
478 
479 	if (i915_gem_object_never_bind_ggtt(obj)) {
480 		ret = -ENODEV;
481 		goto out;
482 	}
483 
484 	ret = create_mmap_offset(obj);
485 	if (ret == 0)
486 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
487 
488 out:
489 	i915_gem_object_put(obj);
490 	return ret;
491 }
492 
493 /**
494  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
495  * @dev: DRM device
496  * @data: GTT mapping ioctl data
497  * @file: GEM object info
498  *
499  * Simply returns the fake offset to userspace so it can mmap it.
500  * The mmap call will end up in drm_gem_mmap(), which will set things
501  * up so we can get faults in the handler above.
502  *
503  * The fault handler will take care of binding the object into the GTT
504  * (since it may have been evicted to make room for something), allocating
505  * a fence register, and mapping the appropriate aperture address into
506  * userspace.
507  */
508 int
509 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
510 			struct drm_file *file)
511 {
512 	struct drm_i915_gem_mmap_gtt *args = data;
513 
514 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
515 }
516 
517 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
518 #include "selftests/i915_gem_mman.c"
519 #endif
520