1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35 
36 struct eb_vma {
37 	struct i915_vma *vma;
38 	unsigned int flags;
39 
40 	/** This vma's place in the execbuf reservation list */
41 	struct drm_i915_gem_exec_object2 *exec;
42 	struct list_head bind_link;
43 	struct list_head reloc_link;
44 
45 	struct hlist_node node;
46 	u32 handle;
47 };
48 
49 enum {
50 	FORCE_CPU_RELOC = 1,
51 	FORCE_GTT_RELOC,
52 	FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55 
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64 
65 #define __EXEC_HAS_RELOC	BIT(31)
66 #define __EXEC_ENGINE_PINNED	BIT(30)
67 #define __EXEC_USERPTR_USED	BIT(29)
68 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
69 #define UPDATE			PIN_OFFSET_FIXED
70 
71 #define BATCH_OFFSET_BIAS (256*1024)
72 
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 	(__I915_EXEC_UNKNOWN_FLAGS | \
75 	 I915_EXEC_CONSTANTS_MASK  | \
76 	 I915_EXEC_RESOURCE_STREAMER)
77 
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 	22; \
84 })
85 #endif
86 
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237 
238 struct eb_fence {
239 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 	struct dma_fence *dma_fence;
241 	u64 value;
242 	struct dma_fence_chain *chain_fence;
243 };
244 
245 struct i915_execbuffer {
246 	struct drm_i915_private *i915; /** i915 backpointer */
247 	struct drm_file *file; /** per-file lookup tables and limits */
248 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 	struct eb_vma *vma;
251 
252 	struct intel_gt *gt; /* gt for the execbuf */
253 	struct intel_context *context; /* logical state for the request */
254 	struct i915_gem_context *gem_context; /** caller's context */
255 
256 	/** our requests to build */
257 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 	/** identity of the batch obj/vma */
259 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260 	struct i915_vma *trampoline; /** trampoline used for chaining */
261 
262 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
263 	struct dma_fence *composite_fence;
264 
265 	/** actual size of execobj[] as we may extend it for the cmdparser */
266 	unsigned int buffer_count;
267 
268 	/* number of batches in execbuf IOCTL */
269 	unsigned int num_batches;
270 
271 	/** list of vma not yet bound during reservation phase */
272 	struct list_head unbound;
273 
274 	/** list of vma that have execobj.relocation_count */
275 	struct list_head relocs;
276 
277 	struct i915_gem_ww_ctx ww;
278 
279 	/**
280 	 * Track the most recently used object for relocations, as we
281 	 * frequently have to perform multiple relocations within the same
282 	 * obj/page
283 	 */
284 	struct reloc_cache {
285 		struct drm_mm_node node; /** temporary GTT binding */
286 		unsigned long vaddr; /** Current kmap address */
287 		unsigned long page; /** Currently mapped page index */
288 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289 		bool use_64bit_reloc : 1;
290 		bool has_llc : 1;
291 		bool has_fence : 1;
292 		bool needs_unfenced : 1;
293 	} reloc_cache;
294 
295 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
296 
297 	/** Length of batch within object */
298 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299 	u32 batch_start_offset; /** Location within object of batch */
300 	u32 batch_flags; /** Flags composed for emit_bb_start() */
301 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302 
303 	/**
304 	 * Indicate either the size of the hastable used to resolve
305 	 * relocation handles, or if negative that we are using a direct
306 	 * index into the execobj[].
307 	 */
308 	int lut_size;
309 	struct hlist_head *buckets; /** ht for relocation handles */
310 
311 	struct eb_fence *fences;
312 	unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317 
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322 
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 		(intel_engine_using_cmd_parser(eb->context->engine) &&
327 		 eb->args->batch_len);
328 }
329 
330 static int eb_create(struct i915_execbuffer *eb)
331 {
332 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 		unsigned int size = 1 + ilog2(eb->buffer_count);
334 
335 		/*
336 		 * Without a 1:1 association between relocation handles and
337 		 * the execobject[] index, we instead create a hashtable.
338 		 * We size it dynamically based on available memory, starting
339 		 * first with 1:1 assocative hash and scaling back until
340 		 * the allocation succeeds.
341 		 *
342 		 * Later on we use a positive lut_size to indicate we are
343 		 * using this hashtable, and a negative value to indicate a
344 		 * direct lookup.
345 		 */
346 		do {
347 			gfp_t flags;
348 
349 			/* While we can still reduce the allocation size, don't
350 			 * raise a warning and allow the allocation to fail.
351 			 * On the last pass though, we want to try as hard
352 			 * as possible to perform the allocation and warn
353 			 * if it fails.
354 			 */
355 			flags = GFP_KERNEL;
356 			if (size > 1)
357 				flags |= __GFP_NORETRY | __GFP_NOWARN;
358 
359 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360 					      flags);
361 			if (eb->buckets)
362 				break;
363 		} while (--size);
364 
365 		if (unlikely(!size))
366 			return -ENOMEM;
367 
368 		eb->lut_size = size;
369 	} else {
370 		eb->lut_size = -eb->buffer_count;
371 	}
372 
373 	return 0;
374 }
375 
376 static bool
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378 		 const struct i915_vma *vma,
379 		 unsigned int flags)
380 {
381 	if (vma->node.size < entry->pad_to_size)
382 		return true;
383 
384 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385 		return true;
386 
387 	if (flags & EXEC_OBJECT_PINNED &&
388 	    vma->node.start != entry->offset)
389 		return true;
390 
391 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392 	    vma->node.start < BATCH_OFFSET_BIAS)
393 		return true;
394 
395 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396 	    (vma->node.start + vma->node.size + 4095) >> 32)
397 		return true;
398 
399 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400 	    !i915_vma_is_map_and_fenceable(vma))
401 		return true;
402 
403 	return false;
404 }
405 
406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407 			unsigned int exec_flags)
408 {
409 	u64 pin_flags = 0;
410 
411 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412 		pin_flags |= PIN_GLOBAL;
413 
414 	/*
415 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416 	 * limit address to the first 4GBs for unflagged objects.
417 	 */
418 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419 		pin_flags |= PIN_ZONE_4G;
420 
421 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422 		pin_flags |= PIN_MAPPABLE;
423 
424 	if (exec_flags & EXEC_OBJECT_PINNED)
425 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428 
429 	return pin_flags;
430 }
431 
432 static inline int
433 eb_pin_vma(struct i915_execbuffer *eb,
434 	   const struct drm_i915_gem_exec_object2 *entry,
435 	   struct eb_vma *ev)
436 {
437 	struct i915_vma *vma = ev->vma;
438 	u64 pin_flags;
439 	int err;
440 
441 	if (vma->node.size)
442 		pin_flags = vma->node.start;
443 	else
444 		pin_flags = entry->offset & PIN_OFFSET_MASK;
445 
446 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
447 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448 		pin_flags |= PIN_GLOBAL;
449 
450 	/* Attempt to reuse the current location if available */
451 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452 	if (err == -EDEADLK)
453 		return err;
454 
455 	if (unlikely(err)) {
456 		if (entry->flags & EXEC_OBJECT_PINNED)
457 			return err;
458 
459 		/* Failing that pick any _free_ space if suitable */
460 		err = i915_vma_pin_ww(vma, &eb->ww,
461 					     entry->pad_to_size,
462 					     entry->alignment,
463 					     eb_pin_flags(entry, ev->flags) |
464 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
465 		if (unlikely(err))
466 			return err;
467 	}
468 
469 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470 		err = i915_vma_pin_fence(vma);
471 		if (unlikely(err))
472 			return err;
473 
474 		if (vma->fence)
475 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476 	}
477 
478 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
479 	if (eb_vma_misplaced(entry, vma, ev->flags))
480 		return -EBADSLT;
481 
482 	return 0;
483 }
484 
485 static inline void
486 eb_unreserve_vma(struct eb_vma *ev)
487 {
488 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489 		__i915_vma_unpin_fence(ev->vma);
490 
491 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493 
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496 		struct drm_i915_gem_exec_object2 *entry,
497 		struct i915_vma *vma)
498 {
499 	/* Relocations are disallowed for all platforms after TGL-LP.  This
500 	 * also covers all platforms with local memory.
501 	 */
502 	if (entry->relocation_count &&
503 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504 		return -EINVAL;
505 
506 	if (unlikely(entry->flags & eb->invalid_flags))
507 		return -EINVAL;
508 
509 	if (unlikely(entry->alignment &&
510 		     !is_power_of_2_u64(entry->alignment)))
511 		return -EINVAL;
512 
513 	/*
514 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 	 * any non-page-aligned or non-canonical addresses.
516 	 */
517 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519 		return -EINVAL;
520 
521 	/* pad_to_size was once a reserved field, so sanitize it */
522 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 		if (unlikely(offset_in_page(entry->pad_to_size)))
524 			return -EINVAL;
525 	} else {
526 		entry->pad_to_size = 0;
527 	}
528 	/*
529 	 * From drm_mm perspective address space is continuous,
530 	 * so from this point we're always using non-canonical
531 	 * form internally.
532 	 */
533 	entry->offset = gen8_noncanonical_addr(entry->offset);
534 
535 	if (!eb->reloc_cache.has_fence) {
536 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537 	} else {
538 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 		     eb->reloc_cache.needs_unfenced) &&
540 		    i915_gem_object_is_tiled(vma->obj))
541 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 	}
543 
544 	return 0;
545 }
546 
547 static inline bool
548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549 {
550 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551 		buffer_idx < eb->num_batches :
552 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
553 }
554 
555 static int
556 eb_add_vma(struct i915_execbuffer *eb,
557 	   unsigned int *current_batch,
558 	   unsigned int i,
559 	   struct i915_vma *vma)
560 {
561 	struct drm_i915_private *i915 = eb->i915;
562 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
563 	struct eb_vma *ev = &eb->vma[i];
564 
565 	ev->vma = vma;
566 	ev->exec = entry;
567 	ev->flags = entry->flags;
568 
569 	if (eb->lut_size > 0) {
570 		ev->handle = entry->handle;
571 		hlist_add_head(&ev->node,
572 			       &eb->buckets[hash_32(entry->handle,
573 						    eb->lut_size)]);
574 	}
575 
576 	if (entry->relocation_count)
577 		list_add_tail(&ev->reloc_link, &eb->relocs);
578 
579 	/*
580 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
581 	 * to negative relocation deltas. Usually that works out ok since the
582 	 * relocate address is still positive, except when the batch is placed
583 	 * very low in the GTT. Ensure this doesn't happen.
584 	 *
585 	 * Note that actual hangs have only been observed on gen7, but for
586 	 * paranoia do it everywhere.
587 	 */
588 	if (is_batch_buffer(eb, i)) {
589 		if (entry->relocation_count &&
590 		    !(ev->flags & EXEC_OBJECT_PINNED))
591 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
592 		if (eb->reloc_cache.has_fence)
593 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
594 
595 		eb->batches[*current_batch] = ev;
596 
597 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598 			drm_dbg(&i915->drm,
599 				"Attempting to use self-modifying batch buffer\n");
600 			return -EINVAL;
601 		}
602 
603 		if (range_overflows_t(u64,
604 				      eb->batch_start_offset,
605 				      eb->args->batch_len,
606 				      ev->vma->size)) {
607 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608 			return -EINVAL;
609 		}
610 
611 		if (eb->args->batch_len == 0)
612 			eb->batch_len[*current_batch] = ev->vma->size -
613 				eb->batch_start_offset;
614 		else
615 			eb->batch_len[*current_batch] = eb->args->batch_len;
616 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617 			drm_dbg(&i915->drm, "Invalid batch length\n");
618 			return -EINVAL;
619 		}
620 
621 		++*current_batch;
622 	}
623 
624 	return 0;
625 }
626 
627 static inline int use_cpu_reloc(const struct reloc_cache *cache,
628 				const struct drm_i915_gem_object *obj)
629 {
630 	if (!i915_gem_object_has_struct_page(obj))
631 		return false;
632 
633 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634 		return true;
635 
636 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637 		return false;
638 
639 	return (cache->has_llc ||
640 		obj->cache_dirty ||
641 		obj->cache_level != I915_CACHE_NONE);
642 }
643 
644 static int eb_reserve_vma(struct i915_execbuffer *eb,
645 			  struct eb_vma *ev,
646 			  u64 pin_flags)
647 {
648 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
649 	struct i915_vma *vma = ev->vma;
650 	int err;
651 
652 	if (drm_mm_node_allocated(&vma->node) &&
653 	    eb_vma_misplaced(entry, vma, ev->flags)) {
654 		err = i915_vma_unbind(vma);
655 		if (err)
656 			return err;
657 	}
658 
659 	err = i915_vma_pin_ww(vma, &eb->ww,
660 			   entry->pad_to_size, entry->alignment,
661 			   eb_pin_flags(entry, ev->flags) | pin_flags);
662 	if (err)
663 		return err;
664 
665 	if (entry->offset != vma->node.start) {
666 		entry->offset = vma->node.start | UPDATE;
667 		eb->args->flags |= __EXEC_HAS_RELOC;
668 	}
669 
670 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
671 		err = i915_vma_pin_fence(vma);
672 		if (unlikely(err))
673 			return err;
674 
675 		if (vma->fence)
676 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
677 	}
678 
679 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
680 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
681 
682 	return 0;
683 }
684 
685 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
686 {
687 	const unsigned int count = eb->buffer_count;
688 	unsigned int i;
689 	struct list_head last;
690 	bool unpinned = false;
691 
692 	/* Resort *all* the objects into priority order */
693 	INIT_LIST_HEAD(&eb->unbound);
694 	INIT_LIST_HEAD(&last);
695 
696 	for (i = 0; i < count; i++) {
697 		struct eb_vma *ev = &eb->vma[i];
698 		unsigned int flags = ev->flags;
699 
700 		if (!force && flags & EXEC_OBJECT_PINNED &&
701 		    flags & __EXEC_OBJECT_HAS_PIN)
702 			continue;
703 
704 		unpinned = true;
705 		eb_unreserve_vma(ev);
706 
707 		if (flags & EXEC_OBJECT_PINNED)
708 			/* Pinned must have their slot */
709 			list_add(&ev->bind_link, &eb->unbound);
710 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711 			/* Map require the lowest 256MiB (aperture) */
712 			list_add_tail(&ev->bind_link, &eb->unbound);
713 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714 			/* Prioritise 4GiB region for restricted bo */
715 			list_add(&ev->bind_link, &last);
716 		else
717 			list_add_tail(&ev->bind_link, &last);
718 	}
719 
720 	list_splice_tail(&last, &eb->unbound);
721 	return unpinned;
722 }
723 
724 static int eb_reserve(struct i915_execbuffer *eb)
725 {
726 	struct eb_vma *ev;
727 	unsigned int pass;
728 	int err = 0;
729 	bool unpinned;
730 
731 	/*
732 	 * Attempt to pin all of the buffers into the GTT.
733 	 * This is done in 2 phases:
734 	 *
735 	 * 1. Unbind all objects that do not match the GTT constraints for
736 	 *    the execbuffer (fenceable, mappable, alignment etc).
737 	 * 2. Bind new objects.
738 	 *
739 	 * This avoid unnecessary unbinding of later objects in order to make
740 	 * room for the earlier objects *unless* we need to defragment.
741 	 *
742 	 * Defragmenting is skipped if all objects are pinned at a fixed location.
743 	 */
744 	for (pass = 0; pass <= 2; pass++) {
745 		int pin_flags = PIN_USER | PIN_VALIDATE;
746 
747 		if (pass == 0)
748 			pin_flags |= PIN_NONBLOCK;
749 
750 		if (pass >= 1)
751 			unpinned = eb_unbind(eb, pass == 2);
752 
753 		if (pass == 2) {
754 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
755 			if (!err) {
756 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757 				mutex_unlock(&eb->context->vm->mutex);
758 			}
759 			if (err)
760 				return err;
761 		}
762 
763 		list_for_each_entry(ev, &eb->unbound, bind_link) {
764 			err = eb_reserve_vma(eb, ev, pin_flags);
765 			if (err)
766 				break;
767 		}
768 
769 		if (err != -ENOSPC)
770 			break;
771 	}
772 
773 	return err;
774 }
775 
776 static int eb_select_context(struct i915_execbuffer *eb)
777 {
778 	struct i915_gem_context *ctx;
779 
780 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781 	if (unlikely(IS_ERR(ctx)))
782 		return PTR_ERR(ctx);
783 
784 	eb->gem_context = ctx;
785 	if (i915_gem_context_has_full_ppgtt(ctx))
786 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
787 
788 	return 0;
789 }
790 
791 static int __eb_add_lut(struct i915_execbuffer *eb,
792 			u32 handle, struct i915_vma *vma)
793 {
794 	struct i915_gem_context *ctx = eb->gem_context;
795 	struct i915_lut_handle *lut;
796 	int err;
797 
798 	lut = i915_lut_handle_alloc();
799 	if (unlikely(!lut))
800 		return -ENOMEM;
801 
802 	i915_vma_get(vma);
803 	if (!atomic_fetch_inc(&vma->open_count))
804 		i915_vma_reopen(vma);
805 	lut->handle = handle;
806 	lut->ctx = ctx;
807 
808 	/* Check that the context hasn't been closed in the meantime */
809 	err = -EINTR;
810 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
811 		if (likely(!i915_gem_context_is_closed(ctx)))
812 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
813 		else
814 			err = -ENOENT;
815 		if (err == 0) { /* And nor has this handle */
816 			struct drm_i915_gem_object *obj = vma->obj;
817 
818 			spin_lock(&obj->lut_lock);
819 			if (idr_find(&eb->file->object_idr, handle) == obj) {
820 				list_add(&lut->obj_link, &obj->lut_list);
821 			} else {
822 				radix_tree_delete(&ctx->handles_vma, handle);
823 				err = -ENOENT;
824 			}
825 			spin_unlock(&obj->lut_lock);
826 		}
827 		mutex_unlock(&ctx->lut_mutex);
828 	}
829 	if (unlikely(err))
830 		goto err;
831 
832 	return 0;
833 
834 err:
835 	i915_vma_close(vma);
836 	i915_vma_put(vma);
837 	i915_lut_handle_free(lut);
838 	return err;
839 }
840 
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842 {
843 	struct i915_address_space *vm = eb->context->vm;
844 
845 	do {
846 		struct drm_i915_gem_object *obj;
847 		struct i915_vma *vma;
848 		int err;
849 
850 		rcu_read_lock();
851 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
852 		if (likely(vma && vma->vm == vm))
853 			vma = i915_vma_tryget(vma);
854 		rcu_read_unlock();
855 		if (likely(vma))
856 			return vma;
857 
858 		obj = i915_gem_object_lookup(eb->file, handle);
859 		if (unlikely(!obj))
860 			return ERR_PTR(-ENOENT);
861 
862 		/*
863 		 * If the user has opted-in for protected-object tracking, make
864 		 * sure the object encryption can be used.
865 		 * We only need to do this when the object is first used with
866 		 * this context, because the context itself will be banned when
867 		 * the protected objects become invalid.
868 		 */
869 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870 		    i915_gem_object_is_protected(obj)) {
871 			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
872 			if (err) {
873 				i915_gem_object_put(obj);
874 				return ERR_PTR(err);
875 			}
876 		}
877 
878 		vma = i915_vma_instance(obj, vm, NULL);
879 		if (IS_ERR(vma)) {
880 			i915_gem_object_put(obj);
881 			return vma;
882 		}
883 
884 		err = __eb_add_lut(eb, handle, vma);
885 		if (likely(!err))
886 			return vma;
887 
888 		i915_gem_object_put(obj);
889 		if (err != -EEXIST)
890 			return ERR_PTR(err);
891 	} while (1);
892 }
893 
894 static int eb_lookup_vmas(struct i915_execbuffer *eb)
895 {
896 	unsigned int i, current_batch = 0;
897 	int err = 0;
898 
899 	INIT_LIST_HEAD(&eb->relocs);
900 
901 	for (i = 0; i < eb->buffer_count; i++) {
902 		struct i915_vma *vma;
903 
904 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
905 		if (IS_ERR(vma)) {
906 			err = PTR_ERR(vma);
907 			goto err;
908 		}
909 
910 		err = eb_validate_vma(eb, &eb->exec[i], vma);
911 		if (unlikely(err)) {
912 			i915_vma_put(vma);
913 			goto err;
914 		}
915 
916 		err = eb_add_vma(eb, &current_batch, i, vma);
917 		if (err)
918 			return err;
919 
920 		if (i915_gem_object_is_userptr(vma->obj)) {
921 			err = i915_gem_object_userptr_submit_init(vma->obj);
922 			if (err) {
923 				if (i + 1 < eb->buffer_count) {
924 					/*
925 					 * Execbuffer code expects last vma entry to be NULL,
926 					 * since we already initialized this entry,
927 					 * set the next value to NULL or we mess up
928 					 * cleanup handling.
929 					 */
930 					eb->vma[i + 1].vma = NULL;
931 				}
932 
933 				return err;
934 			}
935 
936 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937 			eb->args->flags |= __EXEC_USERPTR_USED;
938 		}
939 	}
940 
941 	return 0;
942 
943 err:
944 	eb->vma[i].vma = NULL;
945 	return err;
946 }
947 
948 static int eb_lock_vmas(struct i915_execbuffer *eb)
949 {
950 	unsigned int i;
951 	int err;
952 
953 	for (i = 0; i < eb->buffer_count; i++) {
954 		struct eb_vma *ev = &eb->vma[i];
955 		struct i915_vma *vma = ev->vma;
956 
957 		err = i915_gem_object_lock(vma->obj, &eb->ww);
958 		if (err)
959 			return err;
960 	}
961 
962 	return 0;
963 }
964 
965 static int eb_validate_vmas(struct i915_execbuffer *eb)
966 {
967 	unsigned int i;
968 	int err;
969 
970 	INIT_LIST_HEAD(&eb->unbound);
971 
972 	err = eb_lock_vmas(eb);
973 	if (err)
974 		return err;
975 
976 	for (i = 0; i < eb->buffer_count; i++) {
977 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978 		struct eb_vma *ev = &eb->vma[i];
979 		struct i915_vma *vma = ev->vma;
980 
981 		err = eb_pin_vma(eb, entry, ev);
982 		if (err == -EDEADLK)
983 			return err;
984 
985 		if (!err) {
986 			if (entry->offset != vma->node.start) {
987 				entry->offset = vma->node.start | UPDATE;
988 				eb->args->flags |= __EXEC_HAS_RELOC;
989 			}
990 		} else {
991 			eb_unreserve_vma(ev);
992 
993 			list_add_tail(&ev->bind_link, &eb->unbound);
994 			if (drm_mm_node_allocated(&vma->node)) {
995 				err = i915_vma_unbind(vma);
996 				if (err)
997 					return err;
998 			}
999 		}
1000 
1001 		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
1002 			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
1003 			if (err)
1004 				return err;
1005 		}
1006 
1007 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1008 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1009 	}
1010 
1011 	if (!list_empty(&eb->unbound))
1012 		return eb_reserve(eb);
1013 
1014 	return 0;
1015 }
1016 
1017 static struct eb_vma *
1018 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1019 {
1020 	if (eb->lut_size < 0) {
1021 		if (handle >= -eb->lut_size)
1022 			return NULL;
1023 		return &eb->vma[handle];
1024 	} else {
1025 		struct hlist_head *head;
1026 		struct eb_vma *ev;
1027 
1028 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1029 		hlist_for_each_entry(ev, head, node) {
1030 			if (ev->handle == handle)
1031 				return ev;
1032 		}
1033 		return NULL;
1034 	}
1035 }
1036 
1037 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1038 {
1039 	const unsigned int count = eb->buffer_count;
1040 	unsigned int i;
1041 
1042 	for (i = 0; i < count; i++) {
1043 		struct eb_vma *ev = &eb->vma[i];
1044 		struct i915_vma *vma = ev->vma;
1045 
1046 		if (!vma)
1047 			break;
1048 
1049 		eb_unreserve_vma(ev);
1050 
1051 		if (final)
1052 			i915_vma_put(vma);
1053 	}
1054 
1055 	eb_capture_release(eb);
1056 	eb_unpin_engine(eb);
1057 }
1058 
1059 static void eb_destroy(const struct i915_execbuffer *eb)
1060 {
1061 	if (eb->lut_size > 0)
1062 		kfree(eb->buckets);
1063 }
1064 
1065 static inline u64
1066 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1067 		  const struct i915_vma *target)
1068 {
1069 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1070 }
1071 
1072 static void reloc_cache_init(struct reloc_cache *cache,
1073 			     struct drm_i915_private *i915)
1074 {
1075 	cache->page = -1;
1076 	cache->vaddr = 0;
1077 	/* Must be a variable in the struct to allow GCC to unroll. */
1078 	cache->graphics_ver = GRAPHICS_VER(i915);
1079 	cache->has_llc = HAS_LLC(i915);
1080 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1081 	cache->has_fence = cache->graphics_ver < 4;
1082 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1083 	cache->node.flags = 0;
1084 }
1085 
1086 static inline void *unmask_page(unsigned long p)
1087 {
1088 	return (void *)(uintptr_t)(p & PAGE_MASK);
1089 }
1090 
1091 static inline unsigned int unmask_flags(unsigned long p)
1092 {
1093 	return p & ~PAGE_MASK;
1094 }
1095 
1096 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1097 
1098 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1099 {
1100 	struct drm_i915_private *i915 =
1101 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1102 	return to_gt(i915)->ggtt;
1103 }
1104 
1105 static void reloc_cache_unmap(struct reloc_cache *cache)
1106 {
1107 	void *vaddr;
1108 
1109 	if (!cache->vaddr)
1110 		return;
1111 
1112 	vaddr = unmask_page(cache->vaddr);
1113 	if (cache->vaddr & KMAP)
1114 		kunmap_atomic(vaddr);
1115 	else
1116 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1117 }
1118 
1119 static void reloc_cache_remap(struct reloc_cache *cache,
1120 			      struct drm_i915_gem_object *obj)
1121 {
1122 	void *vaddr;
1123 
1124 	if (!cache->vaddr)
1125 		return;
1126 
1127 	if (cache->vaddr & KMAP) {
1128 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1129 
1130 		vaddr = kmap_atomic(page);
1131 		cache->vaddr = unmask_flags(cache->vaddr) |
1132 			(unsigned long)vaddr;
1133 	} else {
1134 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1135 		unsigned long offset;
1136 
1137 		offset = cache->node.start;
1138 		if (!drm_mm_node_allocated(&cache->node))
1139 			offset += cache->page << PAGE_SHIFT;
1140 
1141 		cache->vaddr = (unsigned long)
1142 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1143 	}
1144 }
1145 
1146 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1147 {
1148 	void *vaddr;
1149 
1150 	if (!cache->vaddr)
1151 		return;
1152 
1153 	vaddr = unmask_page(cache->vaddr);
1154 	if (cache->vaddr & KMAP) {
1155 		struct drm_i915_gem_object *obj =
1156 			(struct drm_i915_gem_object *)cache->node.mm;
1157 		if (cache->vaddr & CLFLUSH_AFTER)
1158 			mb();
1159 
1160 		kunmap_atomic(vaddr);
1161 		i915_gem_object_finish_access(obj);
1162 	} else {
1163 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1164 
1165 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1166 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1167 
1168 		if (drm_mm_node_allocated(&cache->node)) {
1169 			ggtt->vm.clear_range(&ggtt->vm,
1170 					     cache->node.start,
1171 					     cache->node.size);
1172 			mutex_lock(&ggtt->vm.mutex);
1173 			drm_mm_remove_node(&cache->node);
1174 			mutex_unlock(&ggtt->vm.mutex);
1175 		} else {
1176 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1177 		}
1178 	}
1179 
1180 	cache->vaddr = 0;
1181 	cache->page = -1;
1182 }
1183 
1184 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1185 			struct reloc_cache *cache,
1186 			unsigned long pageno)
1187 {
1188 	void *vaddr;
1189 	struct page *page;
1190 
1191 	if (cache->vaddr) {
1192 		kunmap_atomic(unmask_page(cache->vaddr));
1193 	} else {
1194 		unsigned int flushes;
1195 		int err;
1196 
1197 		err = i915_gem_object_prepare_write(obj, &flushes);
1198 		if (err)
1199 			return ERR_PTR(err);
1200 
1201 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1202 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1203 
1204 		cache->vaddr = flushes | KMAP;
1205 		cache->node.mm = (void *)obj;
1206 		if (flushes)
1207 			mb();
1208 	}
1209 
1210 	page = i915_gem_object_get_page(obj, pageno);
1211 	if (!obj->mm.dirty)
1212 		set_page_dirty(page);
1213 
1214 	vaddr = kmap_atomic(page);
1215 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1216 	cache->page = pageno;
1217 
1218 	return vaddr;
1219 }
1220 
1221 static void *reloc_iomap(struct i915_vma *batch,
1222 			 struct i915_execbuffer *eb,
1223 			 unsigned long page)
1224 {
1225 	struct drm_i915_gem_object *obj = batch->obj;
1226 	struct reloc_cache *cache = &eb->reloc_cache;
1227 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1228 	unsigned long offset;
1229 	void *vaddr;
1230 
1231 	if (cache->vaddr) {
1232 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1233 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1234 	} else {
1235 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1236 		int err;
1237 
1238 		if (i915_gem_object_is_tiled(obj))
1239 			return ERR_PTR(-EINVAL);
1240 
1241 		if (use_cpu_reloc(cache, obj))
1242 			return NULL;
1243 
1244 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1245 		if (err)
1246 			return ERR_PTR(err);
1247 
1248 		/*
1249 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1250 		 * VMA from the object list because we no longer pin.
1251 		 *
1252 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1253 		 * is not inside ggtt, or the batch buffer is not misplaced.
1254 		 */
1255 		if (!i915_is_ggtt(batch->vm) ||
1256 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1257 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1258 							  PIN_MAPPABLE |
1259 							  PIN_NONBLOCK /* NOWARN */ |
1260 							  PIN_NOEVICT);
1261 		}
1262 
1263 		if (vma == ERR_PTR(-EDEADLK))
1264 			return vma;
1265 
1266 		if (IS_ERR(vma)) {
1267 			memset(&cache->node, 0, sizeof(cache->node));
1268 			mutex_lock(&ggtt->vm.mutex);
1269 			err = drm_mm_insert_node_in_range
1270 				(&ggtt->vm.mm, &cache->node,
1271 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1272 				 0, ggtt->mappable_end,
1273 				 DRM_MM_INSERT_LOW);
1274 			mutex_unlock(&ggtt->vm.mutex);
1275 			if (err) /* no inactive aperture space, use cpu reloc */
1276 				return NULL;
1277 		} else {
1278 			cache->node.start = vma->node.start;
1279 			cache->node.mm = (void *)vma;
1280 		}
1281 	}
1282 
1283 	offset = cache->node.start;
1284 	if (drm_mm_node_allocated(&cache->node)) {
1285 		ggtt->vm.insert_page(&ggtt->vm,
1286 				     i915_gem_object_get_dma_address(obj, page),
1287 				     offset, I915_CACHE_NONE, 0);
1288 	} else {
1289 		offset += page << PAGE_SHIFT;
1290 	}
1291 
1292 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1293 							 offset);
1294 	cache->page = page;
1295 	cache->vaddr = (unsigned long)vaddr;
1296 
1297 	return vaddr;
1298 }
1299 
1300 static void *reloc_vaddr(struct i915_vma *vma,
1301 			 struct i915_execbuffer *eb,
1302 			 unsigned long page)
1303 {
1304 	struct reloc_cache *cache = &eb->reloc_cache;
1305 	void *vaddr;
1306 
1307 	if (cache->page == page) {
1308 		vaddr = unmask_page(cache->vaddr);
1309 	} else {
1310 		vaddr = NULL;
1311 		if ((cache->vaddr & KMAP) == 0)
1312 			vaddr = reloc_iomap(vma, eb, page);
1313 		if (!vaddr)
1314 			vaddr = reloc_kmap(vma->obj, cache, page);
1315 	}
1316 
1317 	return vaddr;
1318 }
1319 
1320 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1321 {
1322 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1323 		if (flushes & CLFLUSH_BEFORE) {
1324 			clflushopt(addr);
1325 			mb();
1326 		}
1327 
1328 		*addr = value;
1329 
1330 		/*
1331 		 * Writes to the same cacheline are serialised by the CPU
1332 		 * (including clflush). On the write path, we only require
1333 		 * that it hits memory in an orderly fashion and place
1334 		 * mb barriers at the start and end of the relocation phase
1335 		 * to ensure ordering of clflush wrt to the system.
1336 		 */
1337 		if (flushes & CLFLUSH_AFTER)
1338 			clflushopt(addr);
1339 	} else
1340 		*addr = value;
1341 }
1342 
1343 static u64
1344 relocate_entry(struct i915_vma *vma,
1345 	       const struct drm_i915_gem_relocation_entry *reloc,
1346 	       struct i915_execbuffer *eb,
1347 	       const struct i915_vma *target)
1348 {
1349 	u64 target_addr = relocation_target(reloc, target);
1350 	u64 offset = reloc->offset;
1351 	bool wide = eb->reloc_cache.use_64bit_reloc;
1352 	void *vaddr;
1353 
1354 repeat:
1355 	vaddr = reloc_vaddr(vma, eb,
1356 			    offset >> PAGE_SHIFT);
1357 	if (IS_ERR(vaddr))
1358 		return PTR_ERR(vaddr);
1359 
1360 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1361 	clflush_write32(vaddr + offset_in_page(offset),
1362 			lower_32_bits(target_addr),
1363 			eb->reloc_cache.vaddr);
1364 
1365 	if (wide) {
1366 		offset += sizeof(u32);
1367 		target_addr >>= 32;
1368 		wide = false;
1369 		goto repeat;
1370 	}
1371 
1372 	return target->node.start | UPDATE;
1373 }
1374 
1375 static u64
1376 eb_relocate_entry(struct i915_execbuffer *eb,
1377 		  struct eb_vma *ev,
1378 		  const struct drm_i915_gem_relocation_entry *reloc)
1379 {
1380 	struct drm_i915_private *i915 = eb->i915;
1381 	struct eb_vma *target;
1382 	int err;
1383 
1384 	/* we've already hold a reference to all valid objects */
1385 	target = eb_get_vma(eb, reloc->target_handle);
1386 	if (unlikely(!target))
1387 		return -ENOENT;
1388 
1389 	/* Validate that the target is in a valid r/w GPU domain */
1390 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1391 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1392 			  "target %d offset %d "
1393 			  "read %08x write %08x",
1394 			  reloc->target_handle,
1395 			  (int) reloc->offset,
1396 			  reloc->read_domains,
1397 			  reloc->write_domain);
1398 		return -EINVAL;
1399 	}
1400 	if (unlikely((reloc->write_domain | reloc->read_domains)
1401 		     & ~I915_GEM_GPU_DOMAINS)) {
1402 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1403 			  "target %d offset %d "
1404 			  "read %08x write %08x",
1405 			  reloc->target_handle,
1406 			  (int) reloc->offset,
1407 			  reloc->read_domains,
1408 			  reloc->write_domain);
1409 		return -EINVAL;
1410 	}
1411 
1412 	if (reloc->write_domain) {
1413 		target->flags |= EXEC_OBJECT_WRITE;
1414 
1415 		/*
1416 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1417 		 * for MI and pipe_control writes because the gpu doesn't
1418 		 * properly redirect them through the ppgtt for non_secure
1419 		 * batchbuffers.
1420 		 */
1421 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1422 		    GRAPHICS_VER(eb->i915) == 6 &&
1423 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1424 			struct i915_vma *vma = target->vma;
1425 
1426 			reloc_cache_unmap(&eb->reloc_cache);
1427 			mutex_lock(&vma->vm->mutex);
1428 			err = i915_vma_bind(target->vma,
1429 					    target->vma->obj->cache_level,
1430 					    PIN_GLOBAL, NULL, NULL);
1431 			mutex_unlock(&vma->vm->mutex);
1432 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1433 			if (err)
1434 				return err;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * If the relocation already has the right value in it, no
1440 	 * more work needs to be done.
1441 	 */
1442 	if (!DBG_FORCE_RELOC &&
1443 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1444 		return 0;
1445 
1446 	/* Check that the relocation address is valid... */
1447 	if (unlikely(reloc->offset >
1448 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1449 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1450 			  "target %d offset %d size %d.\n",
1451 			  reloc->target_handle,
1452 			  (int)reloc->offset,
1453 			  (int)ev->vma->size);
1454 		return -EINVAL;
1455 	}
1456 	if (unlikely(reloc->offset & 3)) {
1457 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1458 			  "target %d offset %d.\n",
1459 			  reloc->target_handle,
1460 			  (int)reloc->offset);
1461 		return -EINVAL;
1462 	}
1463 
1464 	/*
1465 	 * If we write into the object, we need to force the synchronisation
1466 	 * barrier, either with an asynchronous clflush or if we executed the
1467 	 * patching using the GPU (though that should be serialised by the
1468 	 * timeline). To be completely sure, and since we are required to
1469 	 * do relocations we are already stalling, disable the user's opt
1470 	 * out of our synchronisation.
1471 	 */
1472 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1473 
1474 	/* and update the user's relocation entry */
1475 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1476 }
1477 
1478 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1479 {
1480 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1481 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1482 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1483 	struct drm_i915_gem_relocation_entry __user *urelocs =
1484 		u64_to_user_ptr(entry->relocs_ptr);
1485 	unsigned long remain = entry->relocation_count;
1486 
1487 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1488 		return -EINVAL;
1489 
1490 	/*
1491 	 * We must check that the entire relocation array is safe
1492 	 * to read. However, if the array is not writable the user loses
1493 	 * the updated relocation values.
1494 	 */
1495 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1496 		return -EFAULT;
1497 
1498 	do {
1499 		struct drm_i915_gem_relocation_entry *r = stack;
1500 		unsigned int count =
1501 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1502 		unsigned int copied;
1503 
1504 		/*
1505 		 * This is the fast path and we cannot handle a pagefault
1506 		 * whilst holding the struct mutex lest the user pass in the
1507 		 * relocations contained within a mmaped bo. For in such a case
1508 		 * we, the page fault handler would call i915_gem_fault() and
1509 		 * we would try to acquire the struct mutex again. Obviously
1510 		 * this is bad and so lockdep complains vehemently.
1511 		 */
1512 		pagefault_disable();
1513 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1514 		pagefault_enable();
1515 		if (unlikely(copied)) {
1516 			remain = -EFAULT;
1517 			goto out;
1518 		}
1519 
1520 		remain -= count;
1521 		do {
1522 			u64 offset = eb_relocate_entry(eb, ev, r);
1523 
1524 			if (likely(offset == 0)) {
1525 			} else if ((s64)offset < 0) {
1526 				remain = (int)offset;
1527 				goto out;
1528 			} else {
1529 				/*
1530 				 * Note that reporting an error now
1531 				 * leaves everything in an inconsistent
1532 				 * state as we have *already* changed
1533 				 * the relocation value inside the
1534 				 * object. As we have not changed the
1535 				 * reloc.presumed_offset or will not
1536 				 * change the execobject.offset, on the
1537 				 * call we may not rewrite the value
1538 				 * inside the object, leaving it
1539 				 * dangling and causing a GPU hang. Unless
1540 				 * userspace dynamically rebuilds the
1541 				 * relocations on each execbuf rather than
1542 				 * presume a static tree.
1543 				 *
1544 				 * We did previously check if the relocations
1545 				 * were writable (access_ok), an error now
1546 				 * would be a strange race with mprotect,
1547 				 * having already demonstrated that we
1548 				 * can read from this userspace address.
1549 				 */
1550 				offset = gen8_canonical_addr(offset & ~UPDATE);
1551 				__put_user(offset,
1552 					   &urelocs[r - stack].presumed_offset);
1553 			}
1554 		} while (r++, --count);
1555 		urelocs += ARRAY_SIZE(stack);
1556 	} while (remain);
1557 out:
1558 	reloc_cache_reset(&eb->reloc_cache, eb);
1559 	return remain;
1560 }
1561 
1562 static int
1563 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1564 {
1565 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1566 	struct drm_i915_gem_relocation_entry *relocs =
1567 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1568 	unsigned int i;
1569 	int err;
1570 
1571 	for (i = 0; i < entry->relocation_count; i++) {
1572 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1573 
1574 		if ((s64)offset < 0) {
1575 			err = (int)offset;
1576 			goto err;
1577 		}
1578 	}
1579 	err = 0;
1580 err:
1581 	reloc_cache_reset(&eb->reloc_cache, eb);
1582 	return err;
1583 }
1584 
1585 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1586 {
1587 	const char __user *addr, *end;
1588 	unsigned long size;
1589 	char __maybe_unused c;
1590 
1591 	size = entry->relocation_count;
1592 	if (size == 0)
1593 		return 0;
1594 
1595 	if (size > N_RELOC(ULONG_MAX))
1596 		return -EINVAL;
1597 
1598 	addr = u64_to_user_ptr(entry->relocs_ptr);
1599 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1600 	if (!access_ok(addr, size))
1601 		return -EFAULT;
1602 
1603 	end = addr + size;
1604 	for (; addr < end; addr += PAGE_SIZE) {
1605 		int err = __get_user(c, addr);
1606 		if (err)
1607 			return err;
1608 	}
1609 	return __get_user(c, end - 1);
1610 }
1611 
1612 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1613 {
1614 	struct drm_i915_gem_relocation_entry *relocs;
1615 	const unsigned int count = eb->buffer_count;
1616 	unsigned int i;
1617 	int err;
1618 
1619 	for (i = 0; i < count; i++) {
1620 		const unsigned int nreloc = eb->exec[i].relocation_count;
1621 		struct drm_i915_gem_relocation_entry __user *urelocs;
1622 		unsigned long size;
1623 		unsigned long copied;
1624 
1625 		if (nreloc == 0)
1626 			continue;
1627 
1628 		err = check_relocations(&eb->exec[i]);
1629 		if (err)
1630 			goto err;
1631 
1632 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1633 		size = nreloc * sizeof(*relocs);
1634 
1635 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1636 		if (!relocs) {
1637 			err = -ENOMEM;
1638 			goto err;
1639 		}
1640 
1641 		/* copy_from_user is limited to < 4GiB */
1642 		copied = 0;
1643 		do {
1644 			unsigned int len =
1645 				min_t(u64, BIT_ULL(31), size - copied);
1646 
1647 			if (__copy_from_user((char *)relocs + copied,
1648 					     (char __user *)urelocs + copied,
1649 					     len))
1650 				goto end;
1651 
1652 			copied += len;
1653 		} while (copied < size);
1654 
1655 		/*
1656 		 * As we do not update the known relocation offsets after
1657 		 * relocating (due to the complexities in lock handling),
1658 		 * we need to mark them as invalid now so that we force the
1659 		 * relocation processing next time. Just in case the target
1660 		 * object is evicted and then rebound into its old
1661 		 * presumed_offset before the next execbuffer - if that
1662 		 * happened we would make the mistake of assuming that the
1663 		 * relocations were valid.
1664 		 */
1665 		if (!user_access_begin(urelocs, size))
1666 			goto end;
1667 
1668 		for (copied = 0; copied < nreloc; copied++)
1669 			unsafe_put_user(-1,
1670 					&urelocs[copied].presumed_offset,
1671 					end_user);
1672 		user_access_end();
1673 
1674 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1675 	}
1676 
1677 	return 0;
1678 
1679 end_user:
1680 	user_access_end();
1681 end:
1682 	kvfree(relocs);
1683 	err = -EFAULT;
1684 err:
1685 	while (i--) {
1686 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1687 		if (eb->exec[i].relocation_count)
1688 			kvfree(relocs);
1689 	}
1690 	return err;
1691 }
1692 
1693 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1694 {
1695 	const unsigned int count = eb->buffer_count;
1696 	unsigned int i;
1697 
1698 	for (i = 0; i < count; i++) {
1699 		int err;
1700 
1701 		err = check_relocations(&eb->exec[i]);
1702 		if (err)
1703 			return err;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1710 {
1711 	const unsigned int count = eb->buffer_count;
1712 	unsigned int i;
1713 	int ret;
1714 
1715 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1716 		return 0;
1717 
1718 	for (i = 0; i < count; i++) {
1719 		struct eb_vma *ev = &eb->vma[i];
1720 
1721 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1722 			continue;
1723 
1724 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1725 		if (ret)
1726 			return ret;
1727 
1728 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1735 {
1736 	bool have_copy = false;
1737 	struct eb_vma *ev;
1738 	int err = 0;
1739 
1740 repeat:
1741 	if (signal_pending(current)) {
1742 		err = -ERESTARTSYS;
1743 		goto out;
1744 	}
1745 
1746 	/* We may process another execbuffer during the unlock... */
1747 	eb_release_vmas(eb, false);
1748 	i915_gem_ww_ctx_fini(&eb->ww);
1749 
1750 	/*
1751 	 * We take 3 passes through the slowpatch.
1752 	 *
1753 	 * 1 - we try to just prefault all the user relocation entries and
1754 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1755 	 *
1756 	 * 2 - we copy the user entries to a local buffer here outside of the
1757 	 * local and allow ourselves to wait upon any rendering before
1758 	 * relocations
1759 	 *
1760 	 * 3 - we already have a local copy of the relocation entries, but
1761 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1762 	 */
1763 	if (!err) {
1764 		err = eb_prefault_relocations(eb);
1765 	} else if (!have_copy) {
1766 		err = eb_copy_relocations(eb);
1767 		have_copy = err == 0;
1768 	} else {
1769 		cond_resched();
1770 		err = 0;
1771 	}
1772 
1773 	if (!err)
1774 		err = eb_reinit_userptr(eb);
1775 
1776 	i915_gem_ww_ctx_init(&eb->ww, true);
1777 	if (err)
1778 		goto out;
1779 
1780 	/* reacquire the objects */
1781 repeat_validate:
1782 	err = eb_pin_engine(eb, false);
1783 	if (err)
1784 		goto err;
1785 
1786 	err = eb_validate_vmas(eb);
1787 	if (err)
1788 		goto err;
1789 
1790 	GEM_BUG_ON(!eb->batches[0]);
1791 
1792 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1793 		if (!have_copy) {
1794 			err = eb_relocate_vma(eb, ev);
1795 			if (err)
1796 				break;
1797 		} else {
1798 			err = eb_relocate_vma_slow(eb, ev);
1799 			if (err)
1800 				break;
1801 		}
1802 	}
1803 
1804 	if (err == -EDEADLK)
1805 		goto err;
1806 
1807 	if (err && !have_copy)
1808 		goto repeat;
1809 
1810 	if (err)
1811 		goto err;
1812 
1813 	/* as last step, parse the command buffer */
1814 	err = eb_parse(eb);
1815 	if (err)
1816 		goto err;
1817 
1818 	/*
1819 	 * Leave the user relocations as are, this is the painfully slow path,
1820 	 * and we want to avoid the complication of dropping the lock whilst
1821 	 * having buffers reserved in the aperture and so causing spurious
1822 	 * ENOSPC for random operations.
1823 	 */
1824 
1825 err:
1826 	if (err == -EDEADLK) {
1827 		eb_release_vmas(eb, false);
1828 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1829 		if (!err)
1830 			goto repeat_validate;
1831 	}
1832 
1833 	if (err == -EAGAIN)
1834 		goto repeat;
1835 
1836 out:
1837 	if (have_copy) {
1838 		const unsigned int count = eb->buffer_count;
1839 		unsigned int i;
1840 
1841 		for (i = 0; i < count; i++) {
1842 			const struct drm_i915_gem_exec_object2 *entry =
1843 				&eb->exec[i];
1844 			struct drm_i915_gem_relocation_entry *relocs;
1845 
1846 			if (!entry->relocation_count)
1847 				continue;
1848 
1849 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1850 			kvfree(relocs);
1851 		}
1852 	}
1853 
1854 	return err;
1855 }
1856 
1857 static int eb_relocate_parse(struct i915_execbuffer *eb)
1858 {
1859 	int err;
1860 	bool throttle = true;
1861 
1862 retry:
1863 	err = eb_pin_engine(eb, throttle);
1864 	if (err) {
1865 		if (err != -EDEADLK)
1866 			return err;
1867 
1868 		goto err;
1869 	}
1870 
1871 	/* only throttle once, even if we didn't need to throttle */
1872 	throttle = false;
1873 
1874 	err = eb_validate_vmas(eb);
1875 	if (err == -EAGAIN)
1876 		goto slow;
1877 	else if (err)
1878 		goto err;
1879 
1880 	/* The objects are in their final locations, apply the relocations. */
1881 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1882 		struct eb_vma *ev;
1883 
1884 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1885 			err = eb_relocate_vma(eb, ev);
1886 			if (err)
1887 				break;
1888 		}
1889 
1890 		if (err == -EDEADLK)
1891 			goto err;
1892 		else if (err)
1893 			goto slow;
1894 	}
1895 
1896 	if (!err)
1897 		err = eb_parse(eb);
1898 
1899 err:
1900 	if (err == -EDEADLK) {
1901 		eb_release_vmas(eb, false);
1902 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1903 		if (!err)
1904 			goto retry;
1905 	}
1906 
1907 	return err;
1908 
1909 slow:
1910 	err = eb_relocate_parse_slow(eb);
1911 	if (err)
1912 		/*
1913 		 * If the user expects the execobject.offset and
1914 		 * reloc.presumed_offset to be an exact match,
1915 		 * as for using NO_RELOC, then we cannot update
1916 		 * the execobject.offset until we have completed
1917 		 * relocation.
1918 		 */
1919 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1920 
1921 	return err;
1922 }
1923 
1924 /*
1925  * Using two helper loops for the order of which requests / batches are created
1926  * and added the to backend. Requests are created in order from the parent to
1927  * the last child. Requests are added in the reverse order, from the last child
1928  * to parent. This is done for locking reasons as the timeline lock is acquired
1929  * during request creation and released when the request is added to the
1930  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1931  * the ordering.
1932  */
1933 #define for_each_batch_create_order(_eb, _i) \
1934 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1935 #define for_each_batch_add_order(_eb, _i) \
1936 	BUILD_BUG_ON(!typecheck(int, _i)); \
1937 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1938 
1939 static struct i915_request *
1940 eb_find_first_request_added(struct i915_execbuffer *eb)
1941 {
1942 	int i;
1943 
1944 	for_each_batch_add_order(eb, i)
1945 		if (eb->requests[i])
1946 			return eb->requests[i];
1947 
1948 	GEM_BUG_ON("Request not found");
1949 
1950 	return NULL;
1951 }
1952 
1953 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1954 
1955 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1956 static void eb_capture_stage(struct i915_execbuffer *eb)
1957 {
1958 	const unsigned int count = eb->buffer_count;
1959 	unsigned int i = count, j;
1960 
1961 	while (i--) {
1962 		struct eb_vma *ev = &eb->vma[i];
1963 		struct i915_vma *vma = ev->vma;
1964 		unsigned int flags = ev->flags;
1965 
1966 		if (!(flags & EXEC_OBJECT_CAPTURE))
1967 			continue;
1968 
1969 		for_each_batch_create_order(eb, j) {
1970 			struct i915_capture_list *capture;
1971 
1972 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1973 			if (!capture)
1974 				continue;
1975 
1976 			capture->next = eb->capture_lists[j];
1977 			capture->vma_res = i915_vma_resource_get(vma->resource);
1978 			eb->capture_lists[j] = capture;
1979 		}
1980 	}
1981 }
1982 
1983 /* Commit once we're in the critical path */
1984 static void eb_capture_commit(struct i915_execbuffer *eb)
1985 {
1986 	unsigned int j;
1987 
1988 	for_each_batch_create_order(eb, j) {
1989 		struct i915_request *rq = eb->requests[j];
1990 
1991 		if (!rq)
1992 			break;
1993 
1994 		rq->capture_list = eb->capture_lists[j];
1995 		eb->capture_lists[j] = NULL;
1996 	}
1997 }
1998 
1999 /*
2000  * Release anything that didn't get committed due to errors.
2001  * The capture_list will otherwise be freed at request retire.
2002  */
2003 static void eb_capture_release(struct i915_execbuffer *eb)
2004 {
2005 	unsigned int j;
2006 
2007 	for_each_batch_create_order(eb, j) {
2008 		if (eb->capture_lists[j]) {
2009 			i915_request_free_capture_list(eb->capture_lists[j]);
2010 			eb->capture_lists[j] = NULL;
2011 		}
2012 	}
2013 }
2014 
2015 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2016 {
2017 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2018 }
2019 
2020 #else
2021 
2022 static void eb_capture_stage(struct i915_execbuffer *eb)
2023 {
2024 }
2025 
2026 static void eb_capture_commit(struct i915_execbuffer *eb)
2027 {
2028 }
2029 
2030 static void eb_capture_release(struct i915_execbuffer *eb)
2031 {
2032 }
2033 
2034 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2035 {
2036 }
2037 
2038 #endif
2039 
2040 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2041 {
2042 	const unsigned int count = eb->buffer_count;
2043 	unsigned int i = count;
2044 	int err = 0, j;
2045 
2046 	while (i--) {
2047 		struct eb_vma *ev = &eb->vma[i];
2048 		struct i915_vma *vma = ev->vma;
2049 		unsigned int flags = ev->flags;
2050 		struct drm_i915_gem_object *obj = vma->obj;
2051 
2052 		assert_vma_held(vma);
2053 
2054 		/*
2055 		 * If the GPU is not _reading_ through the CPU cache, we need
2056 		 * to make sure that any writes (both previous GPU writes from
2057 		 * before a change in snooping levels and normal CPU writes)
2058 		 * caught in that cache are flushed to main memory.
2059 		 *
2060 		 * We want to say
2061 		 *   obj->cache_dirty &&
2062 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2063 		 * but gcc's optimiser doesn't handle that as well and emits
2064 		 * two jumps instead of one. Maybe one day...
2065 		 *
2066 		 * FIXME: There is also sync flushing in set_pages(), which
2067 		 * serves a different purpose(some of the time at least).
2068 		 *
2069 		 * We should consider:
2070 		 *
2071 		 *   1. Rip out the async flush code.
2072 		 *
2073 		 *   2. Or make the sync flushing use the async clflush path
2074 		 *   using mandatory fences underneath. Currently the below
2075 		 *   async flush happens after we bind the object.
2076 		 */
2077 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2078 			if (i915_gem_clflush_object(obj, 0))
2079 				flags &= ~EXEC_OBJECT_ASYNC;
2080 		}
2081 
2082 		/* We only need to await on the first request */
2083 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2084 			err = i915_request_await_object
2085 				(eb_find_first_request_added(eb), obj,
2086 				 flags & EXEC_OBJECT_WRITE);
2087 		}
2088 
2089 		for_each_batch_add_order(eb, j) {
2090 			if (err)
2091 				break;
2092 			if (!eb->requests[j])
2093 				continue;
2094 
2095 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2096 						       j ? NULL :
2097 						       eb->composite_fence ?
2098 						       eb->composite_fence :
2099 						       &eb->requests[j]->fence,
2100 						       flags | __EXEC_OBJECT_NO_RESERVE);
2101 		}
2102 	}
2103 
2104 #ifdef CONFIG_MMU_NOTIFIER
2105 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2106 		read_lock(&eb->i915->mm.notifier_lock);
2107 
2108 		/*
2109 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2110 		 * could not have been set
2111 		 */
2112 		for (i = 0; i < count; i++) {
2113 			struct eb_vma *ev = &eb->vma[i];
2114 			struct drm_i915_gem_object *obj = ev->vma->obj;
2115 
2116 			if (!i915_gem_object_is_userptr(obj))
2117 				continue;
2118 
2119 			err = i915_gem_object_userptr_submit_done(obj);
2120 			if (err)
2121 				break;
2122 		}
2123 
2124 		read_unlock(&eb->i915->mm.notifier_lock);
2125 	}
2126 #endif
2127 
2128 	if (unlikely(err))
2129 		goto err_skip;
2130 
2131 	/* Unconditionally flush any chipset caches (for streaming writes). */
2132 	intel_gt_chipset_flush(eb->gt);
2133 	eb_capture_commit(eb);
2134 
2135 	return 0;
2136 
2137 err_skip:
2138 	for_each_batch_create_order(eb, j) {
2139 		if (!eb->requests[j])
2140 			break;
2141 
2142 		i915_request_set_error_once(eb->requests[j], err);
2143 	}
2144 	return err;
2145 }
2146 
2147 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2148 {
2149 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2150 		return -EINVAL;
2151 
2152 	/* Kernel clipping was a DRI1 misfeature */
2153 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2154 			     I915_EXEC_USE_EXTENSIONS))) {
2155 		if (exec->num_cliprects || exec->cliprects_ptr)
2156 			return -EINVAL;
2157 	}
2158 
2159 	if (exec->DR4 == 0xffffffff) {
2160 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2161 		exec->DR4 = 0;
2162 	}
2163 	if (exec->DR1 || exec->DR4)
2164 		return -EINVAL;
2165 
2166 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2167 		return -EINVAL;
2168 
2169 	return 0;
2170 }
2171 
2172 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2173 {
2174 	u32 *cs;
2175 	int i;
2176 
2177 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2178 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2179 		return -EINVAL;
2180 	}
2181 
2182 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2183 	if (IS_ERR(cs))
2184 		return PTR_ERR(cs);
2185 
2186 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2187 	for (i = 0; i < 4; i++) {
2188 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2189 		*cs++ = 0;
2190 	}
2191 	*cs++ = MI_NOOP;
2192 	intel_ring_advance(rq, cs);
2193 
2194 	return 0;
2195 }
2196 
2197 static struct i915_vma *
2198 shadow_batch_pin(struct i915_execbuffer *eb,
2199 		 struct drm_i915_gem_object *obj,
2200 		 struct i915_address_space *vm,
2201 		 unsigned int flags)
2202 {
2203 	struct i915_vma *vma;
2204 	int err;
2205 
2206 	vma = i915_vma_instance(obj, vm, NULL);
2207 	if (IS_ERR(vma))
2208 		return vma;
2209 
2210 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2211 	if (err)
2212 		return ERR_PTR(err);
2213 
2214 	return vma;
2215 }
2216 
2217 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2218 {
2219 	/*
2220 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2221 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2222 	 * hsw should have this fixed, but bdw mucks it up again. */
2223 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2224 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2225 
2226 	return NULL;
2227 }
2228 
2229 static int eb_parse(struct i915_execbuffer *eb)
2230 {
2231 	struct drm_i915_private *i915 = eb->i915;
2232 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2233 	struct i915_vma *shadow, *trampoline, *batch;
2234 	unsigned long len;
2235 	int err;
2236 
2237 	if (!eb_use_cmdparser(eb)) {
2238 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2239 		if (IS_ERR(batch))
2240 			return PTR_ERR(batch);
2241 
2242 		goto secure_batch;
2243 	}
2244 
2245 	if (intel_context_is_parallel(eb->context))
2246 		return -EINVAL;
2247 
2248 	len = eb->batch_len[0];
2249 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2250 		/*
2251 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2252 		 * post-scan tampering
2253 		 */
2254 		if (!eb->context->vm->has_read_only) {
2255 			drm_dbg(&i915->drm,
2256 				"Cannot prevent post-scan tampering without RO capable vm\n");
2257 			return -EINVAL;
2258 		}
2259 	} else {
2260 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2261 	}
2262 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2263 		return -EINVAL;
2264 
2265 	if (!pool) {
2266 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2267 						I915_MAP_WB);
2268 		if (IS_ERR(pool))
2269 			return PTR_ERR(pool);
2270 		eb->batch_pool = pool;
2271 	}
2272 
2273 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2274 	if (err)
2275 		return err;
2276 
2277 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2278 	if (IS_ERR(shadow))
2279 		return PTR_ERR(shadow);
2280 
2281 	intel_gt_buffer_pool_mark_used(pool);
2282 	i915_gem_object_set_readonly(shadow->obj);
2283 	shadow->private = pool;
2284 
2285 	trampoline = NULL;
2286 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2287 		trampoline = shadow;
2288 
2289 		shadow = shadow_batch_pin(eb, pool->obj,
2290 					  &eb->gt->ggtt->vm,
2291 					  PIN_GLOBAL);
2292 		if (IS_ERR(shadow))
2293 			return PTR_ERR(shadow);
2294 
2295 		shadow->private = pool;
2296 
2297 		eb->batch_flags |= I915_DISPATCH_SECURE;
2298 	}
2299 
2300 	batch = eb_dispatch_secure(eb, shadow);
2301 	if (IS_ERR(batch))
2302 		return PTR_ERR(batch);
2303 
2304 	err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
2305 	if (err)
2306 		return err;
2307 
2308 	err = intel_engine_cmd_parser(eb->context->engine,
2309 				      eb->batches[0]->vma,
2310 				      eb->batch_start_offset,
2311 				      eb->batch_len[0],
2312 				      shadow, trampoline);
2313 	if (err)
2314 		return err;
2315 
2316 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2317 	eb->batches[0]->vma = i915_vma_get(shadow);
2318 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2319 
2320 	eb->trampoline = trampoline;
2321 	eb->batch_start_offset = 0;
2322 
2323 secure_batch:
2324 	if (batch) {
2325 		if (intel_context_is_parallel(eb->context))
2326 			return -EINVAL;
2327 
2328 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2329 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2330 		eb->batches[0]->vma = i915_vma_get(batch);
2331 	}
2332 	return 0;
2333 }
2334 
2335 static int eb_request_submit(struct i915_execbuffer *eb,
2336 			     struct i915_request *rq,
2337 			     struct i915_vma *batch,
2338 			     u64 batch_len)
2339 {
2340 	int err;
2341 
2342 	if (intel_context_nopreempt(rq->context))
2343 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2344 
2345 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2346 		err = i915_reset_gen7_sol_offsets(rq);
2347 		if (err)
2348 			return err;
2349 	}
2350 
2351 	/*
2352 	 * After we completed waiting for other engines (using HW semaphores)
2353 	 * then we can signal that this request/batch is ready to run. This
2354 	 * allows us to determine if the batch is still waiting on the GPU
2355 	 * or actually running by checking the breadcrumb.
2356 	 */
2357 	if (rq->context->engine->emit_init_breadcrumb) {
2358 		err = rq->context->engine->emit_init_breadcrumb(rq);
2359 		if (err)
2360 			return err;
2361 	}
2362 
2363 	err = rq->context->engine->emit_bb_start(rq,
2364 						 batch->node.start +
2365 						 eb->batch_start_offset,
2366 						 batch_len,
2367 						 eb->batch_flags);
2368 	if (err)
2369 		return err;
2370 
2371 	if (eb->trampoline) {
2372 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2373 		GEM_BUG_ON(eb->batch_start_offset);
2374 		err = rq->context->engine->emit_bb_start(rq,
2375 							 eb->trampoline->node.start +
2376 							 batch_len, 0, 0);
2377 		if (err)
2378 			return err;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static int eb_submit(struct i915_execbuffer *eb)
2385 {
2386 	unsigned int i;
2387 	int err;
2388 
2389 	err = eb_move_to_gpu(eb);
2390 
2391 	for_each_batch_create_order(eb, i) {
2392 		if (!eb->requests[i])
2393 			break;
2394 
2395 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2396 		if (!err)
2397 			err = eb_request_submit(eb, eb->requests[i],
2398 						eb->batches[i]->vma,
2399 						eb->batch_len[i]);
2400 	}
2401 
2402 	return err;
2403 }
2404 
2405 static int num_vcs_engines(struct drm_i915_private *i915)
2406 {
2407 	return hweight_long(VDBOX_MASK(to_gt(i915)));
2408 }
2409 
2410 /*
2411  * Find one BSD ring to dispatch the corresponding BSD command.
2412  * The engine index is returned.
2413  */
2414 static unsigned int
2415 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2416 			 struct drm_file *file)
2417 {
2418 	struct drm_i915_file_private *file_priv = file->driver_priv;
2419 
2420 	/* Check whether the file_priv has already selected one ring. */
2421 	if ((int)file_priv->bsd_engine < 0)
2422 		file_priv->bsd_engine =
2423 			get_random_int() % num_vcs_engines(dev_priv);
2424 
2425 	return file_priv->bsd_engine;
2426 }
2427 
2428 static const enum intel_engine_id user_ring_map[] = {
2429 	[I915_EXEC_DEFAULT]	= RCS0,
2430 	[I915_EXEC_RENDER]	= RCS0,
2431 	[I915_EXEC_BLT]		= BCS0,
2432 	[I915_EXEC_BSD]		= VCS0,
2433 	[I915_EXEC_VEBOX]	= VECS0
2434 };
2435 
2436 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2437 {
2438 	struct intel_ring *ring = ce->ring;
2439 	struct intel_timeline *tl = ce->timeline;
2440 	struct i915_request *rq;
2441 
2442 	/*
2443 	 * Completely unscientific finger-in-the-air estimates for suitable
2444 	 * maximum user request size (to avoid blocking) and then backoff.
2445 	 */
2446 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2447 		return NULL;
2448 
2449 	/*
2450 	 * Find a request that after waiting upon, there will be at least half
2451 	 * the ring available. The hysteresis allows us to compete for the
2452 	 * shared ring and should mean that we sleep less often prior to
2453 	 * claiming our resources, but not so long that the ring completely
2454 	 * drains before we can submit our next request.
2455 	 */
2456 	list_for_each_entry(rq, &tl->requests, link) {
2457 		if (rq->ring != ring)
2458 			continue;
2459 
2460 		if (__intel_ring_space(rq->postfix,
2461 				       ring->emit, ring->size) > ring->size / 2)
2462 			break;
2463 	}
2464 	if (&rq->link == &tl->requests)
2465 		return NULL; /* weird, we will check again later for real */
2466 
2467 	return i915_request_get(rq);
2468 }
2469 
2470 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2471 			   bool throttle)
2472 {
2473 	struct intel_timeline *tl;
2474 	struct i915_request *rq = NULL;
2475 
2476 	/*
2477 	 * Take a local wakeref for preparing to dispatch the execbuf as
2478 	 * we expect to access the hardware fairly frequently in the
2479 	 * process, and require the engine to be kept awake between accesses.
2480 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2481 	 * until the timeline is idle, which in turn releases the wakeref
2482 	 * taken on the engine, and the parent device.
2483 	 */
2484 	tl = intel_context_timeline_lock(ce);
2485 	if (IS_ERR(tl))
2486 		return PTR_ERR(tl);
2487 
2488 	intel_context_enter(ce);
2489 	if (throttle)
2490 		rq = eb_throttle(eb, ce);
2491 	intel_context_timeline_unlock(tl);
2492 
2493 	if (rq) {
2494 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2495 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2496 
2497 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2498 				      timeout) < 0) {
2499 			i915_request_put(rq);
2500 
2501 			/*
2502 			 * Error path, cannot use intel_context_timeline_lock as
2503 			 * that is user interruptable and this clean up step
2504 			 * must be done.
2505 			 */
2506 			mutex_lock(&ce->timeline->mutex);
2507 			intel_context_exit(ce);
2508 			mutex_unlock(&ce->timeline->mutex);
2509 
2510 			if (nonblock)
2511 				return -EWOULDBLOCK;
2512 			else
2513 				return -EINTR;
2514 		}
2515 		i915_request_put(rq);
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2522 {
2523 	struct intel_context *ce = eb->context, *child;
2524 	int err;
2525 	int i = 0, j = 0;
2526 
2527 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2528 
2529 	if (unlikely(intel_context_is_banned(ce)))
2530 		return -EIO;
2531 
2532 	/*
2533 	 * Pinning the contexts may generate requests in order to acquire
2534 	 * GGTT space, so do this first before we reserve a seqno for
2535 	 * ourselves.
2536 	 */
2537 	err = intel_context_pin_ww(ce, &eb->ww);
2538 	if (err)
2539 		return err;
2540 	for_each_child(ce, child) {
2541 		err = intel_context_pin_ww(child, &eb->ww);
2542 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2543 	}
2544 
2545 	for_each_child(ce, child) {
2546 		err = eb_pin_timeline(eb, child, throttle);
2547 		if (err)
2548 			goto unwind;
2549 		++i;
2550 	}
2551 	err = eb_pin_timeline(eb, ce, throttle);
2552 	if (err)
2553 		goto unwind;
2554 
2555 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2556 	return 0;
2557 
2558 unwind:
2559 	for_each_child(ce, child) {
2560 		if (j++ < i) {
2561 			mutex_lock(&child->timeline->mutex);
2562 			intel_context_exit(child);
2563 			mutex_unlock(&child->timeline->mutex);
2564 		}
2565 	}
2566 	for_each_child(ce, child)
2567 		intel_context_unpin(child);
2568 	intel_context_unpin(ce);
2569 	return err;
2570 }
2571 
2572 static void eb_unpin_engine(struct i915_execbuffer *eb)
2573 {
2574 	struct intel_context *ce = eb->context, *child;
2575 
2576 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2577 		return;
2578 
2579 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2580 
2581 	for_each_child(ce, child) {
2582 		mutex_lock(&child->timeline->mutex);
2583 		intel_context_exit(child);
2584 		mutex_unlock(&child->timeline->mutex);
2585 
2586 		intel_context_unpin(child);
2587 	}
2588 
2589 	mutex_lock(&ce->timeline->mutex);
2590 	intel_context_exit(ce);
2591 	mutex_unlock(&ce->timeline->mutex);
2592 
2593 	intel_context_unpin(ce);
2594 }
2595 
2596 static unsigned int
2597 eb_select_legacy_ring(struct i915_execbuffer *eb)
2598 {
2599 	struct drm_i915_private *i915 = eb->i915;
2600 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2601 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2602 
2603 	if (user_ring_id != I915_EXEC_BSD &&
2604 	    (args->flags & I915_EXEC_BSD_MASK)) {
2605 		drm_dbg(&i915->drm,
2606 			"execbuf with non bsd ring but with invalid "
2607 			"bsd dispatch flags: %d\n", (int)(args->flags));
2608 		return -1;
2609 	}
2610 
2611 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2612 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2613 
2614 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2615 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2616 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2617 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2618 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2619 			bsd_idx--;
2620 		} else {
2621 			drm_dbg(&i915->drm,
2622 				"execbuf with unknown bsd ring: %u\n",
2623 				bsd_idx);
2624 			return -1;
2625 		}
2626 
2627 		return _VCS(bsd_idx);
2628 	}
2629 
2630 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2631 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2632 			user_ring_id);
2633 		return -1;
2634 	}
2635 
2636 	return user_ring_map[user_ring_id];
2637 }
2638 
2639 static int
2640 eb_select_engine(struct i915_execbuffer *eb)
2641 {
2642 	struct intel_context *ce, *child;
2643 	unsigned int idx;
2644 	int err;
2645 
2646 	if (i915_gem_context_user_engines(eb->gem_context))
2647 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2648 	else
2649 		idx = eb_select_legacy_ring(eb);
2650 
2651 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2652 	if (IS_ERR(ce))
2653 		return PTR_ERR(ce);
2654 
2655 	if (intel_context_is_parallel(ce)) {
2656 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2657 			intel_context_put(ce);
2658 			return -EINVAL;
2659 		}
2660 		if (eb->batch_start_offset || eb->args->batch_len) {
2661 			intel_context_put(ce);
2662 			return -EINVAL;
2663 		}
2664 	}
2665 	eb->num_batches = ce->parallel.number_children + 1;
2666 
2667 	for_each_child(ce, child)
2668 		intel_context_get(child);
2669 	intel_gt_pm_get(ce->engine->gt);
2670 
2671 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2672 		err = intel_context_alloc_state(ce);
2673 		if (err)
2674 			goto err;
2675 	}
2676 	for_each_child(ce, child) {
2677 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2678 			err = intel_context_alloc_state(child);
2679 			if (err)
2680 				goto err;
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2686 	 * EIO if the GPU is already wedged.
2687 	 */
2688 	err = intel_gt_terminally_wedged(ce->engine->gt);
2689 	if (err)
2690 		goto err;
2691 
2692 	eb->context = ce;
2693 	eb->gt = ce->engine->gt;
2694 
2695 	/*
2696 	 * Make sure engine pool stays alive even if we call intel_context_put
2697 	 * during ww handling. The pool is destroyed when last pm reference
2698 	 * is dropped, which breaks our -EDEADLK handling.
2699 	 */
2700 	return err;
2701 
2702 err:
2703 	intel_gt_pm_put(ce->engine->gt);
2704 	for_each_child(ce, child)
2705 		intel_context_put(child);
2706 	intel_context_put(ce);
2707 	return err;
2708 }
2709 
2710 static void
2711 eb_put_engine(struct i915_execbuffer *eb)
2712 {
2713 	struct intel_context *child;
2714 
2715 	intel_gt_pm_put(eb->gt);
2716 	for_each_child(eb->context, child)
2717 		intel_context_put(child);
2718 	intel_context_put(eb->context);
2719 }
2720 
2721 static void
2722 __free_fence_array(struct eb_fence *fences, unsigned int n)
2723 {
2724 	while (n--) {
2725 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2726 		dma_fence_put(fences[n].dma_fence);
2727 		dma_fence_chain_free(fences[n].chain_fence);
2728 	}
2729 	kvfree(fences);
2730 }
2731 
2732 static int
2733 add_timeline_fence_array(struct i915_execbuffer *eb,
2734 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2735 {
2736 	struct drm_i915_gem_exec_fence __user *user_fences;
2737 	u64 __user *user_values;
2738 	struct eb_fence *f;
2739 	u64 nfences;
2740 	int err = 0;
2741 
2742 	nfences = timeline_fences->fence_count;
2743 	if (!nfences)
2744 		return 0;
2745 
2746 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2747 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2748 	if (nfences > min_t(unsigned long,
2749 			    ULONG_MAX / sizeof(*user_fences),
2750 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2751 		return -EINVAL;
2752 
2753 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2754 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2755 		return -EFAULT;
2756 
2757 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2758 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2759 		return -EFAULT;
2760 
2761 	f = krealloc(eb->fences,
2762 		     (eb->num_fences + nfences) * sizeof(*f),
2763 		     __GFP_NOWARN | GFP_KERNEL);
2764 	if (!f)
2765 		return -ENOMEM;
2766 
2767 	eb->fences = f;
2768 	f += eb->num_fences;
2769 
2770 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2771 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2772 
2773 	while (nfences--) {
2774 		struct drm_i915_gem_exec_fence user_fence;
2775 		struct drm_syncobj *syncobj;
2776 		struct dma_fence *fence = NULL;
2777 		u64 point;
2778 
2779 		if (__copy_from_user(&user_fence,
2780 				     user_fences++,
2781 				     sizeof(user_fence)))
2782 			return -EFAULT;
2783 
2784 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2785 			return -EINVAL;
2786 
2787 		if (__get_user(point, user_values++))
2788 			return -EFAULT;
2789 
2790 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2791 		if (!syncobj) {
2792 			DRM_DEBUG("Invalid syncobj handle provided\n");
2793 			return -ENOENT;
2794 		}
2795 
2796 		fence = drm_syncobj_fence_get(syncobj);
2797 
2798 		if (!fence && user_fence.flags &&
2799 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2800 			DRM_DEBUG("Syncobj handle has no fence\n");
2801 			drm_syncobj_put(syncobj);
2802 			return -EINVAL;
2803 		}
2804 
2805 		if (fence)
2806 			err = dma_fence_chain_find_seqno(&fence, point);
2807 
2808 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2809 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2810 			dma_fence_put(fence);
2811 			drm_syncobj_put(syncobj);
2812 			return err;
2813 		}
2814 
2815 		/*
2816 		 * A point might have been signaled already and
2817 		 * garbage collected from the timeline. In this case
2818 		 * just ignore the point and carry on.
2819 		 */
2820 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2821 			drm_syncobj_put(syncobj);
2822 			continue;
2823 		}
2824 
2825 		/*
2826 		 * For timeline syncobjs we need to preallocate chains for
2827 		 * later signaling.
2828 		 */
2829 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2830 			/*
2831 			 * Waiting and signaling the same point (when point !=
2832 			 * 0) would break the timeline.
2833 			 */
2834 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2835 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2836 				dma_fence_put(fence);
2837 				drm_syncobj_put(syncobj);
2838 				return -EINVAL;
2839 			}
2840 
2841 			f->chain_fence = dma_fence_chain_alloc();
2842 			if (!f->chain_fence) {
2843 				drm_syncobj_put(syncobj);
2844 				dma_fence_put(fence);
2845 				return -ENOMEM;
2846 			}
2847 		} else {
2848 			f->chain_fence = NULL;
2849 		}
2850 
2851 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2852 		f->dma_fence = fence;
2853 		f->value = point;
2854 		f++;
2855 		eb->num_fences++;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 static int add_fence_array(struct i915_execbuffer *eb)
2862 {
2863 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2864 	struct drm_i915_gem_exec_fence __user *user;
2865 	unsigned long num_fences = args->num_cliprects;
2866 	struct eb_fence *f;
2867 
2868 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2869 		return 0;
2870 
2871 	if (!num_fences)
2872 		return 0;
2873 
2874 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2875 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2876 	if (num_fences > min_t(unsigned long,
2877 			       ULONG_MAX / sizeof(*user),
2878 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2879 		return -EINVAL;
2880 
2881 	user = u64_to_user_ptr(args->cliprects_ptr);
2882 	if (!access_ok(user, num_fences * sizeof(*user)))
2883 		return -EFAULT;
2884 
2885 	f = krealloc(eb->fences,
2886 		     (eb->num_fences + num_fences) * sizeof(*f),
2887 		     __GFP_NOWARN | GFP_KERNEL);
2888 	if (!f)
2889 		return -ENOMEM;
2890 
2891 	eb->fences = f;
2892 	f += eb->num_fences;
2893 	while (num_fences--) {
2894 		struct drm_i915_gem_exec_fence user_fence;
2895 		struct drm_syncobj *syncobj;
2896 		struct dma_fence *fence = NULL;
2897 
2898 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2899 			return -EFAULT;
2900 
2901 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2902 			return -EINVAL;
2903 
2904 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2905 		if (!syncobj) {
2906 			DRM_DEBUG("Invalid syncobj handle provided\n");
2907 			return -ENOENT;
2908 		}
2909 
2910 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2911 			fence = drm_syncobj_fence_get(syncobj);
2912 			if (!fence) {
2913 				DRM_DEBUG("Syncobj handle has no fence\n");
2914 				drm_syncobj_put(syncobj);
2915 				return -EINVAL;
2916 			}
2917 		}
2918 
2919 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2920 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2921 
2922 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2923 		f->dma_fence = fence;
2924 		f->value = 0;
2925 		f->chain_fence = NULL;
2926 		f++;
2927 		eb->num_fences++;
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 static void put_fence_array(struct eb_fence *fences, int num_fences)
2934 {
2935 	if (fences)
2936 		__free_fence_array(fences, num_fences);
2937 }
2938 
2939 static int
2940 await_fence_array(struct i915_execbuffer *eb,
2941 		  struct i915_request *rq)
2942 {
2943 	unsigned int n;
2944 	int err;
2945 
2946 	for (n = 0; n < eb->num_fences; n++) {
2947 		struct drm_syncobj *syncobj;
2948 		unsigned int flags;
2949 
2950 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2951 
2952 		if (!eb->fences[n].dma_fence)
2953 			continue;
2954 
2955 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2956 		if (err < 0)
2957 			return err;
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 static void signal_fence_array(const struct i915_execbuffer *eb,
2964 			       struct dma_fence * const fence)
2965 {
2966 	unsigned int n;
2967 
2968 	for (n = 0; n < eb->num_fences; n++) {
2969 		struct drm_syncobj *syncobj;
2970 		unsigned int flags;
2971 
2972 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2973 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2974 			continue;
2975 
2976 		if (eb->fences[n].chain_fence) {
2977 			drm_syncobj_add_point(syncobj,
2978 					      eb->fences[n].chain_fence,
2979 					      fence,
2980 					      eb->fences[n].value);
2981 			/*
2982 			 * The chain's ownership is transferred to the
2983 			 * timeline.
2984 			 */
2985 			eb->fences[n].chain_fence = NULL;
2986 		} else {
2987 			drm_syncobj_replace_fence(syncobj, fence);
2988 		}
2989 	}
2990 }
2991 
2992 static int
2993 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2994 {
2995 	struct i915_execbuffer *eb = data;
2996 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2997 
2998 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
2999 		return -EFAULT;
3000 
3001 	return add_timeline_fence_array(eb, &timeline_fences);
3002 }
3003 
3004 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3005 {
3006 	struct i915_request *rq, *rn;
3007 
3008 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3009 		if (rq == end || !i915_request_retire(rq))
3010 			break;
3011 }
3012 
3013 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3014 			  int err, bool last_parallel)
3015 {
3016 	struct intel_timeline * const tl = i915_request_timeline(rq);
3017 	struct i915_sched_attr attr = {};
3018 	struct i915_request *prev;
3019 
3020 	lockdep_assert_held(&tl->mutex);
3021 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3022 
3023 	trace_i915_request_add(rq);
3024 
3025 	prev = __i915_request_commit(rq);
3026 
3027 	/* Check that the context wasn't destroyed before submission */
3028 	if (likely(!intel_context_is_closed(eb->context))) {
3029 		attr = eb->gem_context->sched;
3030 	} else {
3031 		/* Serialise with context_close via the add_to_timeline */
3032 		i915_request_set_error_once(rq, -ENOENT);
3033 		__i915_request_skip(rq);
3034 		err = -ENOENT; /* override any transient errors */
3035 	}
3036 
3037 	if (intel_context_is_parallel(eb->context)) {
3038 		if (err) {
3039 			__i915_request_skip(rq);
3040 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3041 				&rq->fence.flags);
3042 		}
3043 		if (last_parallel)
3044 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3045 				&rq->fence.flags);
3046 	}
3047 
3048 	__i915_request_queue(rq, &attr);
3049 
3050 	/* Try to clean up the client's timeline after submitting the request */
3051 	if (prev)
3052 		retire_requests(tl, prev);
3053 
3054 	mutex_unlock(&tl->mutex);
3055 
3056 	return err;
3057 }
3058 
3059 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3060 {
3061 	int i;
3062 
3063 	/*
3064 	 * We iterate in reverse order of creation to release timeline mutexes in
3065 	 * same order.
3066 	 */
3067 	for_each_batch_add_order(eb, i) {
3068 		struct i915_request *rq = eb->requests[i];
3069 
3070 		if (!rq)
3071 			continue;
3072 		err |= eb_request_add(eb, rq, err, i == 0);
3073 	}
3074 
3075 	return err;
3076 }
3077 
3078 static const i915_user_extension_fn execbuf_extensions[] = {
3079 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3080 };
3081 
3082 static int
3083 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3084 			  struct i915_execbuffer *eb)
3085 {
3086 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3087 		return 0;
3088 
3089 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3090 	 * have another flag also using it at the same time.
3091 	 */
3092 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3093 		return -EINVAL;
3094 
3095 	if (args->num_cliprects != 0)
3096 		return -EINVAL;
3097 
3098 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3099 				    execbuf_extensions,
3100 				    ARRAY_SIZE(execbuf_extensions),
3101 				    eb);
3102 }
3103 
3104 static void eb_requests_get(struct i915_execbuffer *eb)
3105 {
3106 	unsigned int i;
3107 
3108 	for_each_batch_create_order(eb, i) {
3109 		if (!eb->requests[i])
3110 			break;
3111 
3112 		i915_request_get(eb->requests[i]);
3113 	}
3114 }
3115 
3116 static void eb_requests_put(struct i915_execbuffer *eb)
3117 {
3118 	unsigned int i;
3119 
3120 	for_each_batch_create_order(eb, i) {
3121 		if (!eb->requests[i])
3122 			break;
3123 
3124 		i915_request_put(eb->requests[i]);
3125 	}
3126 }
3127 
3128 static struct sync_file *
3129 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3130 {
3131 	struct sync_file *out_fence = NULL;
3132 	struct dma_fence_array *fence_array;
3133 	struct dma_fence **fences;
3134 	unsigned int i;
3135 
3136 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3137 
3138 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3139 	if (!fences)
3140 		return ERR_PTR(-ENOMEM);
3141 
3142 	for_each_batch_create_order(eb, i) {
3143 		fences[i] = &eb->requests[i]->fence;
3144 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3145 			  &eb->requests[i]->fence.flags);
3146 	}
3147 
3148 	fence_array = dma_fence_array_create(eb->num_batches,
3149 					     fences,
3150 					     eb->context->parallel.fence_context,
3151 					     eb->context->parallel.seqno++,
3152 					     false);
3153 	if (!fence_array) {
3154 		kfree(fences);
3155 		return ERR_PTR(-ENOMEM);
3156 	}
3157 
3158 	/* Move ownership to the dma_fence_array created above */
3159 	for_each_batch_create_order(eb, i)
3160 		dma_fence_get(fences[i]);
3161 
3162 	if (out_fence_fd != -1) {
3163 		out_fence = sync_file_create(&fence_array->base);
3164 		/* sync_file now owns fence_arry, drop creation ref */
3165 		dma_fence_put(&fence_array->base);
3166 		if (!out_fence)
3167 			return ERR_PTR(-ENOMEM);
3168 	}
3169 
3170 	eb->composite_fence = &fence_array->base;
3171 
3172 	return out_fence;
3173 }
3174 
3175 static struct sync_file *
3176 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3177 	      struct dma_fence *in_fence, int out_fence_fd)
3178 {
3179 	struct sync_file *out_fence = NULL;
3180 	int err;
3181 
3182 	if (unlikely(eb->gem_context->syncobj)) {
3183 		struct dma_fence *fence;
3184 
3185 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3186 		err = i915_request_await_dma_fence(rq, fence);
3187 		dma_fence_put(fence);
3188 		if (err)
3189 			return ERR_PTR(err);
3190 	}
3191 
3192 	if (in_fence) {
3193 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3194 			err = i915_request_await_execution(rq, in_fence);
3195 		else
3196 			err = i915_request_await_dma_fence(rq, in_fence);
3197 		if (err < 0)
3198 			return ERR_PTR(err);
3199 	}
3200 
3201 	if (eb->fences) {
3202 		err = await_fence_array(eb, rq);
3203 		if (err)
3204 			return ERR_PTR(err);
3205 	}
3206 
3207 	if (intel_context_is_parallel(eb->context)) {
3208 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3209 		if (IS_ERR(out_fence))
3210 			return ERR_PTR(-ENOMEM);
3211 	} else if (out_fence_fd != -1) {
3212 		out_fence = sync_file_create(&rq->fence);
3213 		if (!out_fence)
3214 			return ERR_PTR(-ENOMEM);
3215 	}
3216 
3217 	return out_fence;
3218 }
3219 
3220 static struct intel_context *
3221 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3222 {
3223 	struct intel_context *child;
3224 
3225 	if (likely(context_number == 0))
3226 		return eb->context;
3227 
3228 	for_each_child(eb->context, child)
3229 		if (!--context_number)
3230 			return child;
3231 
3232 	GEM_BUG_ON("Context not found");
3233 
3234 	return NULL;
3235 }
3236 
3237 static struct sync_file *
3238 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3239 		   int out_fence_fd)
3240 {
3241 	struct sync_file *out_fence = NULL;
3242 	unsigned int i;
3243 
3244 	for_each_batch_create_order(eb, i) {
3245 		/* Allocate a request for this batch buffer nice and early. */
3246 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3247 		if (IS_ERR(eb->requests[i])) {
3248 			out_fence = ERR_CAST(eb->requests[i]);
3249 			eb->requests[i] = NULL;
3250 			return out_fence;
3251 		}
3252 
3253 		/*
3254 		 * Only the first request added (committed to backend) has to
3255 		 * take the in fences into account as all subsequent requests
3256 		 * will have fences inserted inbetween them.
3257 		 */
3258 		if (i + 1 == eb->num_batches) {
3259 			out_fence = eb_fences_add(eb, eb->requests[i],
3260 						  in_fence, out_fence_fd);
3261 			if (IS_ERR(out_fence))
3262 				return out_fence;
3263 		}
3264 
3265 		/*
3266 		 * Not really on stack, but we don't want to call
3267 		 * kfree on the batch_snapshot when we put it, so use the
3268 		 * _onstack interface.
3269 		 */
3270 		if (eb->batches[i]->vma)
3271 			eb->requests[i]->batch_res =
3272 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3273 		if (eb->batch_pool) {
3274 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3275 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3276 							 eb->requests[i]);
3277 		}
3278 	}
3279 
3280 	return out_fence;
3281 }
3282 
3283 static int
3284 i915_gem_do_execbuffer(struct drm_device *dev,
3285 		       struct drm_file *file,
3286 		       struct drm_i915_gem_execbuffer2 *args,
3287 		       struct drm_i915_gem_exec_object2 *exec)
3288 {
3289 	struct drm_i915_private *i915 = to_i915(dev);
3290 	struct i915_execbuffer eb;
3291 	struct dma_fence *in_fence = NULL;
3292 	struct sync_file *out_fence = NULL;
3293 	int out_fence_fd = -1;
3294 	int err;
3295 
3296 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3297 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3298 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3299 
3300 	eb.i915 = i915;
3301 	eb.file = file;
3302 	eb.args = args;
3303 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3304 		args->flags |= __EXEC_HAS_RELOC;
3305 
3306 	eb.exec = exec;
3307 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3308 	eb.vma[0].vma = NULL;
3309 	eb.batch_pool = NULL;
3310 
3311 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3312 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3313 
3314 	eb.buffer_count = args->buffer_count;
3315 	eb.batch_start_offset = args->batch_start_offset;
3316 	eb.trampoline = NULL;
3317 
3318 	eb.fences = NULL;
3319 	eb.num_fences = 0;
3320 
3321 	eb_capture_list_clear(&eb);
3322 
3323 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3324 	       ARRAY_SIZE(eb.requests));
3325 	eb.composite_fence = NULL;
3326 
3327 	eb.batch_flags = 0;
3328 	if (args->flags & I915_EXEC_SECURE) {
3329 		if (GRAPHICS_VER(i915) >= 11)
3330 			return -ENODEV;
3331 
3332 		/* Return -EPERM to trigger fallback code on old binaries. */
3333 		if (!HAS_SECURE_BATCHES(i915))
3334 			return -EPERM;
3335 
3336 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3337 			return -EPERM;
3338 
3339 		eb.batch_flags |= I915_DISPATCH_SECURE;
3340 	}
3341 	if (args->flags & I915_EXEC_IS_PINNED)
3342 		eb.batch_flags |= I915_DISPATCH_PINNED;
3343 
3344 	err = parse_execbuf2_extensions(args, &eb);
3345 	if (err)
3346 		goto err_ext;
3347 
3348 	err = add_fence_array(&eb);
3349 	if (err)
3350 		goto err_ext;
3351 
3352 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3353 	if (args->flags & IN_FENCES) {
3354 		if ((args->flags & IN_FENCES) == IN_FENCES)
3355 			return -EINVAL;
3356 
3357 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3358 		if (!in_fence) {
3359 			err = -EINVAL;
3360 			goto err_ext;
3361 		}
3362 	}
3363 #undef IN_FENCES
3364 
3365 	if (args->flags & I915_EXEC_FENCE_OUT) {
3366 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3367 		if (out_fence_fd < 0) {
3368 			err = out_fence_fd;
3369 			goto err_in_fence;
3370 		}
3371 	}
3372 
3373 	err = eb_create(&eb);
3374 	if (err)
3375 		goto err_out_fence;
3376 
3377 	GEM_BUG_ON(!eb.lut_size);
3378 
3379 	err = eb_select_context(&eb);
3380 	if (unlikely(err))
3381 		goto err_destroy;
3382 
3383 	err = eb_select_engine(&eb);
3384 	if (unlikely(err))
3385 		goto err_context;
3386 
3387 	err = eb_lookup_vmas(&eb);
3388 	if (err) {
3389 		eb_release_vmas(&eb, true);
3390 		goto err_engine;
3391 	}
3392 
3393 	i915_gem_ww_ctx_init(&eb.ww, true);
3394 
3395 	err = eb_relocate_parse(&eb);
3396 	if (err) {
3397 		/*
3398 		 * If the user expects the execobject.offset and
3399 		 * reloc.presumed_offset to be an exact match,
3400 		 * as for using NO_RELOC, then we cannot update
3401 		 * the execobject.offset until we have completed
3402 		 * relocation.
3403 		 */
3404 		args->flags &= ~__EXEC_HAS_RELOC;
3405 		goto err_vma;
3406 	}
3407 
3408 	ww_acquire_done(&eb.ww.ctx);
3409 	eb_capture_stage(&eb);
3410 
3411 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3412 	if (IS_ERR(out_fence)) {
3413 		err = PTR_ERR(out_fence);
3414 		out_fence = NULL;
3415 		if (eb.requests[0])
3416 			goto err_request;
3417 		else
3418 			goto err_vma;
3419 	}
3420 
3421 	err = eb_submit(&eb);
3422 
3423 err_request:
3424 	eb_requests_get(&eb);
3425 	err = eb_requests_add(&eb, err);
3426 
3427 	if (eb.fences)
3428 		signal_fence_array(&eb, eb.composite_fence ?
3429 				   eb.composite_fence :
3430 				   &eb.requests[0]->fence);
3431 
3432 	if (out_fence) {
3433 		if (err == 0) {
3434 			fd_install(out_fence_fd, out_fence->file);
3435 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3436 			args->rsvd2 |= (u64)out_fence_fd << 32;
3437 			out_fence_fd = -1;
3438 		} else {
3439 			fput(out_fence->file);
3440 		}
3441 	}
3442 
3443 	if (unlikely(eb.gem_context->syncobj)) {
3444 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3445 					  eb.composite_fence ?
3446 					  eb.composite_fence :
3447 					  &eb.requests[0]->fence);
3448 	}
3449 
3450 	if (!out_fence && eb.composite_fence)
3451 		dma_fence_put(eb.composite_fence);
3452 
3453 	eb_requests_put(&eb);
3454 
3455 err_vma:
3456 	eb_release_vmas(&eb, true);
3457 	WARN_ON(err == -EDEADLK);
3458 	i915_gem_ww_ctx_fini(&eb.ww);
3459 
3460 	if (eb.batch_pool)
3461 		intel_gt_buffer_pool_put(eb.batch_pool);
3462 err_engine:
3463 	eb_put_engine(&eb);
3464 err_context:
3465 	i915_gem_context_put(eb.gem_context);
3466 err_destroy:
3467 	eb_destroy(&eb);
3468 err_out_fence:
3469 	if (out_fence_fd != -1)
3470 		put_unused_fd(out_fence_fd);
3471 err_in_fence:
3472 	dma_fence_put(in_fence);
3473 err_ext:
3474 	put_fence_array(eb.fences, eb.num_fences);
3475 	return err;
3476 }
3477 
3478 static size_t eb_element_size(void)
3479 {
3480 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3481 }
3482 
3483 static bool check_buffer_count(size_t count)
3484 {
3485 	const size_t sz = eb_element_size();
3486 
3487 	/*
3488 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3489 	 * array size (see eb_create()). Otherwise, we can accept an array as
3490 	 * large as can be addressed (though use large arrays at your peril)!
3491 	 */
3492 
3493 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3494 }
3495 
3496 int
3497 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3498 			   struct drm_file *file)
3499 {
3500 	struct drm_i915_private *i915 = to_i915(dev);
3501 	struct drm_i915_gem_execbuffer2 *args = data;
3502 	struct drm_i915_gem_exec_object2 *exec2_list;
3503 	const size_t count = args->buffer_count;
3504 	int err;
3505 
3506 	if (!check_buffer_count(count)) {
3507 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3508 		return -EINVAL;
3509 	}
3510 
3511 	err = i915_gem_check_execbuffer(args);
3512 	if (err)
3513 		return err;
3514 
3515 	/* Allocate extra slots for use by the command parser */
3516 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3517 				    __GFP_NOWARN | GFP_KERNEL);
3518 	if (exec2_list == NULL) {
3519 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3520 			count);
3521 		return -ENOMEM;
3522 	}
3523 	if (copy_from_user(exec2_list,
3524 			   u64_to_user_ptr(args->buffers_ptr),
3525 			   sizeof(*exec2_list) * count)) {
3526 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3527 		kvfree(exec2_list);
3528 		return -EFAULT;
3529 	}
3530 
3531 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3532 
3533 	/*
3534 	 * Now that we have begun execution of the batchbuffer, we ignore
3535 	 * any new error after this point. Also given that we have already
3536 	 * updated the associated relocations, we try to write out the current
3537 	 * object locations irrespective of any error.
3538 	 */
3539 	if (args->flags & __EXEC_HAS_RELOC) {
3540 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3541 			u64_to_user_ptr(args->buffers_ptr);
3542 		unsigned int i;
3543 
3544 		/* Copy the new buffer offsets back to the user's exec list. */
3545 		/*
3546 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3547 		 * because we checked 'count' in check_buffer_count().
3548 		 *
3549 		 * And this range already got effectively checked earlier
3550 		 * when we did the "copy_from_user()" above.
3551 		 */
3552 		if (!user_write_access_begin(user_exec_list,
3553 					     count * sizeof(*user_exec_list)))
3554 			goto end;
3555 
3556 		for (i = 0; i < args->buffer_count; i++) {
3557 			if (!(exec2_list[i].offset & UPDATE))
3558 				continue;
3559 
3560 			exec2_list[i].offset =
3561 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3562 			unsafe_put_user(exec2_list[i].offset,
3563 					&user_exec_list[i].offset,
3564 					end_user);
3565 		}
3566 end_user:
3567 		user_write_access_end();
3568 end:;
3569 	}
3570 
3571 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3572 	kvfree(exec2_list);
3573 	return err;
3574 }
3575