1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_file_private.h" 29 #include "i915_gem_clflush.h" 30 #include "i915_gem_context.h" 31 #include "i915_gem_evict.h" 32 #include "i915_gem_ioctls.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(30) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 256 /** our requests to build */ 257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 258 /** identity of the batch obj/vma */ 259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 260 struct i915_vma *trampoline; /** trampoline used for chaining */ 261 262 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 263 struct dma_fence *composite_fence; 264 265 /** actual size of execobj[] as we may extend it for the cmdparser */ 266 unsigned int buffer_count; 267 268 /* number of batches in execbuf IOCTL */ 269 unsigned int num_batches; 270 271 /** list of vma not yet bound during reservation phase */ 272 struct list_head unbound; 273 274 /** list of vma that have execobj.relocation_count */ 275 struct list_head relocs; 276 277 struct i915_gem_ww_ctx ww; 278 279 /** 280 * Track the most recently used object for relocations, as we 281 * frequently have to perform multiple relocations within the same 282 * obj/page 283 */ 284 struct reloc_cache { 285 struct drm_mm_node node; /** temporary GTT binding */ 286 unsigned long vaddr; /** Current kmap address */ 287 unsigned long page; /** Currently mapped page index */ 288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 289 bool use_64bit_reloc : 1; 290 bool has_llc : 1; 291 bool has_fence : 1; 292 bool needs_unfenced : 1; 293 } reloc_cache; 294 295 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 296 297 /** Length of batch within object */ 298 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 299 u32 batch_start_offset; /** Location within object of batch */ 300 u32 batch_flags; /** Flags composed for emit_bb_start() */ 301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 302 303 /** 304 * Indicate either the size of the hastable used to resolve 305 * relocation handles, or if negative that we are using a direct 306 * index into the execobj[]. 307 */ 308 int lut_size; 309 struct hlist_head *buckets; /** ht for relocation handles */ 310 311 struct eb_fence *fences; 312 unsigned long num_fences; 313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 315 #endif 316 }; 317 318 static int eb_parse(struct i915_execbuffer *eb); 319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 320 static void eb_unpin_engine(struct i915_execbuffer *eb); 321 static void eb_capture_release(struct i915_execbuffer *eb); 322 323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 324 { 325 return intel_engine_requires_cmd_parser(eb->context->engine) || 326 (intel_engine_using_cmd_parser(eb->context->engine) && 327 eb->args->batch_len); 328 } 329 330 static int eb_create(struct i915_execbuffer *eb) 331 { 332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 333 unsigned int size = 1 + ilog2(eb->buffer_count); 334 335 /* 336 * Without a 1:1 association between relocation handles and 337 * the execobject[] index, we instead create a hashtable. 338 * We size it dynamically based on available memory, starting 339 * first with 1:1 assocative hash and scaling back until 340 * the allocation succeeds. 341 * 342 * Later on we use a positive lut_size to indicate we are 343 * using this hashtable, and a negative value to indicate a 344 * direct lookup. 345 */ 346 do { 347 gfp_t flags; 348 349 /* While we can still reduce the allocation size, don't 350 * raise a warning and allow the allocation to fail. 351 * On the last pass though, we want to try as hard 352 * as possible to perform the allocation and warn 353 * if it fails. 354 */ 355 flags = GFP_KERNEL; 356 if (size > 1) 357 flags |= __GFP_NORETRY | __GFP_NOWARN; 358 359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 360 flags); 361 if (eb->buckets) 362 break; 363 } while (--size); 364 365 if (unlikely(!size)) 366 return -ENOMEM; 367 368 eb->lut_size = size; 369 } else { 370 eb->lut_size = -eb->buffer_count; 371 } 372 373 return 0; 374 } 375 376 static bool 377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 378 const struct i915_vma *vma, 379 unsigned int flags) 380 { 381 if (vma->node.size < entry->pad_to_size) 382 return true; 383 384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 385 return true; 386 387 if (flags & EXEC_OBJECT_PINNED && 388 vma->node.start != entry->offset) 389 return true; 390 391 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 392 vma->node.start < BATCH_OFFSET_BIAS) 393 return true; 394 395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 396 (vma->node.start + vma->node.size + 4095) >> 32) 397 return true; 398 399 if (flags & __EXEC_OBJECT_NEEDS_MAP && 400 !i915_vma_is_map_and_fenceable(vma)) 401 return true; 402 403 return false; 404 } 405 406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 407 unsigned int exec_flags) 408 { 409 u64 pin_flags = 0; 410 411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 412 pin_flags |= PIN_GLOBAL; 413 414 /* 415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 416 * limit address to the first 4GBs for unflagged objects. 417 */ 418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 419 pin_flags |= PIN_ZONE_4G; 420 421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 422 pin_flags |= PIN_MAPPABLE; 423 424 if (exec_flags & EXEC_OBJECT_PINNED) 425 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 428 429 return pin_flags; 430 } 431 432 static inline int 433 eb_pin_vma(struct i915_execbuffer *eb, 434 const struct drm_i915_gem_exec_object2 *entry, 435 struct eb_vma *ev) 436 { 437 struct i915_vma *vma = ev->vma; 438 u64 pin_flags; 439 int err; 440 441 if (vma->node.size) 442 pin_flags = vma->node.start; 443 else 444 pin_flags = entry->offset & PIN_OFFSET_MASK; 445 446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 448 pin_flags |= PIN_GLOBAL; 449 450 /* Attempt to reuse the current location if available */ 451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 452 if (err == -EDEADLK) 453 return err; 454 455 if (unlikely(err)) { 456 if (entry->flags & EXEC_OBJECT_PINNED) 457 return err; 458 459 /* Failing that pick any _free_ space if suitable */ 460 err = i915_vma_pin_ww(vma, &eb->ww, 461 entry->pad_to_size, 462 entry->alignment, 463 eb_pin_flags(entry, ev->flags) | 464 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 465 if (unlikely(err)) 466 return err; 467 } 468 469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 470 err = i915_vma_pin_fence(vma); 471 if (unlikely(err)) 472 return err; 473 474 if (vma->fence) 475 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 476 } 477 478 ev->flags |= __EXEC_OBJECT_HAS_PIN; 479 if (eb_vma_misplaced(entry, vma, ev->flags)) 480 return -EBADSLT; 481 482 return 0; 483 } 484 485 static inline void 486 eb_unreserve_vma(struct eb_vma *ev) 487 { 488 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 489 __i915_vma_unpin_fence(ev->vma); 490 491 ev->flags &= ~__EXEC_OBJECT_RESERVED; 492 } 493 494 static int 495 eb_validate_vma(struct i915_execbuffer *eb, 496 struct drm_i915_gem_exec_object2 *entry, 497 struct i915_vma *vma) 498 { 499 /* Relocations are disallowed for all platforms after TGL-LP. This 500 * also covers all platforms with local memory. 501 */ 502 if (entry->relocation_count && 503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 504 return -EINVAL; 505 506 if (unlikely(entry->flags & eb->invalid_flags)) 507 return -EINVAL; 508 509 if (unlikely(entry->alignment && 510 !is_power_of_2_u64(entry->alignment))) 511 return -EINVAL; 512 513 /* 514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 515 * any non-page-aligned or non-canonical addresses. 516 */ 517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 519 return -EINVAL; 520 521 /* pad_to_size was once a reserved field, so sanitize it */ 522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 523 if (unlikely(offset_in_page(entry->pad_to_size))) 524 return -EINVAL; 525 } else { 526 entry->pad_to_size = 0; 527 } 528 /* 529 * From drm_mm perspective address space is continuous, 530 * so from this point we're always using non-canonical 531 * form internally. 532 */ 533 entry->offset = gen8_noncanonical_addr(entry->offset); 534 535 if (!eb->reloc_cache.has_fence) { 536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 537 } else { 538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 539 eb->reloc_cache.needs_unfenced) && 540 i915_gem_object_is_tiled(vma->obj)) 541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 542 } 543 544 return 0; 545 } 546 547 static inline bool 548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 549 { 550 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 551 buffer_idx < eb->num_batches : 552 buffer_idx >= eb->args->buffer_count - eb->num_batches; 553 } 554 555 static int 556 eb_add_vma(struct i915_execbuffer *eb, 557 unsigned int *current_batch, 558 unsigned int i, 559 struct i915_vma *vma) 560 { 561 struct drm_i915_private *i915 = eb->i915; 562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 563 struct eb_vma *ev = &eb->vma[i]; 564 565 ev->vma = vma; 566 ev->exec = entry; 567 ev->flags = entry->flags; 568 569 if (eb->lut_size > 0) { 570 ev->handle = entry->handle; 571 hlist_add_head(&ev->node, 572 &eb->buckets[hash_32(entry->handle, 573 eb->lut_size)]); 574 } 575 576 if (entry->relocation_count) 577 list_add_tail(&ev->reloc_link, &eb->relocs); 578 579 /* 580 * SNA is doing fancy tricks with compressing batch buffers, which leads 581 * to negative relocation deltas. Usually that works out ok since the 582 * relocate address is still positive, except when the batch is placed 583 * very low in the GTT. Ensure this doesn't happen. 584 * 585 * Note that actual hangs have only been observed on gen7, but for 586 * paranoia do it everywhere. 587 */ 588 if (is_batch_buffer(eb, i)) { 589 if (entry->relocation_count && 590 !(ev->flags & EXEC_OBJECT_PINNED)) 591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 592 if (eb->reloc_cache.has_fence) 593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 594 595 eb->batches[*current_batch] = ev; 596 597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 598 drm_dbg(&i915->drm, 599 "Attempting to use self-modifying batch buffer\n"); 600 return -EINVAL; 601 } 602 603 if (range_overflows_t(u64, 604 eb->batch_start_offset, 605 eb->args->batch_len, 606 ev->vma->size)) { 607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 608 return -EINVAL; 609 } 610 611 if (eb->args->batch_len == 0) 612 eb->batch_len[*current_batch] = ev->vma->size - 613 eb->batch_start_offset; 614 else 615 eb->batch_len[*current_batch] = eb->args->batch_len; 616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 617 drm_dbg(&i915->drm, "Invalid batch length\n"); 618 return -EINVAL; 619 } 620 621 ++*current_batch; 622 } 623 624 return 0; 625 } 626 627 static inline int use_cpu_reloc(const struct reloc_cache *cache, 628 const struct drm_i915_gem_object *obj) 629 { 630 if (!i915_gem_object_has_struct_page(obj)) 631 return false; 632 633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 634 return true; 635 636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 637 return false; 638 639 return (cache->has_llc || 640 obj->cache_dirty || 641 obj->cache_level != I915_CACHE_NONE); 642 } 643 644 static int eb_reserve_vma(struct i915_execbuffer *eb, 645 struct eb_vma *ev, 646 u64 pin_flags) 647 { 648 struct drm_i915_gem_exec_object2 *entry = ev->exec; 649 struct i915_vma *vma = ev->vma; 650 int err; 651 652 if (drm_mm_node_allocated(&vma->node) && 653 eb_vma_misplaced(entry, vma, ev->flags)) { 654 err = i915_vma_unbind(vma); 655 if (err) 656 return err; 657 } 658 659 err = i915_vma_pin_ww(vma, &eb->ww, 660 entry->pad_to_size, entry->alignment, 661 eb_pin_flags(entry, ev->flags) | pin_flags); 662 if (err) 663 return err; 664 665 if (entry->offset != vma->node.start) { 666 entry->offset = vma->node.start | UPDATE; 667 eb->args->flags |= __EXEC_HAS_RELOC; 668 } 669 670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 671 err = i915_vma_pin_fence(vma); 672 if (unlikely(err)) 673 return err; 674 675 if (vma->fence) 676 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 677 } 678 679 ev->flags |= __EXEC_OBJECT_HAS_PIN; 680 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 681 682 return 0; 683 } 684 685 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 686 { 687 const unsigned int count = eb->buffer_count; 688 unsigned int i; 689 struct list_head last; 690 bool unpinned = false; 691 692 /* Resort *all* the objects into priority order */ 693 INIT_LIST_HEAD(&eb->unbound); 694 INIT_LIST_HEAD(&last); 695 696 for (i = 0; i < count; i++) { 697 struct eb_vma *ev = &eb->vma[i]; 698 unsigned int flags = ev->flags; 699 700 if (!force && flags & EXEC_OBJECT_PINNED && 701 flags & __EXEC_OBJECT_HAS_PIN) 702 continue; 703 704 unpinned = true; 705 eb_unreserve_vma(ev); 706 707 if (flags & EXEC_OBJECT_PINNED) 708 /* Pinned must have their slot */ 709 list_add(&ev->bind_link, &eb->unbound); 710 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 711 /* Map require the lowest 256MiB (aperture) */ 712 list_add_tail(&ev->bind_link, &eb->unbound); 713 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 714 /* Prioritise 4GiB region for restricted bo */ 715 list_add(&ev->bind_link, &last); 716 else 717 list_add_tail(&ev->bind_link, &last); 718 } 719 720 list_splice_tail(&last, &eb->unbound); 721 return unpinned; 722 } 723 724 static int eb_reserve(struct i915_execbuffer *eb) 725 { 726 struct eb_vma *ev; 727 unsigned int pass; 728 int err = 0; 729 bool unpinned; 730 731 /* 732 * Attempt to pin all of the buffers into the GTT. 733 * This is done in 2 phases: 734 * 735 * 1. Unbind all objects that do not match the GTT constraints for 736 * the execbuffer (fenceable, mappable, alignment etc). 737 * 2. Bind new objects. 738 * 739 * This avoid unnecessary unbinding of later objects in order to make 740 * room for the earlier objects *unless* we need to defragment. 741 * 742 * Defragmenting is skipped if all objects are pinned at a fixed location. 743 */ 744 for (pass = 0; pass <= 2; pass++) { 745 int pin_flags = PIN_USER | PIN_VALIDATE; 746 747 if (pass == 0) 748 pin_flags |= PIN_NONBLOCK; 749 750 if (pass >= 1) 751 unpinned = eb_unbind(eb, pass == 2); 752 753 if (pass == 2) { 754 err = mutex_lock_interruptible(&eb->context->vm->mutex); 755 if (!err) { 756 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 757 mutex_unlock(&eb->context->vm->mutex); 758 } 759 if (err) 760 return err; 761 } 762 763 list_for_each_entry(ev, &eb->unbound, bind_link) { 764 err = eb_reserve_vma(eb, ev, pin_flags); 765 if (err) 766 break; 767 } 768 769 if (err != -ENOSPC) 770 break; 771 } 772 773 return err; 774 } 775 776 static int eb_select_context(struct i915_execbuffer *eb) 777 { 778 struct i915_gem_context *ctx; 779 780 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 781 if (unlikely(IS_ERR(ctx))) 782 return PTR_ERR(ctx); 783 784 eb->gem_context = ctx; 785 if (i915_gem_context_has_full_ppgtt(ctx)) 786 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 787 788 return 0; 789 } 790 791 static int __eb_add_lut(struct i915_execbuffer *eb, 792 u32 handle, struct i915_vma *vma) 793 { 794 struct i915_gem_context *ctx = eb->gem_context; 795 struct i915_lut_handle *lut; 796 int err; 797 798 lut = i915_lut_handle_alloc(); 799 if (unlikely(!lut)) 800 return -ENOMEM; 801 802 i915_vma_get(vma); 803 if (!atomic_fetch_inc(&vma->open_count)) 804 i915_vma_reopen(vma); 805 lut->handle = handle; 806 lut->ctx = ctx; 807 808 /* Check that the context hasn't been closed in the meantime */ 809 err = -EINTR; 810 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 811 if (likely(!i915_gem_context_is_closed(ctx))) 812 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 813 else 814 err = -ENOENT; 815 if (err == 0) { /* And nor has this handle */ 816 struct drm_i915_gem_object *obj = vma->obj; 817 818 spin_lock(&obj->lut_lock); 819 if (idr_find(&eb->file->object_idr, handle) == obj) { 820 list_add(&lut->obj_link, &obj->lut_list); 821 } else { 822 radix_tree_delete(&ctx->handles_vma, handle); 823 err = -ENOENT; 824 } 825 spin_unlock(&obj->lut_lock); 826 } 827 mutex_unlock(&ctx->lut_mutex); 828 } 829 if (unlikely(err)) 830 goto err; 831 832 return 0; 833 834 err: 835 i915_vma_close(vma); 836 i915_vma_put(vma); 837 i915_lut_handle_free(lut); 838 return err; 839 } 840 841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 842 { 843 struct i915_address_space *vm = eb->context->vm; 844 845 do { 846 struct drm_i915_gem_object *obj; 847 struct i915_vma *vma; 848 int err; 849 850 rcu_read_lock(); 851 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 852 if (likely(vma && vma->vm == vm)) 853 vma = i915_vma_tryget(vma); 854 rcu_read_unlock(); 855 if (likely(vma)) 856 return vma; 857 858 obj = i915_gem_object_lookup(eb->file, handle); 859 if (unlikely(!obj)) 860 return ERR_PTR(-ENOENT); 861 862 /* 863 * If the user has opted-in for protected-object tracking, make 864 * sure the object encryption can be used. 865 * We only need to do this when the object is first used with 866 * this context, because the context itself will be banned when 867 * the protected objects become invalid. 868 */ 869 if (i915_gem_context_uses_protected_content(eb->gem_context) && 870 i915_gem_object_is_protected(obj)) { 871 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 872 if (err) { 873 i915_gem_object_put(obj); 874 return ERR_PTR(err); 875 } 876 } 877 878 vma = i915_vma_instance(obj, vm, NULL); 879 if (IS_ERR(vma)) { 880 i915_gem_object_put(obj); 881 return vma; 882 } 883 884 err = __eb_add_lut(eb, handle, vma); 885 if (likely(!err)) 886 return vma; 887 888 i915_gem_object_put(obj); 889 if (err != -EEXIST) 890 return ERR_PTR(err); 891 } while (1); 892 } 893 894 static int eb_lookup_vmas(struct i915_execbuffer *eb) 895 { 896 unsigned int i, current_batch = 0; 897 int err = 0; 898 899 INIT_LIST_HEAD(&eb->relocs); 900 901 for (i = 0; i < eb->buffer_count; i++) { 902 struct i915_vma *vma; 903 904 vma = eb_lookup_vma(eb, eb->exec[i].handle); 905 if (IS_ERR(vma)) { 906 err = PTR_ERR(vma); 907 goto err; 908 } 909 910 err = eb_validate_vma(eb, &eb->exec[i], vma); 911 if (unlikely(err)) { 912 i915_vma_put(vma); 913 goto err; 914 } 915 916 err = eb_add_vma(eb, ¤t_batch, i, vma); 917 if (err) 918 return err; 919 920 if (i915_gem_object_is_userptr(vma->obj)) { 921 err = i915_gem_object_userptr_submit_init(vma->obj); 922 if (err) { 923 if (i + 1 < eb->buffer_count) { 924 /* 925 * Execbuffer code expects last vma entry to be NULL, 926 * since we already initialized this entry, 927 * set the next value to NULL or we mess up 928 * cleanup handling. 929 */ 930 eb->vma[i + 1].vma = NULL; 931 } 932 933 return err; 934 } 935 936 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 937 eb->args->flags |= __EXEC_USERPTR_USED; 938 } 939 } 940 941 return 0; 942 943 err: 944 eb->vma[i].vma = NULL; 945 return err; 946 } 947 948 static int eb_lock_vmas(struct i915_execbuffer *eb) 949 { 950 unsigned int i; 951 int err; 952 953 for (i = 0; i < eb->buffer_count; i++) { 954 struct eb_vma *ev = &eb->vma[i]; 955 struct i915_vma *vma = ev->vma; 956 957 err = i915_gem_object_lock(vma->obj, &eb->ww); 958 if (err) 959 return err; 960 } 961 962 return 0; 963 } 964 965 static int eb_validate_vmas(struct i915_execbuffer *eb) 966 { 967 unsigned int i; 968 int err; 969 970 INIT_LIST_HEAD(&eb->unbound); 971 972 err = eb_lock_vmas(eb); 973 if (err) 974 return err; 975 976 for (i = 0; i < eb->buffer_count; i++) { 977 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 978 struct eb_vma *ev = &eb->vma[i]; 979 struct i915_vma *vma = ev->vma; 980 981 err = eb_pin_vma(eb, entry, ev); 982 if (err == -EDEADLK) 983 return err; 984 985 if (!err) { 986 if (entry->offset != vma->node.start) { 987 entry->offset = vma->node.start | UPDATE; 988 eb->args->flags |= __EXEC_HAS_RELOC; 989 } 990 } else { 991 eb_unreserve_vma(ev); 992 993 list_add_tail(&ev->bind_link, &eb->unbound); 994 if (drm_mm_node_allocated(&vma->node)) { 995 err = i915_vma_unbind(vma); 996 if (err) 997 return err; 998 } 999 } 1000 1001 if (!(ev->flags & EXEC_OBJECT_WRITE)) { 1002 err = dma_resv_reserve_shared(vma->obj->base.resv, 1); 1003 if (err) 1004 return err; 1005 } 1006 1007 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1008 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1009 } 1010 1011 if (!list_empty(&eb->unbound)) 1012 return eb_reserve(eb); 1013 1014 return 0; 1015 } 1016 1017 static struct eb_vma * 1018 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1019 { 1020 if (eb->lut_size < 0) { 1021 if (handle >= -eb->lut_size) 1022 return NULL; 1023 return &eb->vma[handle]; 1024 } else { 1025 struct hlist_head *head; 1026 struct eb_vma *ev; 1027 1028 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1029 hlist_for_each_entry(ev, head, node) { 1030 if (ev->handle == handle) 1031 return ev; 1032 } 1033 return NULL; 1034 } 1035 } 1036 1037 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1038 { 1039 const unsigned int count = eb->buffer_count; 1040 unsigned int i; 1041 1042 for (i = 0; i < count; i++) { 1043 struct eb_vma *ev = &eb->vma[i]; 1044 struct i915_vma *vma = ev->vma; 1045 1046 if (!vma) 1047 break; 1048 1049 eb_unreserve_vma(ev); 1050 1051 if (final) 1052 i915_vma_put(vma); 1053 } 1054 1055 eb_capture_release(eb); 1056 eb_unpin_engine(eb); 1057 } 1058 1059 static void eb_destroy(const struct i915_execbuffer *eb) 1060 { 1061 if (eb->lut_size > 0) 1062 kfree(eb->buckets); 1063 } 1064 1065 static inline u64 1066 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1067 const struct i915_vma *target) 1068 { 1069 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1070 } 1071 1072 static void reloc_cache_init(struct reloc_cache *cache, 1073 struct drm_i915_private *i915) 1074 { 1075 cache->page = -1; 1076 cache->vaddr = 0; 1077 /* Must be a variable in the struct to allow GCC to unroll. */ 1078 cache->graphics_ver = GRAPHICS_VER(i915); 1079 cache->has_llc = HAS_LLC(i915); 1080 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1081 cache->has_fence = cache->graphics_ver < 4; 1082 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1083 cache->node.flags = 0; 1084 } 1085 1086 static inline void *unmask_page(unsigned long p) 1087 { 1088 return (void *)(uintptr_t)(p & PAGE_MASK); 1089 } 1090 1091 static inline unsigned int unmask_flags(unsigned long p) 1092 { 1093 return p & ~PAGE_MASK; 1094 } 1095 1096 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1097 1098 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1099 { 1100 struct drm_i915_private *i915 = 1101 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1102 return to_gt(i915)->ggtt; 1103 } 1104 1105 static void reloc_cache_unmap(struct reloc_cache *cache) 1106 { 1107 void *vaddr; 1108 1109 if (!cache->vaddr) 1110 return; 1111 1112 vaddr = unmask_page(cache->vaddr); 1113 if (cache->vaddr & KMAP) 1114 kunmap_atomic(vaddr); 1115 else 1116 io_mapping_unmap_atomic((void __iomem *)vaddr); 1117 } 1118 1119 static void reloc_cache_remap(struct reloc_cache *cache, 1120 struct drm_i915_gem_object *obj) 1121 { 1122 void *vaddr; 1123 1124 if (!cache->vaddr) 1125 return; 1126 1127 if (cache->vaddr & KMAP) { 1128 struct page *page = i915_gem_object_get_page(obj, cache->page); 1129 1130 vaddr = kmap_atomic(page); 1131 cache->vaddr = unmask_flags(cache->vaddr) | 1132 (unsigned long)vaddr; 1133 } else { 1134 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1135 unsigned long offset; 1136 1137 offset = cache->node.start; 1138 if (!drm_mm_node_allocated(&cache->node)) 1139 offset += cache->page << PAGE_SHIFT; 1140 1141 cache->vaddr = (unsigned long) 1142 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1143 } 1144 } 1145 1146 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1147 { 1148 void *vaddr; 1149 1150 if (!cache->vaddr) 1151 return; 1152 1153 vaddr = unmask_page(cache->vaddr); 1154 if (cache->vaddr & KMAP) { 1155 struct drm_i915_gem_object *obj = 1156 (struct drm_i915_gem_object *)cache->node.mm; 1157 if (cache->vaddr & CLFLUSH_AFTER) 1158 mb(); 1159 1160 kunmap_atomic(vaddr); 1161 i915_gem_object_finish_access(obj); 1162 } else { 1163 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1164 1165 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1166 io_mapping_unmap_atomic((void __iomem *)vaddr); 1167 1168 if (drm_mm_node_allocated(&cache->node)) { 1169 ggtt->vm.clear_range(&ggtt->vm, 1170 cache->node.start, 1171 cache->node.size); 1172 mutex_lock(&ggtt->vm.mutex); 1173 drm_mm_remove_node(&cache->node); 1174 mutex_unlock(&ggtt->vm.mutex); 1175 } else { 1176 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1177 } 1178 } 1179 1180 cache->vaddr = 0; 1181 cache->page = -1; 1182 } 1183 1184 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1185 struct reloc_cache *cache, 1186 unsigned long pageno) 1187 { 1188 void *vaddr; 1189 struct page *page; 1190 1191 if (cache->vaddr) { 1192 kunmap_atomic(unmask_page(cache->vaddr)); 1193 } else { 1194 unsigned int flushes; 1195 int err; 1196 1197 err = i915_gem_object_prepare_write(obj, &flushes); 1198 if (err) 1199 return ERR_PTR(err); 1200 1201 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1202 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1203 1204 cache->vaddr = flushes | KMAP; 1205 cache->node.mm = (void *)obj; 1206 if (flushes) 1207 mb(); 1208 } 1209 1210 page = i915_gem_object_get_page(obj, pageno); 1211 if (!obj->mm.dirty) 1212 set_page_dirty(page); 1213 1214 vaddr = kmap_atomic(page); 1215 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1216 cache->page = pageno; 1217 1218 return vaddr; 1219 } 1220 1221 static void *reloc_iomap(struct i915_vma *batch, 1222 struct i915_execbuffer *eb, 1223 unsigned long page) 1224 { 1225 struct drm_i915_gem_object *obj = batch->obj; 1226 struct reloc_cache *cache = &eb->reloc_cache; 1227 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1228 unsigned long offset; 1229 void *vaddr; 1230 1231 if (cache->vaddr) { 1232 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1233 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1234 } else { 1235 struct i915_vma *vma = ERR_PTR(-ENODEV); 1236 int err; 1237 1238 if (i915_gem_object_is_tiled(obj)) 1239 return ERR_PTR(-EINVAL); 1240 1241 if (use_cpu_reloc(cache, obj)) 1242 return NULL; 1243 1244 err = i915_gem_object_set_to_gtt_domain(obj, true); 1245 if (err) 1246 return ERR_PTR(err); 1247 1248 /* 1249 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1250 * VMA from the object list because we no longer pin. 1251 * 1252 * Only attempt to pin the batch buffer to ggtt if the current batch 1253 * is not inside ggtt, or the batch buffer is not misplaced. 1254 */ 1255 if (!i915_is_ggtt(batch->vm) || 1256 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1257 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1258 PIN_MAPPABLE | 1259 PIN_NONBLOCK /* NOWARN */ | 1260 PIN_NOEVICT); 1261 } 1262 1263 if (vma == ERR_PTR(-EDEADLK)) 1264 return vma; 1265 1266 if (IS_ERR(vma)) { 1267 memset(&cache->node, 0, sizeof(cache->node)); 1268 mutex_lock(&ggtt->vm.mutex); 1269 err = drm_mm_insert_node_in_range 1270 (&ggtt->vm.mm, &cache->node, 1271 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1272 0, ggtt->mappable_end, 1273 DRM_MM_INSERT_LOW); 1274 mutex_unlock(&ggtt->vm.mutex); 1275 if (err) /* no inactive aperture space, use cpu reloc */ 1276 return NULL; 1277 } else { 1278 cache->node.start = vma->node.start; 1279 cache->node.mm = (void *)vma; 1280 } 1281 } 1282 1283 offset = cache->node.start; 1284 if (drm_mm_node_allocated(&cache->node)) { 1285 ggtt->vm.insert_page(&ggtt->vm, 1286 i915_gem_object_get_dma_address(obj, page), 1287 offset, I915_CACHE_NONE, 0); 1288 } else { 1289 offset += page << PAGE_SHIFT; 1290 } 1291 1292 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1293 offset); 1294 cache->page = page; 1295 cache->vaddr = (unsigned long)vaddr; 1296 1297 return vaddr; 1298 } 1299 1300 static void *reloc_vaddr(struct i915_vma *vma, 1301 struct i915_execbuffer *eb, 1302 unsigned long page) 1303 { 1304 struct reloc_cache *cache = &eb->reloc_cache; 1305 void *vaddr; 1306 1307 if (cache->page == page) { 1308 vaddr = unmask_page(cache->vaddr); 1309 } else { 1310 vaddr = NULL; 1311 if ((cache->vaddr & KMAP) == 0) 1312 vaddr = reloc_iomap(vma, eb, page); 1313 if (!vaddr) 1314 vaddr = reloc_kmap(vma->obj, cache, page); 1315 } 1316 1317 return vaddr; 1318 } 1319 1320 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1321 { 1322 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1323 if (flushes & CLFLUSH_BEFORE) { 1324 clflushopt(addr); 1325 mb(); 1326 } 1327 1328 *addr = value; 1329 1330 /* 1331 * Writes to the same cacheline are serialised by the CPU 1332 * (including clflush). On the write path, we only require 1333 * that it hits memory in an orderly fashion and place 1334 * mb barriers at the start and end of the relocation phase 1335 * to ensure ordering of clflush wrt to the system. 1336 */ 1337 if (flushes & CLFLUSH_AFTER) 1338 clflushopt(addr); 1339 } else 1340 *addr = value; 1341 } 1342 1343 static u64 1344 relocate_entry(struct i915_vma *vma, 1345 const struct drm_i915_gem_relocation_entry *reloc, 1346 struct i915_execbuffer *eb, 1347 const struct i915_vma *target) 1348 { 1349 u64 target_addr = relocation_target(reloc, target); 1350 u64 offset = reloc->offset; 1351 bool wide = eb->reloc_cache.use_64bit_reloc; 1352 void *vaddr; 1353 1354 repeat: 1355 vaddr = reloc_vaddr(vma, eb, 1356 offset >> PAGE_SHIFT); 1357 if (IS_ERR(vaddr)) 1358 return PTR_ERR(vaddr); 1359 1360 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1361 clflush_write32(vaddr + offset_in_page(offset), 1362 lower_32_bits(target_addr), 1363 eb->reloc_cache.vaddr); 1364 1365 if (wide) { 1366 offset += sizeof(u32); 1367 target_addr >>= 32; 1368 wide = false; 1369 goto repeat; 1370 } 1371 1372 return target->node.start | UPDATE; 1373 } 1374 1375 static u64 1376 eb_relocate_entry(struct i915_execbuffer *eb, 1377 struct eb_vma *ev, 1378 const struct drm_i915_gem_relocation_entry *reloc) 1379 { 1380 struct drm_i915_private *i915 = eb->i915; 1381 struct eb_vma *target; 1382 int err; 1383 1384 /* we've already hold a reference to all valid objects */ 1385 target = eb_get_vma(eb, reloc->target_handle); 1386 if (unlikely(!target)) 1387 return -ENOENT; 1388 1389 /* Validate that the target is in a valid r/w GPU domain */ 1390 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1391 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1392 "target %d offset %d " 1393 "read %08x write %08x", 1394 reloc->target_handle, 1395 (int) reloc->offset, 1396 reloc->read_domains, 1397 reloc->write_domain); 1398 return -EINVAL; 1399 } 1400 if (unlikely((reloc->write_domain | reloc->read_domains) 1401 & ~I915_GEM_GPU_DOMAINS)) { 1402 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1403 "target %d offset %d " 1404 "read %08x write %08x", 1405 reloc->target_handle, 1406 (int) reloc->offset, 1407 reloc->read_domains, 1408 reloc->write_domain); 1409 return -EINVAL; 1410 } 1411 1412 if (reloc->write_domain) { 1413 target->flags |= EXEC_OBJECT_WRITE; 1414 1415 /* 1416 * Sandybridge PPGTT errata: We need a global gtt mapping 1417 * for MI and pipe_control writes because the gpu doesn't 1418 * properly redirect them through the ppgtt for non_secure 1419 * batchbuffers. 1420 */ 1421 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1422 GRAPHICS_VER(eb->i915) == 6 && 1423 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1424 struct i915_vma *vma = target->vma; 1425 1426 reloc_cache_unmap(&eb->reloc_cache); 1427 mutex_lock(&vma->vm->mutex); 1428 err = i915_vma_bind(target->vma, 1429 target->vma->obj->cache_level, 1430 PIN_GLOBAL, NULL, NULL); 1431 mutex_unlock(&vma->vm->mutex); 1432 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1433 if (err) 1434 return err; 1435 } 1436 } 1437 1438 /* 1439 * If the relocation already has the right value in it, no 1440 * more work needs to be done. 1441 */ 1442 if (!DBG_FORCE_RELOC && 1443 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1444 return 0; 1445 1446 /* Check that the relocation address is valid... */ 1447 if (unlikely(reloc->offset > 1448 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1449 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1450 "target %d offset %d size %d.\n", 1451 reloc->target_handle, 1452 (int)reloc->offset, 1453 (int)ev->vma->size); 1454 return -EINVAL; 1455 } 1456 if (unlikely(reloc->offset & 3)) { 1457 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1458 "target %d offset %d.\n", 1459 reloc->target_handle, 1460 (int)reloc->offset); 1461 return -EINVAL; 1462 } 1463 1464 /* 1465 * If we write into the object, we need to force the synchronisation 1466 * barrier, either with an asynchronous clflush or if we executed the 1467 * patching using the GPU (though that should be serialised by the 1468 * timeline). To be completely sure, and since we are required to 1469 * do relocations we are already stalling, disable the user's opt 1470 * out of our synchronisation. 1471 */ 1472 ev->flags &= ~EXEC_OBJECT_ASYNC; 1473 1474 /* and update the user's relocation entry */ 1475 return relocate_entry(ev->vma, reloc, eb, target->vma); 1476 } 1477 1478 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1479 { 1480 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1481 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1482 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1483 struct drm_i915_gem_relocation_entry __user *urelocs = 1484 u64_to_user_ptr(entry->relocs_ptr); 1485 unsigned long remain = entry->relocation_count; 1486 1487 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1488 return -EINVAL; 1489 1490 /* 1491 * We must check that the entire relocation array is safe 1492 * to read. However, if the array is not writable the user loses 1493 * the updated relocation values. 1494 */ 1495 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1496 return -EFAULT; 1497 1498 do { 1499 struct drm_i915_gem_relocation_entry *r = stack; 1500 unsigned int count = 1501 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1502 unsigned int copied; 1503 1504 /* 1505 * This is the fast path and we cannot handle a pagefault 1506 * whilst holding the struct mutex lest the user pass in the 1507 * relocations contained within a mmaped bo. For in such a case 1508 * we, the page fault handler would call i915_gem_fault() and 1509 * we would try to acquire the struct mutex again. Obviously 1510 * this is bad and so lockdep complains vehemently. 1511 */ 1512 pagefault_disable(); 1513 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1514 pagefault_enable(); 1515 if (unlikely(copied)) { 1516 remain = -EFAULT; 1517 goto out; 1518 } 1519 1520 remain -= count; 1521 do { 1522 u64 offset = eb_relocate_entry(eb, ev, r); 1523 1524 if (likely(offset == 0)) { 1525 } else if ((s64)offset < 0) { 1526 remain = (int)offset; 1527 goto out; 1528 } else { 1529 /* 1530 * Note that reporting an error now 1531 * leaves everything in an inconsistent 1532 * state as we have *already* changed 1533 * the relocation value inside the 1534 * object. As we have not changed the 1535 * reloc.presumed_offset or will not 1536 * change the execobject.offset, on the 1537 * call we may not rewrite the value 1538 * inside the object, leaving it 1539 * dangling and causing a GPU hang. Unless 1540 * userspace dynamically rebuilds the 1541 * relocations on each execbuf rather than 1542 * presume a static tree. 1543 * 1544 * We did previously check if the relocations 1545 * were writable (access_ok), an error now 1546 * would be a strange race with mprotect, 1547 * having already demonstrated that we 1548 * can read from this userspace address. 1549 */ 1550 offset = gen8_canonical_addr(offset & ~UPDATE); 1551 __put_user(offset, 1552 &urelocs[r - stack].presumed_offset); 1553 } 1554 } while (r++, --count); 1555 urelocs += ARRAY_SIZE(stack); 1556 } while (remain); 1557 out: 1558 reloc_cache_reset(&eb->reloc_cache, eb); 1559 return remain; 1560 } 1561 1562 static int 1563 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1564 { 1565 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1566 struct drm_i915_gem_relocation_entry *relocs = 1567 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1568 unsigned int i; 1569 int err; 1570 1571 for (i = 0; i < entry->relocation_count; i++) { 1572 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1573 1574 if ((s64)offset < 0) { 1575 err = (int)offset; 1576 goto err; 1577 } 1578 } 1579 err = 0; 1580 err: 1581 reloc_cache_reset(&eb->reloc_cache, eb); 1582 return err; 1583 } 1584 1585 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1586 { 1587 const char __user *addr, *end; 1588 unsigned long size; 1589 char __maybe_unused c; 1590 1591 size = entry->relocation_count; 1592 if (size == 0) 1593 return 0; 1594 1595 if (size > N_RELOC(ULONG_MAX)) 1596 return -EINVAL; 1597 1598 addr = u64_to_user_ptr(entry->relocs_ptr); 1599 size *= sizeof(struct drm_i915_gem_relocation_entry); 1600 if (!access_ok(addr, size)) 1601 return -EFAULT; 1602 1603 end = addr + size; 1604 for (; addr < end; addr += PAGE_SIZE) { 1605 int err = __get_user(c, addr); 1606 if (err) 1607 return err; 1608 } 1609 return __get_user(c, end - 1); 1610 } 1611 1612 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1613 { 1614 struct drm_i915_gem_relocation_entry *relocs; 1615 const unsigned int count = eb->buffer_count; 1616 unsigned int i; 1617 int err; 1618 1619 for (i = 0; i < count; i++) { 1620 const unsigned int nreloc = eb->exec[i].relocation_count; 1621 struct drm_i915_gem_relocation_entry __user *urelocs; 1622 unsigned long size; 1623 unsigned long copied; 1624 1625 if (nreloc == 0) 1626 continue; 1627 1628 err = check_relocations(&eb->exec[i]); 1629 if (err) 1630 goto err; 1631 1632 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1633 size = nreloc * sizeof(*relocs); 1634 1635 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1636 if (!relocs) { 1637 err = -ENOMEM; 1638 goto err; 1639 } 1640 1641 /* copy_from_user is limited to < 4GiB */ 1642 copied = 0; 1643 do { 1644 unsigned int len = 1645 min_t(u64, BIT_ULL(31), size - copied); 1646 1647 if (__copy_from_user((char *)relocs + copied, 1648 (char __user *)urelocs + copied, 1649 len)) 1650 goto end; 1651 1652 copied += len; 1653 } while (copied < size); 1654 1655 /* 1656 * As we do not update the known relocation offsets after 1657 * relocating (due to the complexities in lock handling), 1658 * we need to mark them as invalid now so that we force the 1659 * relocation processing next time. Just in case the target 1660 * object is evicted and then rebound into its old 1661 * presumed_offset before the next execbuffer - if that 1662 * happened we would make the mistake of assuming that the 1663 * relocations were valid. 1664 */ 1665 if (!user_access_begin(urelocs, size)) 1666 goto end; 1667 1668 for (copied = 0; copied < nreloc; copied++) 1669 unsafe_put_user(-1, 1670 &urelocs[copied].presumed_offset, 1671 end_user); 1672 user_access_end(); 1673 1674 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1675 } 1676 1677 return 0; 1678 1679 end_user: 1680 user_access_end(); 1681 end: 1682 kvfree(relocs); 1683 err = -EFAULT; 1684 err: 1685 while (i--) { 1686 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1687 if (eb->exec[i].relocation_count) 1688 kvfree(relocs); 1689 } 1690 return err; 1691 } 1692 1693 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1694 { 1695 const unsigned int count = eb->buffer_count; 1696 unsigned int i; 1697 1698 for (i = 0; i < count; i++) { 1699 int err; 1700 1701 err = check_relocations(&eb->exec[i]); 1702 if (err) 1703 return err; 1704 } 1705 1706 return 0; 1707 } 1708 1709 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1710 { 1711 const unsigned int count = eb->buffer_count; 1712 unsigned int i; 1713 int ret; 1714 1715 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1716 return 0; 1717 1718 for (i = 0; i < count; i++) { 1719 struct eb_vma *ev = &eb->vma[i]; 1720 1721 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1722 continue; 1723 1724 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1725 if (ret) 1726 return ret; 1727 1728 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1729 } 1730 1731 return 0; 1732 } 1733 1734 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1735 { 1736 bool have_copy = false; 1737 struct eb_vma *ev; 1738 int err = 0; 1739 1740 repeat: 1741 if (signal_pending(current)) { 1742 err = -ERESTARTSYS; 1743 goto out; 1744 } 1745 1746 /* We may process another execbuffer during the unlock... */ 1747 eb_release_vmas(eb, false); 1748 i915_gem_ww_ctx_fini(&eb->ww); 1749 1750 /* 1751 * We take 3 passes through the slowpatch. 1752 * 1753 * 1 - we try to just prefault all the user relocation entries and 1754 * then attempt to reuse the atomic pagefault disabled fast path again. 1755 * 1756 * 2 - we copy the user entries to a local buffer here outside of the 1757 * local and allow ourselves to wait upon any rendering before 1758 * relocations 1759 * 1760 * 3 - we already have a local copy of the relocation entries, but 1761 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1762 */ 1763 if (!err) { 1764 err = eb_prefault_relocations(eb); 1765 } else if (!have_copy) { 1766 err = eb_copy_relocations(eb); 1767 have_copy = err == 0; 1768 } else { 1769 cond_resched(); 1770 err = 0; 1771 } 1772 1773 if (!err) 1774 err = eb_reinit_userptr(eb); 1775 1776 i915_gem_ww_ctx_init(&eb->ww, true); 1777 if (err) 1778 goto out; 1779 1780 /* reacquire the objects */ 1781 repeat_validate: 1782 err = eb_pin_engine(eb, false); 1783 if (err) 1784 goto err; 1785 1786 err = eb_validate_vmas(eb); 1787 if (err) 1788 goto err; 1789 1790 GEM_BUG_ON(!eb->batches[0]); 1791 1792 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1793 if (!have_copy) { 1794 err = eb_relocate_vma(eb, ev); 1795 if (err) 1796 break; 1797 } else { 1798 err = eb_relocate_vma_slow(eb, ev); 1799 if (err) 1800 break; 1801 } 1802 } 1803 1804 if (err == -EDEADLK) 1805 goto err; 1806 1807 if (err && !have_copy) 1808 goto repeat; 1809 1810 if (err) 1811 goto err; 1812 1813 /* as last step, parse the command buffer */ 1814 err = eb_parse(eb); 1815 if (err) 1816 goto err; 1817 1818 /* 1819 * Leave the user relocations as are, this is the painfully slow path, 1820 * and we want to avoid the complication of dropping the lock whilst 1821 * having buffers reserved in the aperture and so causing spurious 1822 * ENOSPC for random operations. 1823 */ 1824 1825 err: 1826 if (err == -EDEADLK) { 1827 eb_release_vmas(eb, false); 1828 err = i915_gem_ww_ctx_backoff(&eb->ww); 1829 if (!err) 1830 goto repeat_validate; 1831 } 1832 1833 if (err == -EAGAIN) 1834 goto repeat; 1835 1836 out: 1837 if (have_copy) { 1838 const unsigned int count = eb->buffer_count; 1839 unsigned int i; 1840 1841 for (i = 0; i < count; i++) { 1842 const struct drm_i915_gem_exec_object2 *entry = 1843 &eb->exec[i]; 1844 struct drm_i915_gem_relocation_entry *relocs; 1845 1846 if (!entry->relocation_count) 1847 continue; 1848 1849 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1850 kvfree(relocs); 1851 } 1852 } 1853 1854 return err; 1855 } 1856 1857 static int eb_relocate_parse(struct i915_execbuffer *eb) 1858 { 1859 int err; 1860 bool throttle = true; 1861 1862 retry: 1863 err = eb_pin_engine(eb, throttle); 1864 if (err) { 1865 if (err != -EDEADLK) 1866 return err; 1867 1868 goto err; 1869 } 1870 1871 /* only throttle once, even if we didn't need to throttle */ 1872 throttle = false; 1873 1874 err = eb_validate_vmas(eb); 1875 if (err == -EAGAIN) 1876 goto slow; 1877 else if (err) 1878 goto err; 1879 1880 /* The objects are in their final locations, apply the relocations. */ 1881 if (eb->args->flags & __EXEC_HAS_RELOC) { 1882 struct eb_vma *ev; 1883 1884 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1885 err = eb_relocate_vma(eb, ev); 1886 if (err) 1887 break; 1888 } 1889 1890 if (err == -EDEADLK) 1891 goto err; 1892 else if (err) 1893 goto slow; 1894 } 1895 1896 if (!err) 1897 err = eb_parse(eb); 1898 1899 err: 1900 if (err == -EDEADLK) { 1901 eb_release_vmas(eb, false); 1902 err = i915_gem_ww_ctx_backoff(&eb->ww); 1903 if (!err) 1904 goto retry; 1905 } 1906 1907 return err; 1908 1909 slow: 1910 err = eb_relocate_parse_slow(eb); 1911 if (err) 1912 /* 1913 * If the user expects the execobject.offset and 1914 * reloc.presumed_offset to be an exact match, 1915 * as for using NO_RELOC, then we cannot update 1916 * the execobject.offset until we have completed 1917 * relocation. 1918 */ 1919 eb->args->flags &= ~__EXEC_HAS_RELOC; 1920 1921 return err; 1922 } 1923 1924 /* 1925 * Using two helper loops for the order of which requests / batches are created 1926 * and added the to backend. Requests are created in order from the parent to 1927 * the last child. Requests are added in the reverse order, from the last child 1928 * to parent. This is done for locking reasons as the timeline lock is acquired 1929 * during request creation and released when the request is added to the 1930 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1931 * the ordering. 1932 */ 1933 #define for_each_batch_create_order(_eb, _i) \ 1934 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1935 #define for_each_batch_add_order(_eb, _i) \ 1936 BUILD_BUG_ON(!typecheck(int, _i)); \ 1937 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1938 1939 static struct i915_request * 1940 eb_find_first_request_added(struct i915_execbuffer *eb) 1941 { 1942 int i; 1943 1944 for_each_batch_add_order(eb, i) 1945 if (eb->requests[i]) 1946 return eb->requests[i]; 1947 1948 GEM_BUG_ON("Request not found"); 1949 1950 return NULL; 1951 } 1952 1953 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1954 1955 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1956 static void eb_capture_stage(struct i915_execbuffer *eb) 1957 { 1958 const unsigned int count = eb->buffer_count; 1959 unsigned int i = count, j; 1960 1961 while (i--) { 1962 struct eb_vma *ev = &eb->vma[i]; 1963 struct i915_vma *vma = ev->vma; 1964 unsigned int flags = ev->flags; 1965 1966 if (!(flags & EXEC_OBJECT_CAPTURE)) 1967 continue; 1968 1969 for_each_batch_create_order(eb, j) { 1970 struct i915_capture_list *capture; 1971 1972 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1973 if (!capture) 1974 continue; 1975 1976 capture->next = eb->capture_lists[j]; 1977 capture->vma_res = i915_vma_resource_get(vma->resource); 1978 eb->capture_lists[j] = capture; 1979 } 1980 } 1981 } 1982 1983 /* Commit once we're in the critical path */ 1984 static void eb_capture_commit(struct i915_execbuffer *eb) 1985 { 1986 unsigned int j; 1987 1988 for_each_batch_create_order(eb, j) { 1989 struct i915_request *rq = eb->requests[j]; 1990 1991 if (!rq) 1992 break; 1993 1994 rq->capture_list = eb->capture_lists[j]; 1995 eb->capture_lists[j] = NULL; 1996 } 1997 } 1998 1999 /* 2000 * Release anything that didn't get committed due to errors. 2001 * The capture_list will otherwise be freed at request retire. 2002 */ 2003 static void eb_capture_release(struct i915_execbuffer *eb) 2004 { 2005 unsigned int j; 2006 2007 for_each_batch_create_order(eb, j) { 2008 if (eb->capture_lists[j]) { 2009 i915_request_free_capture_list(eb->capture_lists[j]); 2010 eb->capture_lists[j] = NULL; 2011 } 2012 } 2013 } 2014 2015 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2016 { 2017 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2018 } 2019 2020 #else 2021 2022 static void eb_capture_stage(struct i915_execbuffer *eb) 2023 { 2024 } 2025 2026 static void eb_capture_commit(struct i915_execbuffer *eb) 2027 { 2028 } 2029 2030 static void eb_capture_release(struct i915_execbuffer *eb) 2031 { 2032 } 2033 2034 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2035 { 2036 } 2037 2038 #endif 2039 2040 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2041 { 2042 const unsigned int count = eb->buffer_count; 2043 unsigned int i = count; 2044 int err = 0, j; 2045 2046 while (i--) { 2047 struct eb_vma *ev = &eb->vma[i]; 2048 struct i915_vma *vma = ev->vma; 2049 unsigned int flags = ev->flags; 2050 struct drm_i915_gem_object *obj = vma->obj; 2051 2052 assert_vma_held(vma); 2053 2054 /* 2055 * If the GPU is not _reading_ through the CPU cache, we need 2056 * to make sure that any writes (both previous GPU writes from 2057 * before a change in snooping levels and normal CPU writes) 2058 * caught in that cache are flushed to main memory. 2059 * 2060 * We want to say 2061 * obj->cache_dirty && 2062 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2063 * but gcc's optimiser doesn't handle that as well and emits 2064 * two jumps instead of one. Maybe one day... 2065 * 2066 * FIXME: There is also sync flushing in set_pages(), which 2067 * serves a different purpose(some of the time at least). 2068 * 2069 * We should consider: 2070 * 2071 * 1. Rip out the async flush code. 2072 * 2073 * 2. Or make the sync flushing use the async clflush path 2074 * using mandatory fences underneath. Currently the below 2075 * async flush happens after we bind the object. 2076 */ 2077 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2078 if (i915_gem_clflush_object(obj, 0)) 2079 flags &= ~EXEC_OBJECT_ASYNC; 2080 } 2081 2082 /* We only need to await on the first request */ 2083 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2084 err = i915_request_await_object 2085 (eb_find_first_request_added(eb), obj, 2086 flags & EXEC_OBJECT_WRITE); 2087 } 2088 2089 for_each_batch_add_order(eb, j) { 2090 if (err) 2091 break; 2092 if (!eb->requests[j]) 2093 continue; 2094 2095 err = _i915_vma_move_to_active(vma, eb->requests[j], 2096 j ? NULL : 2097 eb->composite_fence ? 2098 eb->composite_fence : 2099 &eb->requests[j]->fence, 2100 flags | __EXEC_OBJECT_NO_RESERVE); 2101 } 2102 } 2103 2104 #ifdef CONFIG_MMU_NOTIFIER 2105 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2106 read_lock(&eb->i915->mm.notifier_lock); 2107 2108 /* 2109 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2110 * could not have been set 2111 */ 2112 for (i = 0; i < count; i++) { 2113 struct eb_vma *ev = &eb->vma[i]; 2114 struct drm_i915_gem_object *obj = ev->vma->obj; 2115 2116 if (!i915_gem_object_is_userptr(obj)) 2117 continue; 2118 2119 err = i915_gem_object_userptr_submit_done(obj); 2120 if (err) 2121 break; 2122 } 2123 2124 read_unlock(&eb->i915->mm.notifier_lock); 2125 } 2126 #endif 2127 2128 if (unlikely(err)) 2129 goto err_skip; 2130 2131 /* Unconditionally flush any chipset caches (for streaming writes). */ 2132 intel_gt_chipset_flush(eb->gt); 2133 eb_capture_commit(eb); 2134 2135 return 0; 2136 2137 err_skip: 2138 for_each_batch_create_order(eb, j) { 2139 if (!eb->requests[j]) 2140 break; 2141 2142 i915_request_set_error_once(eb->requests[j], err); 2143 } 2144 return err; 2145 } 2146 2147 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2148 { 2149 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2150 return -EINVAL; 2151 2152 /* Kernel clipping was a DRI1 misfeature */ 2153 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2154 I915_EXEC_USE_EXTENSIONS))) { 2155 if (exec->num_cliprects || exec->cliprects_ptr) 2156 return -EINVAL; 2157 } 2158 2159 if (exec->DR4 == 0xffffffff) { 2160 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2161 exec->DR4 = 0; 2162 } 2163 if (exec->DR1 || exec->DR4) 2164 return -EINVAL; 2165 2166 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2167 return -EINVAL; 2168 2169 return 0; 2170 } 2171 2172 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2173 { 2174 u32 *cs; 2175 int i; 2176 2177 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2178 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2179 return -EINVAL; 2180 } 2181 2182 cs = intel_ring_begin(rq, 4 * 2 + 2); 2183 if (IS_ERR(cs)) 2184 return PTR_ERR(cs); 2185 2186 *cs++ = MI_LOAD_REGISTER_IMM(4); 2187 for (i = 0; i < 4; i++) { 2188 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2189 *cs++ = 0; 2190 } 2191 *cs++ = MI_NOOP; 2192 intel_ring_advance(rq, cs); 2193 2194 return 0; 2195 } 2196 2197 static struct i915_vma * 2198 shadow_batch_pin(struct i915_execbuffer *eb, 2199 struct drm_i915_gem_object *obj, 2200 struct i915_address_space *vm, 2201 unsigned int flags) 2202 { 2203 struct i915_vma *vma; 2204 int err; 2205 2206 vma = i915_vma_instance(obj, vm, NULL); 2207 if (IS_ERR(vma)) 2208 return vma; 2209 2210 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2211 if (err) 2212 return ERR_PTR(err); 2213 2214 return vma; 2215 } 2216 2217 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2218 { 2219 /* 2220 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2221 * batch" bit. Hence we need to pin secure batches into the global gtt. 2222 * hsw should have this fixed, but bdw mucks it up again. */ 2223 if (eb->batch_flags & I915_DISPATCH_SECURE) 2224 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2225 2226 return NULL; 2227 } 2228 2229 static int eb_parse(struct i915_execbuffer *eb) 2230 { 2231 struct drm_i915_private *i915 = eb->i915; 2232 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2233 struct i915_vma *shadow, *trampoline, *batch; 2234 unsigned long len; 2235 int err; 2236 2237 if (!eb_use_cmdparser(eb)) { 2238 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2239 if (IS_ERR(batch)) 2240 return PTR_ERR(batch); 2241 2242 goto secure_batch; 2243 } 2244 2245 if (intel_context_is_parallel(eb->context)) 2246 return -EINVAL; 2247 2248 len = eb->batch_len[0]; 2249 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2250 /* 2251 * ppGTT backed shadow buffers must be mapped RO, to prevent 2252 * post-scan tampering 2253 */ 2254 if (!eb->context->vm->has_read_only) { 2255 drm_dbg(&i915->drm, 2256 "Cannot prevent post-scan tampering without RO capable vm\n"); 2257 return -EINVAL; 2258 } 2259 } else { 2260 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2261 } 2262 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2263 return -EINVAL; 2264 2265 if (!pool) { 2266 pool = intel_gt_get_buffer_pool(eb->gt, len, 2267 I915_MAP_WB); 2268 if (IS_ERR(pool)) 2269 return PTR_ERR(pool); 2270 eb->batch_pool = pool; 2271 } 2272 2273 err = i915_gem_object_lock(pool->obj, &eb->ww); 2274 if (err) 2275 return err; 2276 2277 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2278 if (IS_ERR(shadow)) 2279 return PTR_ERR(shadow); 2280 2281 intel_gt_buffer_pool_mark_used(pool); 2282 i915_gem_object_set_readonly(shadow->obj); 2283 shadow->private = pool; 2284 2285 trampoline = NULL; 2286 if (CMDPARSER_USES_GGTT(eb->i915)) { 2287 trampoline = shadow; 2288 2289 shadow = shadow_batch_pin(eb, pool->obj, 2290 &eb->gt->ggtt->vm, 2291 PIN_GLOBAL); 2292 if (IS_ERR(shadow)) 2293 return PTR_ERR(shadow); 2294 2295 shadow->private = pool; 2296 2297 eb->batch_flags |= I915_DISPATCH_SECURE; 2298 } 2299 2300 batch = eb_dispatch_secure(eb, shadow); 2301 if (IS_ERR(batch)) 2302 return PTR_ERR(batch); 2303 2304 err = dma_resv_reserve_shared(shadow->obj->base.resv, 1); 2305 if (err) 2306 return err; 2307 2308 err = intel_engine_cmd_parser(eb->context->engine, 2309 eb->batches[0]->vma, 2310 eb->batch_start_offset, 2311 eb->batch_len[0], 2312 shadow, trampoline); 2313 if (err) 2314 return err; 2315 2316 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2317 eb->batches[0]->vma = i915_vma_get(shadow); 2318 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2319 2320 eb->trampoline = trampoline; 2321 eb->batch_start_offset = 0; 2322 2323 secure_batch: 2324 if (batch) { 2325 if (intel_context_is_parallel(eb->context)) 2326 return -EINVAL; 2327 2328 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2329 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2330 eb->batches[0]->vma = i915_vma_get(batch); 2331 } 2332 return 0; 2333 } 2334 2335 static int eb_request_submit(struct i915_execbuffer *eb, 2336 struct i915_request *rq, 2337 struct i915_vma *batch, 2338 u64 batch_len) 2339 { 2340 int err; 2341 2342 if (intel_context_nopreempt(rq->context)) 2343 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2344 2345 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2346 err = i915_reset_gen7_sol_offsets(rq); 2347 if (err) 2348 return err; 2349 } 2350 2351 /* 2352 * After we completed waiting for other engines (using HW semaphores) 2353 * then we can signal that this request/batch is ready to run. This 2354 * allows us to determine if the batch is still waiting on the GPU 2355 * or actually running by checking the breadcrumb. 2356 */ 2357 if (rq->context->engine->emit_init_breadcrumb) { 2358 err = rq->context->engine->emit_init_breadcrumb(rq); 2359 if (err) 2360 return err; 2361 } 2362 2363 err = rq->context->engine->emit_bb_start(rq, 2364 batch->node.start + 2365 eb->batch_start_offset, 2366 batch_len, 2367 eb->batch_flags); 2368 if (err) 2369 return err; 2370 2371 if (eb->trampoline) { 2372 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2373 GEM_BUG_ON(eb->batch_start_offset); 2374 err = rq->context->engine->emit_bb_start(rq, 2375 eb->trampoline->node.start + 2376 batch_len, 0, 0); 2377 if (err) 2378 return err; 2379 } 2380 2381 return 0; 2382 } 2383 2384 static int eb_submit(struct i915_execbuffer *eb) 2385 { 2386 unsigned int i; 2387 int err; 2388 2389 err = eb_move_to_gpu(eb); 2390 2391 for_each_batch_create_order(eb, i) { 2392 if (!eb->requests[i]) 2393 break; 2394 2395 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2396 if (!err) 2397 err = eb_request_submit(eb, eb->requests[i], 2398 eb->batches[i]->vma, 2399 eb->batch_len[i]); 2400 } 2401 2402 return err; 2403 } 2404 2405 static int num_vcs_engines(struct drm_i915_private *i915) 2406 { 2407 return hweight_long(VDBOX_MASK(to_gt(i915))); 2408 } 2409 2410 /* 2411 * Find one BSD ring to dispatch the corresponding BSD command. 2412 * The engine index is returned. 2413 */ 2414 static unsigned int 2415 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2416 struct drm_file *file) 2417 { 2418 struct drm_i915_file_private *file_priv = file->driver_priv; 2419 2420 /* Check whether the file_priv has already selected one ring. */ 2421 if ((int)file_priv->bsd_engine < 0) 2422 file_priv->bsd_engine = 2423 get_random_int() % num_vcs_engines(dev_priv); 2424 2425 return file_priv->bsd_engine; 2426 } 2427 2428 static const enum intel_engine_id user_ring_map[] = { 2429 [I915_EXEC_DEFAULT] = RCS0, 2430 [I915_EXEC_RENDER] = RCS0, 2431 [I915_EXEC_BLT] = BCS0, 2432 [I915_EXEC_BSD] = VCS0, 2433 [I915_EXEC_VEBOX] = VECS0 2434 }; 2435 2436 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2437 { 2438 struct intel_ring *ring = ce->ring; 2439 struct intel_timeline *tl = ce->timeline; 2440 struct i915_request *rq; 2441 2442 /* 2443 * Completely unscientific finger-in-the-air estimates for suitable 2444 * maximum user request size (to avoid blocking) and then backoff. 2445 */ 2446 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2447 return NULL; 2448 2449 /* 2450 * Find a request that after waiting upon, there will be at least half 2451 * the ring available. The hysteresis allows us to compete for the 2452 * shared ring and should mean that we sleep less often prior to 2453 * claiming our resources, but not so long that the ring completely 2454 * drains before we can submit our next request. 2455 */ 2456 list_for_each_entry(rq, &tl->requests, link) { 2457 if (rq->ring != ring) 2458 continue; 2459 2460 if (__intel_ring_space(rq->postfix, 2461 ring->emit, ring->size) > ring->size / 2) 2462 break; 2463 } 2464 if (&rq->link == &tl->requests) 2465 return NULL; /* weird, we will check again later for real */ 2466 2467 return i915_request_get(rq); 2468 } 2469 2470 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2471 bool throttle) 2472 { 2473 struct intel_timeline *tl; 2474 struct i915_request *rq = NULL; 2475 2476 /* 2477 * Take a local wakeref for preparing to dispatch the execbuf as 2478 * we expect to access the hardware fairly frequently in the 2479 * process, and require the engine to be kept awake between accesses. 2480 * Upon dispatch, we acquire another prolonged wakeref that we hold 2481 * until the timeline is idle, which in turn releases the wakeref 2482 * taken on the engine, and the parent device. 2483 */ 2484 tl = intel_context_timeline_lock(ce); 2485 if (IS_ERR(tl)) 2486 return PTR_ERR(tl); 2487 2488 intel_context_enter(ce); 2489 if (throttle) 2490 rq = eb_throttle(eb, ce); 2491 intel_context_timeline_unlock(tl); 2492 2493 if (rq) { 2494 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2495 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2496 2497 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2498 timeout) < 0) { 2499 i915_request_put(rq); 2500 2501 /* 2502 * Error path, cannot use intel_context_timeline_lock as 2503 * that is user interruptable and this clean up step 2504 * must be done. 2505 */ 2506 mutex_lock(&ce->timeline->mutex); 2507 intel_context_exit(ce); 2508 mutex_unlock(&ce->timeline->mutex); 2509 2510 if (nonblock) 2511 return -EWOULDBLOCK; 2512 else 2513 return -EINTR; 2514 } 2515 i915_request_put(rq); 2516 } 2517 2518 return 0; 2519 } 2520 2521 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2522 { 2523 struct intel_context *ce = eb->context, *child; 2524 int err; 2525 int i = 0, j = 0; 2526 2527 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2528 2529 if (unlikely(intel_context_is_banned(ce))) 2530 return -EIO; 2531 2532 /* 2533 * Pinning the contexts may generate requests in order to acquire 2534 * GGTT space, so do this first before we reserve a seqno for 2535 * ourselves. 2536 */ 2537 err = intel_context_pin_ww(ce, &eb->ww); 2538 if (err) 2539 return err; 2540 for_each_child(ce, child) { 2541 err = intel_context_pin_ww(child, &eb->ww); 2542 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2543 } 2544 2545 for_each_child(ce, child) { 2546 err = eb_pin_timeline(eb, child, throttle); 2547 if (err) 2548 goto unwind; 2549 ++i; 2550 } 2551 err = eb_pin_timeline(eb, ce, throttle); 2552 if (err) 2553 goto unwind; 2554 2555 eb->args->flags |= __EXEC_ENGINE_PINNED; 2556 return 0; 2557 2558 unwind: 2559 for_each_child(ce, child) { 2560 if (j++ < i) { 2561 mutex_lock(&child->timeline->mutex); 2562 intel_context_exit(child); 2563 mutex_unlock(&child->timeline->mutex); 2564 } 2565 } 2566 for_each_child(ce, child) 2567 intel_context_unpin(child); 2568 intel_context_unpin(ce); 2569 return err; 2570 } 2571 2572 static void eb_unpin_engine(struct i915_execbuffer *eb) 2573 { 2574 struct intel_context *ce = eb->context, *child; 2575 2576 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2577 return; 2578 2579 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2580 2581 for_each_child(ce, child) { 2582 mutex_lock(&child->timeline->mutex); 2583 intel_context_exit(child); 2584 mutex_unlock(&child->timeline->mutex); 2585 2586 intel_context_unpin(child); 2587 } 2588 2589 mutex_lock(&ce->timeline->mutex); 2590 intel_context_exit(ce); 2591 mutex_unlock(&ce->timeline->mutex); 2592 2593 intel_context_unpin(ce); 2594 } 2595 2596 static unsigned int 2597 eb_select_legacy_ring(struct i915_execbuffer *eb) 2598 { 2599 struct drm_i915_private *i915 = eb->i915; 2600 struct drm_i915_gem_execbuffer2 *args = eb->args; 2601 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2602 2603 if (user_ring_id != I915_EXEC_BSD && 2604 (args->flags & I915_EXEC_BSD_MASK)) { 2605 drm_dbg(&i915->drm, 2606 "execbuf with non bsd ring but with invalid " 2607 "bsd dispatch flags: %d\n", (int)(args->flags)); 2608 return -1; 2609 } 2610 2611 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2612 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2613 2614 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2615 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2616 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2617 bsd_idx <= I915_EXEC_BSD_RING2) { 2618 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2619 bsd_idx--; 2620 } else { 2621 drm_dbg(&i915->drm, 2622 "execbuf with unknown bsd ring: %u\n", 2623 bsd_idx); 2624 return -1; 2625 } 2626 2627 return _VCS(bsd_idx); 2628 } 2629 2630 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2631 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2632 user_ring_id); 2633 return -1; 2634 } 2635 2636 return user_ring_map[user_ring_id]; 2637 } 2638 2639 static int 2640 eb_select_engine(struct i915_execbuffer *eb) 2641 { 2642 struct intel_context *ce, *child; 2643 unsigned int idx; 2644 int err; 2645 2646 if (i915_gem_context_user_engines(eb->gem_context)) 2647 idx = eb->args->flags & I915_EXEC_RING_MASK; 2648 else 2649 idx = eb_select_legacy_ring(eb); 2650 2651 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2652 if (IS_ERR(ce)) 2653 return PTR_ERR(ce); 2654 2655 if (intel_context_is_parallel(ce)) { 2656 if (eb->buffer_count < ce->parallel.number_children + 1) { 2657 intel_context_put(ce); 2658 return -EINVAL; 2659 } 2660 if (eb->batch_start_offset || eb->args->batch_len) { 2661 intel_context_put(ce); 2662 return -EINVAL; 2663 } 2664 } 2665 eb->num_batches = ce->parallel.number_children + 1; 2666 2667 for_each_child(ce, child) 2668 intel_context_get(child); 2669 intel_gt_pm_get(ce->engine->gt); 2670 2671 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2672 err = intel_context_alloc_state(ce); 2673 if (err) 2674 goto err; 2675 } 2676 for_each_child(ce, child) { 2677 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2678 err = intel_context_alloc_state(child); 2679 if (err) 2680 goto err; 2681 } 2682 } 2683 2684 /* 2685 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2686 * EIO if the GPU is already wedged. 2687 */ 2688 err = intel_gt_terminally_wedged(ce->engine->gt); 2689 if (err) 2690 goto err; 2691 2692 eb->context = ce; 2693 eb->gt = ce->engine->gt; 2694 2695 /* 2696 * Make sure engine pool stays alive even if we call intel_context_put 2697 * during ww handling. The pool is destroyed when last pm reference 2698 * is dropped, which breaks our -EDEADLK handling. 2699 */ 2700 return err; 2701 2702 err: 2703 intel_gt_pm_put(ce->engine->gt); 2704 for_each_child(ce, child) 2705 intel_context_put(child); 2706 intel_context_put(ce); 2707 return err; 2708 } 2709 2710 static void 2711 eb_put_engine(struct i915_execbuffer *eb) 2712 { 2713 struct intel_context *child; 2714 2715 intel_gt_pm_put(eb->gt); 2716 for_each_child(eb->context, child) 2717 intel_context_put(child); 2718 intel_context_put(eb->context); 2719 } 2720 2721 static void 2722 __free_fence_array(struct eb_fence *fences, unsigned int n) 2723 { 2724 while (n--) { 2725 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2726 dma_fence_put(fences[n].dma_fence); 2727 dma_fence_chain_free(fences[n].chain_fence); 2728 } 2729 kvfree(fences); 2730 } 2731 2732 static int 2733 add_timeline_fence_array(struct i915_execbuffer *eb, 2734 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2735 { 2736 struct drm_i915_gem_exec_fence __user *user_fences; 2737 u64 __user *user_values; 2738 struct eb_fence *f; 2739 u64 nfences; 2740 int err = 0; 2741 2742 nfences = timeline_fences->fence_count; 2743 if (!nfences) 2744 return 0; 2745 2746 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2747 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2748 if (nfences > min_t(unsigned long, 2749 ULONG_MAX / sizeof(*user_fences), 2750 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2751 return -EINVAL; 2752 2753 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2754 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2755 return -EFAULT; 2756 2757 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2758 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2759 return -EFAULT; 2760 2761 f = krealloc(eb->fences, 2762 (eb->num_fences + nfences) * sizeof(*f), 2763 __GFP_NOWARN | GFP_KERNEL); 2764 if (!f) 2765 return -ENOMEM; 2766 2767 eb->fences = f; 2768 f += eb->num_fences; 2769 2770 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2771 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2772 2773 while (nfences--) { 2774 struct drm_i915_gem_exec_fence user_fence; 2775 struct drm_syncobj *syncobj; 2776 struct dma_fence *fence = NULL; 2777 u64 point; 2778 2779 if (__copy_from_user(&user_fence, 2780 user_fences++, 2781 sizeof(user_fence))) 2782 return -EFAULT; 2783 2784 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2785 return -EINVAL; 2786 2787 if (__get_user(point, user_values++)) 2788 return -EFAULT; 2789 2790 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2791 if (!syncobj) { 2792 DRM_DEBUG("Invalid syncobj handle provided\n"); 2793 return -ENOENT; 2794 } 2795 2796 fence = drm_syncobj_fence_get(syncobj); 2797 2798 if (!fence && user_fence.flags && 2799 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2800 DRM_DEBUG("Syncobj handle has no fence\n"); 2801 drm_syncobj_put(syncobj); 2802 return -EINVAL; 2803 } 2804 2805 if (fence) 2806 err = dma_fence_chain_find_seqno(&fence, point); 2807 2808 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2809 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2810 dma_fence_put(fence); 2811 drm_syncobj_put(syncobj); 2812 return err; 2813 } 2814 2815 /* 2816 * A point might have been signaled already and 2817 * garbage collected from the timeline. In this case 2818 * just ignore the point and carry on. 2819 */ 2820 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2821 drm_syncobj_put(syncobj); 2822 continue; 2823 } 2824 2825 /* 2826 * For timeline syncobjs we need to preallocate chains for 2827 * later signaling. 2828 */ 2829 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2830 /* 2831 * Waiting and signaling the same point (when point != 2832 * 0) would break the timeline. 2833 */ 2834 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2835 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2836 dma_fence_put(fence); 2837 drm_syncobj_put(syncobj); 2838 return -EINVAL; 2839 } 2840 2841 f->chain_fence = dma_fence_chain_alloc(); 2842 if (!f->chain_fence) { 2843 drm_syncobj_put(syncobj); 2844 dma_fence_put(fence); 2845 return -ENOMEM; 2846 } 2847 } else { 2848 f->chain_fence = NULL; 2849 } 2850 2851 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2852 f->dma_fence = fence; 2853 f->value = point; 2854 f++; 2855 eb->num_fences++; 2856 } 2857 2858 return 0; 2859 } 2860 2861 static int add_fence_array(struct i915_execbuffer *eb) 2862 { 2863 struct drm_i915_gem_execbuffer2 *args = eb->args; 2864 struct drm_i915_gem_exec_fence __user *user; 2865 unsigned long num_fences = args->num_cliprects; 2866 struct eb_fence *f; 2867 2868 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2869 return 0; 2870 2871 if (!num_fences) 2872 return 0; 2873 2874 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2875 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2876 if (num_fences > min_t(unsigned long, 2877 ULONG_MAX / sizeof(*user), 2878 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2879 return -EINVAL; 2880 2881 user = u64_to_user_ptr(args->cliprects_ptr); 2882 if (!access_ok(user, num_fences * sizeof(*user))) 2883 return -EFAULT; 2884 2885 f = krealloc(eb->fences, 2886 (eb->num_fences + num_fences) * sizeof(*f), 2887 __GFP_NOWARN | GFP_KERNEL); 2888 if (!f) 2889 return -ENOMEM; 2890 2891 eb->fences = f; 2892 f += eb->num_fences; 2893 while (num_fences--) { 2894 struct drm_i915_gem_exec_fence user_fence; 2895 struct drm_syncobj *syncobj; 2896 struct dma_fence *fence = NULL; 2897 2898 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2899 return -EFAULT; 2900 2901 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2902 return -EINVAL; 2903 2904 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2905 if (!syncobj) { 2906 DRM_DEBUG("Invalid syncobj handle provided\n"); 2907 return -ENOENT; 2908 } 2909 2910 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2911 fence = drm_syncobj_fence_get(syncobj); 2912 if (!fence) { 2913 DRM_DEBUG("Syncobj handle has no fence\n"); 2914 drm_syncobj_put(syncobj); 2915 return -EINVAL; 2916 } 2917 } 2918 2919 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2920 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2921 2922 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2923 f->dma_fence = fence; 2924 f->value = 0; 2925 f->chain_fence = NULL; 2926 f++; 2927 eb->num_fences++; 2928 } 2929 2930 return 0; 2931 } 2932 2933 static void put_fence_array(struct eb_fence *fences, int num_fences) 2934 { 2935 if (fences) 2936 __free_fence_array(fences, num_fences); 2937 } 2938 2939 static int 2940 await_fence_array(struct i915_execbuffer *eb, 2941 struct i915_request *rq) 2942 { 2943 unsigned int n; 2944 int err; 2945 2946 for (n = 0; n < eb->num_fences; n++) { 2947 struct drm_syncobj *syncobj; 2948 unsigned int flags; 2949 2950 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2951 2952 if (!eb->fences[n].dma_fence) 2953 continue; 2954 2955 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2956 if (err < 0) 2957 return err; 2958 } 2959 2960 return 0; 2961 } 2962 2963 static void signal_fence_array(const struct i915_execbuffer *eb, 2964 struct dma_fence * const fence) 2965 { 2966 unsigned int n; 2967 2968 for (n = 0; n < eb->num_fences; n++) { 2969 struct drm_syncobj *syncobj; 2970 unsigned int flags; 2971 2972 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2973 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2974 continue; 2975 2976 if (eb->fences[n].chain_fence) { 2977 drm_syncobj_add_point(syncobj, 2978 eb->fences[n].chain_fence, 2979 fence, 2980 eb->fences[n].value); 2981 /* 2982 * The chain's ownership is transferred to the 2983 * timeline. 2984 */ 2985 eb->fences[n].chain_fence = NULL; 2986 } else { 2987 drm_syncobj_replace_fence(syncobj, fence); 2988 } 2989 } 2990 } 2991 2992 static int 2993 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2994 { 2995 struct i915_execbuffer *eb = data; 2996 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 2997 2998 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 2999 return -EFAULT; 3000 3001 return add_timeline_fence_array(eb, &timeline_fences); 3002 } 3003 3004 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3005 { 3006 struct i915_request *rq, *rn; 3007 3008 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3009 if (rq == end || !i915_request_retire(rq)) 3010 break; 3011 } 3012 3013 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3014 int err, bool last_parallel) 3015 { 3016 struct intel_timeline * const tl = i915_request_timeline(rq); 3017 struct i915_sched_attr attr = {}; 3018 struct i915_request *prev; 3019 3020 lockdep_assert_held(&tl->mutex); 3021 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3022 3023 trace_i915_request_add(rq); 3024 3025 prev = __i915_request_commit(rq); 3026 3027 /* Check that the context wasn't destroyed before submission */ 3028 if (likely(!intel_context_is_closed(eb->context))) { 3029 attr = eb->gem_context->sched; 3030 } else { 3031 /* Serialise with context_close via the add_to_timeline */ 3032 i915_request_set_error_once(rq, -ENOENT); 3033 __i915_request_skip(rq); 3034 err = -ENOENT; /* override any transient errors */ 3035 } 3036 3037 if (intel_context_is_parallel(eb->context)) { 3038 if (err) { 3039 __i915_request_skip(rq); 3040 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3041 &rq->fence.flags); 3042 } 3043 if (last_parallel) 3044 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3045 &rq->fence.flags); 3046 } 3047 3048 __i915_request_queue(rq, &attr); 3049 3050 /* Try to clean up the client's timeline after submitting the request */ 3051 if (prev) 3052 retire_requests(tl, prev); 3053 3054 mutex_unlock(&tl->mutex); 3055 3056 return err; 3057 } 3058 3059 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3060 { 3061 int i; 3062 3063 /* 3064 * We iterate in reverse order of creation to release timeline mutexes in 3065 * same order. 3066 */ 3067 for_each_batch_add_order(eb, i) { 3068 struct i915_request *rq = eb->requests[i]; 3069 3070 if (!rq) 3071 continue; 3072 err |= eb_request_add(eb, rq, err, i == 0); 3073 } 3074 3075 return err; 3076 } 3077 3078 static const i915_user_extension_fn execbuf_extensions[] = { 3079 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3080 }; 3081 3082 static int 3083 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3084 struct i915_execbuffer *eb) 3085 { 3086 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3087 return 0; 3088 3089 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3090 * have another flag also using it at the same time. 3091 */ 3092 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3093 return -EINVAL; 3094 3095 if (args->num_cliprects != 0) 3096 return -EINVAL; 3097 3098 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3099 execbuf_extensions, 3100 ARRAY_SIZE(execbuf_extensions), 3101 eb); 3102 } 3103 3104 static void eb_requests_get(struct i915_execbuffer *eb) 3105 { 3106 unsigned int i; 3107 3108 for_each_batch_create_order(eb, i) { 3109 if (!eb->requests[i]) 3110 break; 3111 3112 i915_request_get(eb->requests[i]); 3113 } 3114 } 3115 3116 static void eb_requests_put(struct i915_execbuffer *eb) 3117 { 3118 unsigned int i; 3119 3120 for_each_batch_create_order(eb, i) { 3121 if (!eb->requests[i]) 3122 break; 3123 3124 i915_request_put(eb->requests[i]); 3125 } 3126 } 3127 3128 static struct sync_file * 3129 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3130 { 3131 struct sync_file *out_fence = NULL; 3132 struct dma_fence_array *fence_array; 3133 struct dma_fence **fences; 3134 unsigned int i; 3135 3136 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3137 3138 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3139 if (!fences) 3140 return ERR_PTR(-ENOMEM); 3141 3142 for_each_batch_create_order(eb, i) { 3143 fences[i] = &eb->requests[i]->fence; 3144 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3145 &eb->requests[i]->fence.flags); 3146 } 3147 3148 fence_array = dma_fence_array_create(eb->num_batches, 3149 fences, 3150 eb->context->parallel.fence_context, 3151 eb->context->parallel.seqno++, 3152 false); 3153 if (!fence_array) { 3154 kfree(fences); 3155 return ERR_PTR(-ENOMEM); 3156 } 3157 3158 /* Move ownership to the dma_fence_array created above */ 3159 for_each_batch_create_order(eb, i) 3160 dma_fence_get(fences[i]); 3161 3162 if (out_fence_fd != -1) { 3163 out_fence = sync_file_create(&fence_array->base); 3164 /* sync_file now owns fence_arry, drop creation ref */ 3165 dma_fence_put(&fence_array->base); 3166 if (!out_fence) 3167 return ERR_PTR(-ENOMEM); 3168 } 3169 3170 eb->composite_fence = &fence_array->base; 3171 3172 return out_fence; 3173 } 3174 3175 static struct sync_file * 3176 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3177 struct dma_fence *in_fence, int out_fence_fd) 3178 { 3179 struct sync_file *out_fence = NULL; 3180 int err; 3181 3182 if (unlikely(eb->gem_context->syncobj)) { 3183 struct dma_fence *fence; 3184 3185 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3186 err = i915_request_await_dma_fence(rq, fence); 3187 dma_fence_put(fence); 3188 if (err) 3189 return ERR_PTR(err); 3190 } 3191 3192 if (in_fence) { 3193 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3194 err = i915_request_await_execution(rq, in_fence); 3195 else 3196 err = i915_request_await_dma_fence(rq, in_fence); 3197 if (err < 0) 3198 return ERR_PTR(err); 3199 } 3200 3201 if (eb->fences) { 3202 err = await_fence_array(eb, rq); 3203 if (err) 3204 return ERR_PTR(err); 3205 } 3206 3207 if (intel_context_is_parallel(eb->context)) { 3208 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3209 if (IS_ERR(out_fence)) 3210 return ERR_PTR(-ENOMEM); 3211 } else if (out_fence_fd != -1) { 3212 out_fence = sync_file_create(&rq->fence); 3213 if (!out_fence) 3214 return ERR_PTR(-ENOMEM); 3215 } 3216 3217 return out_fence; 3218 } 3219 3220 static struct intel_context * 3221 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3222 { 3223 struct intel_context *child; 3224 3225 if (likely(context_number == 0)) 3226 return eb->context; 3227 3228 for_each_child(eb->context, child) 3229 if (!--context_number) 3230 return child; 3231 3232 GEM_BUG_ON("Context not found"); 3233 3234 return NULL; 3235 } 3236 3237 static struct sync_file * 3238 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3239 int out_fence_fd) 3240 { 3241 struct sync_file *out_fence = NULL; 3242 unsigned int i; 3243 3244 for_each_batch_create_order(eb, i) { 3245 /* Allocate a request for this batch buffer nice and early. */ 3246 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3247 if (IS_ERR(eb->requests[i])) { 3248 out_fence = ERR_CAST(eb->requests[i]); 3249 eb->requests[i] = NULL; 3250 return out_fence; 3251 } 3252 3253 /* 3254 * Only the first request added (committed to backend) has to 3255 * take the in fences into account as all subsequent requests 3256 * will have fences inserted inbetween them. 3257 */ 3258 if (i + 1 == eb->num_batches) { 3259 out_fence = eb_fences_add(eb, eb->requests[i], 3260 in_fence, out_fence_fd); 3261 if (IS_ERR(out_fence)) 3262 return out_fence; 3263 } 3264 3265 /* 3266 * Not really on stack, but we don't want to call 3267 * kfree on the batch_snapshot when we put it, so use the 3268 * _onstack interface. 3269 */ 3270 if (eb->batches[i]->vma) 3271 eb->requests[i]->batch_res = 3272 i915_vma_resource_get(eb->batches[i]->vma->resource); 3273 if (eb->batch_pool) { 3274 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3275 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3276 eb->requests[i]); 3277 } 3278 } 3279 3280 return out_fence; 3281 } 3282 3283 static int 3284 i915_gem_do_execbuffer(struct drm_device *dev, 3285 struct drm_file *file, 3286 struct drm_i915_gem_execbuffer2 *args, 3287 struct drm_i915_gem_exec_object2 *exec) 3288 { 3289 struct drm_i915_private *i915 = to_i915(dev); 3290 struct i915_execbuffer eb; 3291 struct dma_fence *in_fence = NULL; 3292 struct sync_file *out_fence = NULL; 3293 int out_fence_fd = -1; 3294 int err; 3295 3296 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3297 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3298 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3299 3300 eb.i915 = i915; 3301 eb.file = file; 3302 eb.args = args; 3303 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3304 args->flags |= __EXEC_HAS_RELOC; 3305 3306 eb.exec = exec; 3307 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3308 eb.vma[0].vma = NULL; 3309 eb.batch_pool = NULL; 3310 3311 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3312 reloc_cache_init(&eb.reloc_cache, eb.i915); 3313 3314 eb.buffer_count = args->buffer_count; 3315 eb.batch_start_offset = args->batch_start_offset; 3316 eb.trampoline = NULL; 3317 3318 eb.fences = NULL; 3319 eb.num_fences = 0; 3320 3321 eb_capture_list_clear(&eb); 3322 3323 memset(eb.requests, 0, sizeof(struct i915_request *) * 3324 ARRAY_SIZE(eb.requests)); 3325 eb.composite_fence = NULL; 3326 3327 eb.batch_flags = 0; 3328 if (args->flags & I915_EXEC_SECURE) { 3329 if (GRAPHICS_VER(i915) >= 11) 3330 return -ENODEV; 3331 3332 /* Return -EPERM to trigger fallback code on old binaries. */ 3333 if (!HAS_SECURE_BATCHES(i915)) 3334 return -EPERM; 3335 3336 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3337 return -EPERM; 3338 3339 eb.batch_flags |= I915_DISPATCH_SECURE; 3340 } 3341 if (args->flags & I915_EXEC_IS_PINNED) 3342 eb.batch_flags |= I915_DISPATCH_PINNED; 3343 3344 err = parse_execbuf2_extensions(args, &eb); 3345 if (err) 3346 goto err_ext; 3347 3348 err = add_fence_array(&eb); 3349 if (err) 3350 goto err_ext; 3351 3352 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3353 if (args->flags & IN_FENCES) { 3354 if ((args->flags & IN_FENCES) == IN_FENCES) 3355 return -EINVAL; 3356 3357 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3358 if (!in_fence) { 3359 err = -EINVAL; 3360 goto err_ext; 3361 } 3362 } 3363 #undef IN_FENCES 3364 3365 if (args->flags & I915_EXEC_FENCE_OUT) { 3366 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3367 if (out_fence_fd < 0) { 3368 err = out_fence_fd; 3369 goto err_in_fence; 3370 } 3371 } 3372 3373 err = eb_create(&eb); 3374 if (err) 3375 goto err_out_fence; 3376 3377 GEM_BUG_ON(!eb.lut_size); 3378 3379 err = eb_select_context(&eb); 3380 if (unlikely(err)) 3381 goto err_destroy; 3382 3383 err = eb_select_engine(&eb); 3384 if (unlikely(err)) 3385 goto err_context; 3386 3387 err = eb_lookup_vmas(&eb); 3388 if (err) { 3389 eb_release_vmas(&eb, true); 3390 goto err_engine; 3391 } 3392 3393 i915_gem_ww_ctx_init(&eb.ww, true); 3394 3395 err = eb_relocate_parse(&eb); 3396 if (err) { 3397 /* 3398 * If the user expects the execobject.offset and 3399 * reloc.presumed_offset to be an exact match, 3400 * as for using NO_RELOC, then we cannot update 3401 * the execobject.offset until we have completed 3402 * relocation. 3403 */ 3404 args->flags &= ~__EXEC_HAS_RELOC; 3405 goto err_vma; 3406 } 3407 3408 ww_acquire_done(&eb.ww.ctx); 3409 eb_capture_stage(&eb); 3410 3411 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3412 if (IS_ERR(out_fence)) { 3413 err = PTR_ERR(out_fence); 3414 out_fence = NULL; 3415 if (eb.requests[0]) 3416 goto err_request; 3417 else 3418 goto err_vma; 3419 } 3420 3421 err = eb_submit(&eb); 3422 3423 err_request: 3424 eb_requests_get(&eb); 3425 err = eb_requests_add(&eb, err); 3426 3427 if (eb.fences) 3428 signal_fence_array(&eb, eb.composite_fence ? 3429 eb.composite_fence : 3430 &eb.requests[0]->fence); 3431 3432 if (out_fence) { 3433 if (err == 0) { 3434 fd_install(out_fence_fd, out_fence->file); 3435 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3436 args->rsvd2 |= (u64)out_fence_fd << 32; 3437 out_fence_fd = -1; 3438 } else { 3439 fput(out_fence->file); 3440 } 3441 } 3442 3443 if (unlikely(eb.gem_context->syncobj)) { 3444 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3445 eb.composite_fence ? 3446 eb.composite_fence : 3447 &eb.requests[0]->fence); 3448 } 3449 3450 if (!out_fence && eb.composite_fence) 3451 dma_fence_put(eb.composite_fence); 3452 3453 eb_requests_put(&eb); 3454 3455 err_vma: 3456 eb_release_vmas(&eb, true); 3457 WARN_ON(err == -EDEADLK); 3458 i915_gem_ww_ctx_fini(&eb.ww); 3459 3460 if (eb.batch_pool) 3461 intel_gt_buffer_pool_put(eb.batch_pool); 3462 err_engine: 3463 eb_put_engine(&eb); 3464 err_context: 3465 i915_gem_context_put(eb.gem_context); 3466 err_destroy: 3467 eb_destroy(&eb); 3468 err_out_fence: 3469 if (out_fence_fd != -1) 3470 put_unused_fd(out_fence_fd); 3471 err_in_fence: 3472 dma_fence_put(in_fence); 3473 err_ext: 3474 put_fence_array(eb.fences, eb.num_fences); 3475 return err; 3476 } 3477 3478 static size_t eb_element_size(void) 3479 { 3480 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3481 } 3482 3483 static bool check_buffer_count(size_t count) 3484 { 3485 const size_t sz = eb_element_size(); 3486 3487 /* 3488 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3489 * array size (see eb_create()). Otherwise, we can accept an array as 3490 * large as can be addressed (though use large arrays at your peril)! 3491 */ 3492 3493 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3494 } 3495 3496 int 3497 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3498 struct drm_file *file) 3499 { 3500 struct drm_i915_private *i915 = to_i915(dev); 3501 struct drm_i915_gem_execbuffer2 *args = data; 3502 struct drm_i915_gem_exec_object2 *exec2_list; 3503 const size_t count = args->buffer_count; 3504 int err; 3505 3506 if (!check_buffer_count(count)) { 3507 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3508 return -EINVAL; 3509 } 3510 3511 err = i915_gem_check_execbuffer(args); 3512 if (err) 3513 return err; 3514 3515 /* Allocate extra slots for use by the command parser */ 3516 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3517 __GFP_NOWARN | GFP_KERNEL); 3518 if (exec2_list == NULL) { 3519 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3520 count); 3521 return -ENOMEM; 3522 } 3523 if (copy_from_user(exec2_list, 3524 u64_to_user_ptr(args->buffers_ptr), 3525 sizeof(*exec2_list) * count)) { 3526 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3527 kvfree(exec2_list); 3528 return -EFAULT; 3529 } 3530 3531 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3532 3533 /* 3534 * Now that we have begun execution of the batchbuffer, we ignore 3535 * any new error after this point. Also given that we have already 3536 * updated the associated relocations, we try to write out the current 3537 * object locations irrespective of any error. 3538 */ 3539 if (args->flags & __EXEC_HAS_RELOC) { 3540 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3541 u64_to_user_ptr(args->buffers_ptr); 3542 unsigned int i; 3543 3544 /* Copy the new buffer offsets back to the user's exec list. */ 3545 /* 3546 * Note: count * sizeof(*user_exec_list) does not overflow, 3547 * because we checked 'count' in check_buffer_count(). 3548 * 3549 * And this range already got effectively checked earlier 3550 * when we did the "copy_from_user()" above. 3551 */ 3552 if (!user_write_access_begin(user_exec_list, 3553 count * sizeof(*user_exec_list))) 3554 goto end; 3555 3556 for (i = 0; i < args->buffer_count; i++) { 3557 if (!(exec2_list[i].offset & UPDATE)) 3558 continue; 3559 3560 exec2_list[i].offset = 3561 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3562 unsafe_put_user(exec2_list[i].offset, 3563 &user_exec_list[i].offset, 3564 end_user); 3565 } 3566 end_user: 3567 user_write_access_end(); 3568 end:; 3569 } 3570 3571 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3572 kvfree(exec2_list); 3573 return err; 3574 } 3575