1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_file_private.h" 29 #include "i915_gem_clflush.h" 30 #include "i915_gem_context.h" 31 #include "i915_gem_evict.h" 32 #include "i915_gem_ioctls.h" 33 #include "i915_reg.h" 34 #include "i915_trace.h" 35 #include "i915_user_extensions.h" 36 37 struct eb_vma { 38 struct i915_vma *vma; 39 unsigned int flags; 40 41 /** This vma's place in the execbuf reservation list */ 42 struct drm_i915_gem_exec_object2 *exec; 43 struct list_head bind_link; 44 struct list_head reloc_link; 45 46 struct hlist_node node; 47 u32 handle; 48 }; 49 50 enum { 51 FORCE_CPU_RELOC = 1, 52 FORCE_GTT_RELOC, 53 FORCE_GPU_RELOC, 54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 55 }; 56 57 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 58 #define __EXEC_OBJECT_HAS_PIN BIT(29) 59 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 60 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 61 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 62 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 63 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 65 66 #define __EXEC_HAS_RELOC BIT(31) 67 #define __EXEC_ENGINE_PINNED BIT(30) 68 #define __EXEC_USERPTR_USED BIT(29) 69 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 70 #define UPDATE PIN_OFFSET_FIXED 71 72 #define BATCH_OFFSET_BIAS (256*1024) 73 74 #define __I915_EXEC_ILLEGAL_FLAGS \ 75 (__I915_EXEC_UNKNOWN_FLAGS | \ 76 I915_EXEC_CONSTANTS_MASK | \ 77 I915_EXEC_RESOURCE_STREAMER) 78 79 /* Catch emission of unexpected errors for CI! */ 80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 81 #undef EINVAL 82 #define EINVAL ({ \ 83 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 84 22; \ 85 }) 86 #endif 87 88 /** 89 * DOC: User command execution 90 * 91 * Userspace submits commands to be executed on the GPU as an instruction 92 * stream within a GEM object we call a batchbuffer. This instructions may 93 * refer to other GEM objects containing auxiliary state such as kernels, 94 * samplers, render targets and even secondary batchbuffers. Userspace does 95 * not know where in the GPU memory these objects reside and so before the 96 * batchbuffer is passed to the GPU for execution, those addresses in the 97 * batchbuffer and auxiliary objects are updated. This is known as relocation, 98 * or patching. To try and avoid having to relocate each object on the next 99 * execution, userspace is told the location of those objects in this pass, 100 * but this remains just a hint as the kernel may choose a new location for 101 * any object in the future. 102 * 103 * At the level of talking to the hardware, submitting a batchbuffer for the 104 * GPU to execute is to add content to a buffer from which the HW 105 * command streamer is reading. 106 * 107 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 108 * Execlists, this command is not placed on the same buffer as the 109 * remaining items. 110 * 111 * 2. Add a command to invalidate caches to the buffer. 112 * 113 * 3. Add a batchbuffer start command to the buffer; the start command is 114 * essentially a token together with the GPU address of the batchbuffer 115 * to be executed. 116 * 117 * 4. Add a pipeline flush to the buffer. 118 * 119 * 5. Add a memory write command to the buffer to record when the GPU 120 * is done executing the batchbuffer. The memory write writes the 121 * global sequence number of the request, ``i915_request::global_seqno``; 122 * the i915 driver uses the current value in the register to determine 123 * if the GPU has completed the batchbuffer. 124 * 125 * 6. Add a user interrupt command to the buffer. This command instructs 126 * the GPU to issue an interrupt when the command, pipeline flush and 127 * memory write are completed. 128 * 129 * 7. Inform the hardware of the additional commands added to the buffer 130 * (by updating the tail pointer). 131 * 132 * Processing an execbuf ioctl is conceptually split up into a few phases. 133 * 134 * 1. Validation - Ensure all the pointers, handles and flags are valid. 135 * 2. Reservation - Assign GPU address space for every object 136 * 3. Relocation - Update any addresses to point to the final locations 137 * 4. Serialisation - Order the request with respect to its dependencies 138 * 5. Construction - Construct a request to execute the batchbuffer 139 * 6. Submission (at some point in the future execution) 140 * 141 * Reserving resources for the execbuf is the most complicated phase. We 142 * neither want to have to migrate the object in the address space, nor do 143 * we want to have to update any relocations pointing to this object. Ideally, 144 * we want to leave the object where it is and for all the existing relocations 145 * to match. If the object is given a new address, or if userspace thinks the 146 * object is elsewhere, we have to parse all the relocation entries and update 147 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 148 * all the target addresses in all of its objects match the value in the 149 * relocation entries and that they all match the presumed offsets given by the 150 * list of execbuffer objects. Using this knowledge, we know that if we haven't 151 * moved any buffers, all the relocation entries are valid and we can skip 152 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 153 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 154 * 155 * The addresses written in the objects must match the corresponding 156 * reloc.presumed_offset which in turn must match the corresponding 157 * execobject.offset. 158 * 159 * Any render targets written to in the batch must be flagged with 160 * EXEC_OBJECT_WRITE. 161 * 162 * To avoid stalling, execobject.offset should match the current 163 * address of that object within the active context. 164 * 165 * The reservation is done is multiple phases. First we try and keep any 166 * object already bound in its current location - so as long as meets the 167 * constraints imposed by the new execbuffer. Any object left unbound after the 168 * first pass is then fitted into any available idle space. If an object does 169 * not fit, all objects are removed from the reservation and the process rerun 170 * after sorting the objects into a priority order (more difficult to fit 171 * objects are tried first). Failing that, the entire VM is cleared and we try 172 * to fit the execbuf once last time before concluding that it simply will not 173 * fit. 174 * 175 * A small complication to all of this is that we allow userspace not only to 176 * specify an alignment and a size for the object in the address space, but 177 * we also allow userspace to specify the exact offset. This objects are 178 * simpler to place (the location is known a priori) all we have to do is make 179 * sure the space is available. 180 * 181 * Once all the objects are in place, patching up the buried pointers to point 182 * to the final locations is a fairly simple job of walking over the relocation 183 * entry arrays, looking up the right address and rewriting the value into 184 * the object. Simple! ... The relocation entries are stored in user memory 185 * and so to access them we have to copy them into a local buffer. That copy 186 * has to avoid taking any pagefaults as they may lead back to a GEM object 187 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 188 * the relocation into multiple passes. First we try to do everything within an 189 * atomic context (avoid the pagefaults) which requires that we never wait. If 190 * we detect that we may wait, or if we need to fault, then we have to fallback 191 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 192 * bells yet?) Dropping the mutex means that we lose all the state we have 193 * built up so far for the execbuf and we must reset any global data. However, 194 * we do leave the objects pinned in their final locations - which is a 195 * potential issue for concurrent execbufs. Once we have left the mutex, we can 196 * allocate and copy all the relocation entries into a large array at our 197 * leisure, reacquire the mutex, reclaim all the objects and other state and 198 * then proceed to update any incorrect addresses with the objects. 199 * 200 * As we process the relocation entries, we maintain a record of whether the 201 * object is being written to. Using NORELOC, we expect userspace to provide 202 * this information instead. We also check whether we can skip the relocation 203 * by comparing the expected value inside the relocation entry with the target's 204 * final address. If they differ, we have to map the current object and rewrite 205 * the 4 or 8 byte pointer within. 206 * 207 * Serialising an execbuf is quite simple according to the rules of the GEM 208 * ABI. Execution within each context is ordered by the order of submission. 209 * Writes to any GEM object are in order of submission and are exclusive. Reads 210 * from a GEM object are unordered with respect to other reads, but ordered by 211 * writes. A write submitted after a read cannot occur before the read, and 212 * similarly any read submitted after a write cannot occur before the write. 213 * Writes are ordered between engines such that only one write occurs at any 214 * time (completing any reads beforehand) - using semaphores where available 215 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 216 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 217 * reads before starting, and any read (either using set-domain or pread) must 218 * flush all GPU writes before starting. (Note we only employ a barrier before, 219 * we currently rely on userspace not concurrently starting a new execution 220 * whilst reading or writing to an object. This may be an advantage or not 221 * depending on how much you trust userspace not to shoot themselves in the 222 * foot.) Serialisation may just result in the request being inserted into 223 * a DAG awaiting its turn, but most simple is to wait on the CPU until 224 * all dependencies are resolved. 225 * 226 * After all of that, is just a matter of closing the request and handing it to 227 * the hardware (well, leaving it in a queue to be executed). However, we also 228 * offer the ability for batchbuffers to be run with elevated privileges so 229 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 230 * Before any batch is given extra privileges we first must check that it 231 * contains no nefarious instructions, we check that each instruction is from 232 * our whitelist and all registers are also from an allowed list. We first 233 * copy the user's batchbuffer to a shadow (so that the user doesn't have 234 * access to it, either by the CPU or GPU as we scan it) and then parse each 235 * instruction. If everything is ok, we set a flag telling the hardware to run 236 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 237 */ 238 239 struct eb_fence { 240 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 241 struct dma_fence *dma_fence; 242 u64 value; 243 struct dma_fence_chain *chain_fence; 244 }; 245 246 struct i915_execbuffer { 247 struct drm_i915_private *i915; /** i915 backpointer */ 248 struct drm_file *file; /** per-file lookup tables and limits */ 249 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 250 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 251 struct eb_vma *vma; 252 253 struct intel_gt *gt; /* gt for the execbuf */ 254 struct intel_context *context; /* logical state for the request */ 255 struct i915_gem_context *gem_context; /** caller's context */ 256 257 /** our requests to build */ 258 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 259 /** identity of the batch obj/vma */ 260 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 261 struct i915_vma *trampoline; /** trampoline used for chaining */ 262 263 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 264 struct dma_fence *composite_fence; 265 266 /** actual size of execobj[] as we may extend it for the cmdparser */ 267 unsigned int buffer_count; 268 269 /* number of batches in execbuf IOCTL */ 270 unsigned int num_batches; 271 272 /** list of vma not yet bound during reservation phase */ 273 struct list_head unbound; 274 275 /** list of vma that have execobj.relocation_count */ 276 struct list_head relocs; 277 278 struct i915_gem_ww_ctx ww; 279 280 /** 281 * Track the most recently used object for relocations, as we 282 * frequently have to perform multiple relocations within the same 283 * obj/page 284 */ 285 struct reloc_cache { 286 struct drm_mm_node node; /** temporary GTT binding */ 287 unsigned long vaddr; /** Current kmap address */ 288 unsigned long page; /** Currently mapped page index */ 289 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 290 bool use_64bit_reloc : 1; 291 bool has_llc : 1; 292 bool has_fence : 1; 293 bool needs_unfenced : 1; 294 } reloc_cache; 295 296 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 297 298 /** Length of batch within object */ 299 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 300 u32 batch_start_offset; /** Location within object of batch */ 301 u32 batch_flags; /** Flags composed for emit_bb_start() */ 302 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 303 304 /** 305 * Indicate either the size of the hastable used to resolve 306 * relocation handles, or if negative that we are using a direct 307 * index into the execobj[]. 308 */ 309 int lut_size; 310 struct hlist_head *buckets; /** ht for relocation handles */ 311 312 struct eb_fence *fences; 313 unsigned long num_fences; 314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 315 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 316 #endif 317 }; 318 319 static int eb_parse(struct i915_execbuffer *eb); 320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 321 static void eb_unpin_engine(struct i915_execbuffer *eb); 322 static void eb_capture_release(struct i915_execbuffer *eb); 323 324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 325 { 326 return intel_engine_requires_cmd_parser(eb->context->engine) || 327 (intel_engine_using_cmd_parser(eb->context->engine) && 328 eb->args->batch_len); 329 } 330 331 static int eb_create(struct i915_execbuffer *eb) 332 { 333 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 334 unsigned int size = 1 + ilog2(eb->buffer_count); 335 336 /* 337 * Without a 1:1 association between relocation handles and 338 * the execobject[] index, we instead create a hashtable. 339 * We size it dynamically based on available memory, starting 340 * first with 1:1 assocative hash and scaling back until 341 * the allocation succeeds. 342 * 343 * Later on we use a positive lut_size to indicate we are 344 * using this hashtable, and a negative value to indicate a 345 * direct lookup. 346 */ 347 do { 348 gfp_t flags; 349 350 /* While we can still reduce the allocation size, don't 351 * raise a warning and allow the allocation to fail. 352 * On the last pass though, we want to try as hard 353 * as possible to perform the allocation and warn 354 * if it fails. 355 */ 356 flags = GFP_KERNEL; 357 if (size > 1) 358 flags |= __GFP_NORETRY | __GFP_NOWARN; 359 360 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 361 flags); 362 if (eb->buckets) 363 break; 364 } while (--size); 365 366 if (unlikely(!size)) 367 return -ENOMEM; 368 369 eb->lut_size = size; 370 } else { 371 eb->lut_size = -eb->buffer_count; 372 } 373 374 return 0; 375 } 376 377 static bool 378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 379 const struct i915_vma *vma, 380 unsigned int flags) 381 { 382 const u64 start = i915_vma_offset(vma); 383 const u64 size = i915_vma_size(vma); 384 385 if (size < entry->pad_to_size) 386 return true; 387 388 if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) 389 return true; 390 391 if (flags & EXEC_OBJECT_PINNED && 392 start != entry->offset) 393 return true; 394 395 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 396 start < BATCH_OFFSET_BIAS) 397 return true; 398 399 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 400 (start + size + 4095) >> 32) 401 return true; 402 403 if (flags & __EXEC_OBJECT_NEEDS_MAP && 404 !i915_vma_is_map_and_fenceable(vma)) 405 return true; 406 407 return false; 408 } 409 410 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 411 unsigned int exec_flags) 412 { 413 u64 pin_flags = 0; 414 415 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 416 pin_flags |= PIN_GLOBAL; 417 418 /* 419 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 420 * limit address to the first 4GBs for unflagged objects. 421 */ 422 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 423 pin_flags |= PIN_ZONE_4G; 424 425 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 426 pin_flags |= PIN_MAPPABLE; 427 428 if (exec_flags & EXEC_OBJECT_PINNED) 429 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 430 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 431 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 432 433 return pin_flags; 434 } 435 436 static inline int 437 eb_pin_vma(struct i915_execbuffer *eb, 438 const struct drm_i915_gem_exec_object2 *entry, 439 struct eb_vma *ev) 440 { 441 struct i915_vma *vma = ev->vma; 442 u64 pin_flags; 443 int err; 444 445 if (vma->node.size) 446 pin_flags = __i915_vma_offset(vma); 447 else 448 pin_flags = entry->offset & PIN_OFFSET_MASK; 449 450 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 451 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 452 pin_flags |= PIN_GLOBAL; 453 454 /* Attempt to reuse the current location if available */ 455 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 456 if (err == -EDEADLK) 457 return err; 458 459 if (unlikely(err)) { 460 if (entry->flags & EXEC_OBJECT_PINNED) 461 return err; 462 463 /* Failing that pick any _free_ space if suitable */ 464 err = i915_vma_pin_ww(vma, &eb->ww, 465 entry->pad_to_size, 466 entry->alignment, 467 eb_pin_flags(entry, ev->flags) | 468 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 469 if (unlikely(err)) 470 return err; 471 } 472 473 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 474 err = i915_vma_pin_fence(vma); 475 if (unlikely(err)) 476 return err; 477 478 if (vma->fence) 479 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 480 } 481 482 ev->flags |= __EXEC_OBJECT_HAS_PIN; 483 if (eb_vma_misplaced(entry, vma, ev->flags)) 484 return -EBADSLT; 485 486 return 0; 487 } 488 489 static inline void 490 eb_unreserve_vma(struct eb_vma *ev) 491 { 492 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 493 __i915_vma_unpin_fence(ev->vma); 494 495 ev->flags &= ~__EXEC_OBJECT_RESERVED; 496 } 497 498 static int 499 eb_validate_vma(struct i915_execbuffer *eb, 500 struct drm_i915_gem_exec_object2 *entry, 501 struct i915_vma *vma) 502 { 503 /* Relocations are disallowed for all platforms after TGL-LP. This 504 * also covers all platforms with local memory. 505 */ 506 if (entry->relocation_count && 507 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 508 return -EINVAL; 509 510 if (unlikely(entry->flags & eb->invalid_flags)) 511 return -EINVAL; 512 513 if (unlikely(entry->alignment && 514 !is_power_of_2_u64(entry->alignment))) 515 return -EINVAL; 516 517 /* 518 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 519 * any non-page-aligned or non-canonical addresses. 520 */ 521 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 522 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 523 return -EINVAL; 524 525 /* pad_to_size was once a reserved field, so sanitize it */ 526 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 527 if (unlikely(offset_in_page(entry->pad_to_size))) 528 return -EINVAL; 529 } else { 530 entry->pad_to_size = 0; 531 } 532 /* 533 * From drm_mm perspective address space is continuous, 534 * so from this point we're always using non-canonical 535 * form internally. 536 */ 537 entry->offset = gen8_noncanonical_addr(entry->offset); 538 539 if (!eb->reloc_cache.has_fence) { 540 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 541 } else { 542 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 543 eb->reloc_cache.needs_unfenced) && 544 i915_gem_object_is_tiled(vma->obj)) 545 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 546 } 547 548 return 0; 549 } 550 551 static inline bool 552 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 553 { 554 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 555 buffer_idx < eb->num_batches : 556 buffer_idx >= eb->args->buffer_count - eb->num_batches; 557 } 558 559 static int 560 eb_add_vma(struct i915_execbuffer *eb, 561 unsigned int *current_batch, 562 unsigned int i, 563 struct i915_vma *vma) 564 { 565 struct drm_i915_private *i915 = eb->i915; 566 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 567 struct eb_vma *ev = &eb->vma[i]; 568 569 ev->vma = vma; 570 ev->exec = entry; 571 ev->flags = entry->flags; 572 573 if (eb->lut_size > 0) { 574 ev->handle = entry->handle; 575 hlist_add_head(&ev->node, 576 &eb->buckets[hash_32(entry->handle, 577 eb->lut_size)]); 578 } 579 580 if (entry->relocation_count) 581 list_add_tail(&ev->reloc_link, &eb->relocs); 582 583 /* 584 * SNA is doing fancy tricks with compressing batch buffers, which leads 585 * to negative relocation deltas. Usually that works out ok since the 586 * relocate address is still positive, except when the batch is placed 587 * very low in the GTT. Ensure this doesn't happen. 588 * 589 * Note that actual hangs have only been observed on gen7, but for 590 * paranoia do it everywhere. 591 */ 592 if (is_batch_buffer(eb, i)) { 593 if (entry->relocation_count && 594 !(ev->flags & EXEC_OBJECT_PINNED)) 595 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 596 if (eb->reloc_cache.has_fence) 597 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 598 599 eb->batches[*current_batch] = ev; 600 601 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 602 drm_dbg(&i915->drm, 603 "Attempting to use self-modifying batch buffer\n"); 604 return -EINVAL; 605 } 606 607 if (range_overflows_t(u64, 608 eb->batch_start_offset, 609 eb->args->batch_len, 610 ev->vma->size)) { 611 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 612 return -EINVAL; 613 } 614 615 if (eb->args->batch_len == 0) 616 eb->batch_len[*current_batch] = ev->vma->size - 617 eb->batch_start_offset; 618 else 619 eb->batch_len[*current_batch] = eb->args->batch_len; 620 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 621 drm_dbg(&i915->drm, "Invalid batch length\n"); 622 return -EINVAL; 623 } 624 625 ++*current_batch; 626 } 627 628 return 0; 629 } 630 631 static inline int use_cpu_reloc(const struct reloc_cache *cache, 632 const struct drm_i915_gem_object *obj) 633 { 634 if (!i915_gem_object_has_struct_page(obj)) 635 return false; 636 637 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 638 return true; 639 640 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 641 return false; 642 643 return (cache->has_llc || 644 obj->cache_dirty || 645 obj->cache_level != I915_CACHE_NONE); 646 } 647 648 static int eb_reserve_vma(struct i915_execbuffer *eb, 649 struct eb_vma *ev, 650 u64 pin_flags) 651 { 652 struct drm_i915_gem_exec_object2 *entry = ev->exec; 653 struct i915_vma *vma = ev->vma; 654 int err; 655 656 if (drm_mm_node_allocated(&vma->node) && 657 eb_vma_misplaced(entry, vma, ev->flags)) { 658 err = i915_vma_unbind(vma); 659 if (err) 660 return err; 661 } 662 663 err = i915_vma_pin_ww(vma, &eb->ww, 664 entry->pad_to_size, entry->alignment, 665 eb_pin_flags(entry, ev->flags) | pin_flags); 666 if (err) 667 return err; 668 669 if (entry->offset != i915_vma_offset(vma)) { 670 entry->offset = i915_vma_offset(vma) | UPDATE; 671 eb->args->flags |= __EXEC_HAS_RELOC; 672 } 673 674 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 675 err = i915_vma_pin_fence(vma); 676 if (unlikely(err)) 677 return err; 678 679 if (vma->fence) 680 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 681 } 682 683 ev->flags |= __EXEC_OBJECT_HAS_PIN; 684 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 685 686 return 0; 687 } 688 689 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 690 { 691 const unsigned int count = eb->buffer_count; 692 unsigned int i; 693 struct list_head last; 694 bool unpinned = false; 695 696 /* Resort *all* the objects into priority order */ 697 INIT_LIST_HEAD(&eb->unbound); 698 INIT_LIST_HEAD(&last); 699 700 for (i = 0; i < count; i++) { 701 struct eb_vma *ev = &eb->vma[i]; 702 unsigned int flags = ev->flags; 703 704 if (!force && flags & EXEC_OBJECT_PINNED && 705 flags & __EXEC_OBJECT_HAS_PIN) 706 continue; 707 708 unpinned = true; 709 eb_unreserve_vma(ev); 710 711 if (flags & EXEC_OBJECT_PINNED) 712 /* Pinned must have their slot */ 713 list_add(&ev->bind_link, &eb->unbound); 714 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 715 /* Map require the lowest 256MiB (aperture) */ 716 list_add_tail(&ev->bind_link, &eb->unbound); 717 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 718 /* Prioritise 4GiB region for restricted bo */ 719 list_add(&ev->bind_link, &last); 720 else 721 list_add_tail(&ev->bind_link, &last); 722 } 723 724 list_splice_tail(&last, &eb->unbound); 725 return unpinned; 726 } 727 728 static int eb_reserve(struct i915_execbuffer *eb) 729 { 730 struct eb_vma *ev; 731 unsigned int pass; 732 int err = 0; 733 bool unpinned; 734 735 /* 736 * We have one more buffers that we couldn't bind, which could be due to 737 * various reasons. To resolve this we have 4 passes, with every next 738 * level turning the screws tighter: 739 * 740 * 0. Unbind all objects that do not match the GTT constraints for the 741 * execbuffer (fenceable, mappable, alignment etc). Bind all new 742 * objects. This avoids unnecessary unbinding of later objects in order 743 * to make room for the earlier objects *unless* we need to defragment. 744 * 745 * 1. Reorder the buffers, where objects with the most restrictive 746 * placement requirements go first (ignoring fixed location buffers for 747 * now). For example, objects needing the mappable aperture (the first 748 * 256M of GTT), should go first vs objects that can be placed just 749 * about anywhere. Repeat the previous pass. 750 * 751 * 2. Consider buffers that are pinned at a fixed location. Also try to 752 * evict the entire VM this time, leaving only objects that we were 753 * unable to lock. Try again to bind the buffers. (still using the new 754 * buffer order). 755 * 756 * 3. We likely have object lock contention for one or more stubborn 757 * objects in the VM, for which we need to evict to make forward 758 * progress (perhaps we are fighting the shrinker?). When evicting the 759 * VM this time around, anything that we can't lock we now track using 760 * the busy_bo, using the full lock (after dropping the vm->mutex to 761 * prevent deadlocks), instead of trylock. We then continue to evict the 762 * VM, this time with the stubborn object locked, which we can now 763 * hopefully unbind (if still bound in the VM). Repeat until the VM is 764 * evicted. Finally we should be able bind everything. 765 */ 766 for (pass = 0; pass <= 3; pass++) { 767 int pin_flags = PIN_USER | PIN_VALIDATE; 768 769 if (pass == 0) 770 pin_flags |= PIN_NONBLOCK; 771 772 if (pass >= 1) 773 unpinned = eb_unbind(eb, pass >= 2); 774 775 if (pass == 2) { 776 err = mutex_lock_interruptible(&eb->context->vm->mutex); 777 if (!err) { 778 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 779 mutex_unlock(&eb->context->vm->mutex); 780 } 781 if (err) 782 return err; 783 } 784 785 if (pass == 3) { 786 retry: 787 err = mutex_lock_interruptible(&eb->context->vm->mutex); 788 if (!err) { 789 struct drm_i915_gem_object *busy_bo = NULL; 790 791 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 792 mutex_unlock(&eb->context->vm->mutex); 793 if (err && busy_bo) { 794 err = i915_gem_object_lock(busy_bo, &eb->ww); 795 i915_gem_object_put(busy_bo); 796 if (!err) 797 goto retry; 798 } 799 } 800 if (err) 801 return err; 802 } 803 804 list_for_each_entry(ev, &eb->unbound, bind_link) { 805 err = eb_reserve_vma(eb, ev, pin_flags); 806 if (err) 807 break; 808 } 809 810 if (err != -ENOSPC) 811 break; 812 } 813 814 return err; 815 } 816 817 static int eb_select_context(struct i915_execbuffer *eb) 818 { 819 struct i915_gem_context *ctx; 820 821 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 822 if (unlikely(IS_ERR(ctx))) 823 return PTR_ERR(ctx); 824 825 eb->gem_context = ctx; 826 if (i915_gem_context_has_full_ppgtt(ctx)) 827 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 828 829 return 0; 830 } 831 832 static int __eb_add_lut(struct i915_execbuffer *eb, 833 u32 handle, struct i915_vma *vma) 834 { 835 struct i915_gem_context *ctx = eb->gem_context; 836 struct i915_lut_handle *lut; 837 int err; 838 839 lut = i915_lut_handle_alloc(); 840 if (unlikely(!lut)) 841 return -ENOMEM; 842 843 i915_vma_get(vma); 844 if (!atomic_fetch_inc(&vma->open_count)) 845 i915_vma_reopen(vma); 846 lut->handle = handle; 847 lut->ctx = ctx; 848 849 /* Check that the context hasn't been closed in the meantime */ 850 err = -EINTR; 851 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 852 if (likely(!i915_gem_context_is_closed(ctx))) 853 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 854 else 855 err = -ENOENT; 856 if (err == 0) { /* And nor has this handle */ 857 struct drm_i915_gem_object *obj = vma->obj; 858 859 spin_lock(&obj->lut_lock); 860 if (idr_find(&eb->file->object_idr, handle) == obj) { 861 list_add(&lut->obj_link, &obj->lut_list); 862 } else { 863 radix_tree_delete(&ctx->handles_vma, handle); 864 err = -ENOENT; 865 } 866 spin_unlock(&obj->lut_lock); 867 } 868 mutex_unlock(&ctx->lut_mutex); 869 } 870 if (unlikely(err)) 871 goto err; 872 873 return 0; 874 875 err: 876 i915_vma_close(vma); 877 i915_vma_put(vma); 878 i915_lut_handle_free(lut); 879 return err; 880 } 881 882 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 883 { 884 struct i915_address_space *vm = eb->context->vm; 885 886 do { 887 struct drm_i915_gem_object *obj; 888 struct i915_vma *vma; 889 int err; 890 891 rcu_read_lock(); 892 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 893 if (likely(vma && vma->vm == vm)) 894 vma = i915_vma_tryget(vma); 895 rcu_read_unlock(); 896 if (likely(vma)) 897 return vma; 898 899 obj = i915_gem_object_lookup(eb->file, handle); 900 if (unlikely(!obj)) 901 return ERR_PTR(-ENOENT); 902 903 /* 904 * If the user has opted-in for protected-object tracking, make 905 * sure the object encryption can be used. 906 * We only need to do this when the object is first used with 907 * this context, because the context itself will be banned when 908 * the protected objects become invalid. 909 */ 910 if (i915_gem_context_uses_protected_content(eb->gem_context) && 911 i915_gem_object_is_protected(obj)) { 912 err = intel_pxp_key_check(eb->i915->pxp, obj, true); 913 if (err) { 914 i915_gem_object_put(obj); 915 return ERR_PTR(err); 916 } 917 } 918 919 vma = i915_vma_instance(obj, vm, NULL); 920 if (IS_ERR(vma)) { 921 i915_gem_object_put(obj); 922 return vma; 923 } 924 925 err = __eb_add_lut(eb, handle, vma); 926 if (likely(!err)) 927 return vma; 928 929 i915_gem_object_put(obj); 930 if (err != -EEXIST) 931 return ERR_PTR(err); 932 } while (1); 933 } 934 935 static int eb_lookup_vmas(struct i915_execbuffer *eb) 936 { 937 unsigned int i, current_batch = 0; 938 int err = 0; 939 940 INIT_LIST_HEAD(&eb->relocs); 941 942 for (i = 0; i < eb->buffer_count; i++) { 943 struct i915_vma *vma; 944 945 vma = eb_lookup_vma(eb, eb->exec[i].handle); 946 if (IS_ERR(vma)) { 947 err = PTR_ERR(vma); 948 goto err; 949 } 950 951 err = eb_validate_vma(eb, &eb->exec[i], vma); 952 if (unlikely(err)) { 953 i915_vma_put(vma); 954 goto err; 955 } 956 957 err = eb_add_vma(eb, ¤t_batch, i, vma); 958 if (err) 959 return err; 960 961 if (i915_gem_object_is_userptr(vma->obj)) { 962 err = i915_gem_object_userptr_submit_init(vma->obj); 963 if (err) { 964 if (i + 1 < eb->buffer_count) { 965 /* 966 * Execbuffer code expects last vma entry to be NULL, 967 * since we already initialized this entry, 968 * set the next value to NULL or we mess up 969 * cleanup handling. 970 */ 971 eb->vma[i + 1].vma = NULL; 972 } 973 974 return err; 975 } 976 977 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 978 eb->args->flags |= __EXEC_USERPTR_USED; 979 } 980 } 981 982 return 0; 983 984 err: 985 eb->vma[i].vma = NULL; 986 return err; 987 } 988 989 static int eb_lock_vmas(struct i915_execbuffer *eb) 990 { 991 unsigned int i; 992 int err; 993 994 for (i = 0; i < eb->buffer_count; i++) { 995 struct eb_vma *ev = &eb->vma[i]; 996 struct i915_vma *vma = ev->vma; 997 998 err = i915_gem_object_lock(vma->obj, &eb->ww); 999 if (err) 1000 return err; 1001 } 1002 1003 return 0; 1004 } 1005 1006 static int eb_validate_vmas(struct i915_execbuffer *eb) 1007 { 1008 unsigned int i; 1009 int err; 1010 1011 INIT_LIST_HEAD(&eb->unbound); 1012 1013 err = eb_lock_vmas(eb); 1014 if (err) 1015 return err; 1016 1017 for (i = 0; i < eb->buffer_count; i++) { 1018 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1019 struct eb_vma *ev = &eb->vma[i]; 1020 struct i915_vma *vma = ev->vma; 1021 1022 err = eb_pin_vma(eb, entry, ev); 1023 if (err == -EDEADLK) 1024 return err; 1025 1026 if (!err) { 1027 if (entry->offset != i915_vma_offset(vma)) { 1028 entry->offset = i915_vma_offset(vma) | UPDATE; 1029 eb->args->flags |= __EXEC_HAS_RELOC; 1030 } 1031 } else { 1032 eb_unreserve_vma(ev); 1033 1034 list_add_tail(&ev->bind_link, &eb->unbound); 1035 if (drm_mm_node_allocated(&vma->node)) { 1036 err = i915_vma_unbind(vma); 1037 if (err) 1038 return err; 1039 } 1040 } 1041 1042 /* Reserve enough slots to accommodate composite fences */ 1043 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1044 if (err) 1045 return err; 1046 1047 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1048 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1049 } 1050 1051 if (!list_empty(&eb->unbound)) 1052 return eb_reserve(eb); 1053 1054 return 0; 1055 } 1056 1057 static struct eb_vma * 1058 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1059 { 1060 if (eb->lut_size < 0) { 1061 if (handle >= -eb->lut_size) 1062 return NULL; 1063 return &eb->vma[handle]; 1064 } else { 1065 struct hlist_head *head; 1066 struct eb_vma *ev; 1067 1068 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1069 hlist_for_each_entry(ev, head, node) { 1070 if (ev->handle == handle) 1071 return ev; 1072 } 1073 return NULL; 1074 } 1075 } 1076 1077 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1078 { 1079 const unsigned int count = eb->buffer_count; 1080 unsigned int i; 1081 1082 for (i = 0; i < count; i++) { 1083 struct eb_vma *ev = &eb->vma[i]; 1084 struct i915_vma *vma = ev->vma; 1085 1086 if (!vma) 1087 break; 1088 1089 eb_unreserve_vma(ev); 1090 1091 if (final) 1092 i915_vma_put(vma); 1093 } 1094 1095 eb_capture_release(eb); 1096 eb_unpin_engine(eb); 1097 } 1098 1099 static void eb_destroy(const struct i915_execbuffer *eb) 1100 { 1101 if (eb->lut_size > 0) 1102 kfree(eb->buckets); 1103 } 1104 1105 static inline u64 1106 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1107 const struct i915_vma *target) 1108 { 1109 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); 1110 } 1111 1112 static void reloc_cache_init(struct reloc_cache *cache, 1113 struct drm_i915_private *i915) 1114 { 1115 cache->page = -1; 1116 cache->vaddr = 0; 1117 /* Must be a variable in the struct to allow GCC to unroll. */ 1118 cache->graphics_ver = GRAPHICS_VER(i915); 1119 cache->has_llc = HAS_LLC(i915); 1120 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1121 cache->has_fence = cache->graphics_ver < 4; 1122 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1123 cache->node.flags = 0; 1124 } 1125 1126 static inline void *unmask_page(unsigned long p) 1127 { 1128 return (void *)(uintptr_t)(p & PAGE_MASK); 1129 } 1130 1131 static inline unsigned int unmask_flags(unsigned long p) 1132 { 1133 return p & ~PAGE_MASK; 1134 } 1135 1136 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1137 1138 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1139 { 1140 struct drm_i915_private *i915 = 1141 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1142 return to_gt(i915)->ggtt; 1143 } 1144 1145 static void reloc_cache_unmap(struct reloc_cache *cache) 1146 { 1147 void *vaddr; 1148 1149 if (!cache->vaddr) 1150 return; 1151 1152 vaddr = unmask_page(cache->vaddr); 1153 if (cache->vaddr & KMAP) 1154 kunmap_atomic(vaddr); 1155 else 1156 io_mapping_unmap_atomic((void __iomem *)vaddr); 1157 } 1158 1159 static void reloc_cache_remap(struct reloc_cache *cache, 1160 struct drm_i915_gem_object *obj) 1161 { 1162 void *vaddr; 1163 1164 if (!cache->vaddr) 1165 return; 1166 1167 if (cache->vaddr & KMAP) { 1168 struct page *page = i915_gem_object_get_page(obj, cache->page); 1169 1170 vaddr = kmap_atomic(page); 1171 cache->vaddr = unmask_flags(cache->vaddr) | 1172 (unsigned long)vaddr; 1173 } else { 1174 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1175 unsigned long offset; 1176 1177 offset = cache->node.start; 1178 if (!drm_mm_node_allocated(&cache->node)) 1179 offset += cache->page << PAGE_SHIFT; 1180 1181 cache->vaddr = (unsigned long) 1182 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1183 } 1184 } 1185 1186 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1187 { 1188 void *vaddr; 1189 1190 if (!cache->vaddr) 1191 return; 1192 1193 vaddr = unmask_page(cache->vaddr); 1194 if (cache->vaddr & KMAP) { 1195 struct drm_i915_gem_object *obj = 1196 (struct drm_i915_gem_object *)cache->node.mm; 1197 if (cache->vaddr & CLFLUSH_AFTER) 1198 mb(); 1199 1200 kunmap_atomic(vaddr); 1201 i915_gem_object_finish_access(obj); 1202 } else { 1203 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1204 1205 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1206 io_mapping_unmap_atomic((void __iomem *)vaddr); 1207 1208 if (drm_mm_node_allocated(&cache->node)) { 1209 ggtt->vm.clear_range(&ggtt->vm, 1210 cache->node.start, 1211 cache->node.size); 1212 mutex_lock(&ggtt->vm.mutex); 1213 drm_mm_remove_node(&cache->node); 1214 mutex_unlock(&ggtt->vm.mutex); 1215 } else { 1216 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1217 } 1218 } 1219 1220 cache->vaddr = 0; 1221 cache->page = -1; 1222 } 1223 1224 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1225 struct reloc_cache *cache, 1226 unsigned long pageno) 1227 { 1228 void *vaddr; 1229 struct page *page; 1230 1231 if (cache->vaddr) { 1232 kunmap_atomic(unmask_page(cache->vaddr)); 1233 } else { 1234 unsigned int flushes; 1235 int err; 1236 1237 err = i915_gem_object_prepare_write(obj, &flushes); 1238 if (err) 1239 return ERR_PTR(err); 1240 1241 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1242 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1243 1244 cache->vaddr = flushes | KMAP; 1245 cache->node.mm = (void *)obj; 1246 if (flushes) 1247 mb(); 1248 } 1249 1250 page = i915_gem_object_get_page(obj, pageno); 1251 if (!obj->mm.dirty) 1252 set_page_dirty(page); 1253 1254 vaddr = kmap_atomic(page); 1255 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1256 cache->page = pageno; 1257 1258 return vaddr; 1259 } 1260 1261 static void *reloc_iomap(struct i915_vma *batch, 1262 struct i915_execbuffer *eb, 1263 unsigned long page) 1264 { 1265 struct drm_i915_gem_object *obj = batch->obj; 1266 struct reloc_cache *cache = &eb->reloc_cache; 1267 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1268 unsigned long offset; 1269 void *vaddr; 1270 1271 if (cache->vaddr) { 1272 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1273 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1274 } else { 1275 struct i915_vma *vma = ERR_PTR(-ENODEV); 1276 int err; 1277 1278 if (i915_gem_object_is_tiled(obj)) 1279 return ERR_PTR(-EINVAL); 1280 1281 if (use_cpu_reloc(cache, obj)) 1282 return NULL; 1283 1284 err = i915_gem_object_set_to_gtt_domain(obj, true); 1285 if (err) 1286 return ERR_PTR(err); 1287 1288 /* 1289 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1290 * VMA from the object list because we no longer pin. 1291 * 1292 * Only attempt to pin the batch buffer to ggtt if the current batch 1293 * is not inside ggtt, or the batch buffer is not misplaced. 1294 */ 1295 if (!i915_is_ggtt(batch->vm) || 1296 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1297 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1298 PIN_MAPPABLE | 1299 PIN_NONBLOCK /* NOWARN */ | 1300 PIN_NOEVICT); 1301 } 1302 1303 if (vma == ERR_PTR(-EDEADLK)) 1304 return vma; 1305 1306 if (IS_ERR(vma)) { 1307 memset(&cache->node, 0, sizeof(cache->node)); 1308 mutex_lock(&ggtt->vm.mutex); 1309 err = drm_mm_insert_node_in_range 1310 (&ggtt->vm.mm, &cache->node, 1311 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1312 0, ggtt->mappable_end, 1313 DRM_MM_INSERT_LOW); 1314 mutex_unlock(&ggtt->vm.mutex); 1315 if (err) /* no inactive aperture space, use cpu reloc */ 1316 return NULL; 1317 } else { 1318 cache->node.start = i915_ggtt_offset(vma); 1319 cache->node.mm = (void *)vma; 1320 } 1321 } 1322 1323 offset = cache->node.start; 1324 if (drm_mm_node_allocated(&cache->node)) { 1325 ggtt->vm.insert_page(&ggtt->vm, 1326 i915_gem_object_get_dma_address(obj, page), 1327 offset, I915_CACHE_NONE, 0); 1328 } else { 1329 offset += page << PAGE_SHIFT; 1330 } 1331 1332 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1333 offset); 1334 cache->page = page; 1335 cache->vaddr = (unsigned long)vaddr; 1336 1337 return vaddr; 1338 } 1339 1340 static void *reloc_vaddr(struct i915_vma *vma, 1341 struct i915_execbuffer *eb, 1342 unsigned long page) 1343 { 1344 struct reloc_cache *cache = &eb->reloc_cache; 1345 void *vaddr; 1346 1347 if (cache->page == page) { 1348 vaddr = unmask_page(cache->vaddr); 1349 } else { 1350 vaddr = NULL; 1351 if ((cache->vaddr & KMAP) == 0) 1352 vaddr = reloc_iomap(vma, eb, page); 1353 if (!vaddr) 1354 vaddr = reloc_kmap(vma->obj, cache, page); 1355 } 1356 1357 return vaddr; 1358 } 1359 1360 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1361 { 1362 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1363 if (flushes & CLFLUSH_BEFORE) 1364 drm_clflush_virt_range(addr, sizeof(*addr)); 1365 1366 *addr = value; 1367 1368 /* 1369 * Writes to the same cacheline are serialised by the CPU 1370 * (including clflush). On the write path, we only require 1371 * that it hits memory in an orderly fashion and place 1372 * mb barriers at the start and end of the relocation phase 1373 * to ensure ordering of clflush wrt to the system. 1374 */ 1375 if (flushes & CLFLUSH_AFTER) 1376 drm_clflush_virt_range(addr, sizeof(*addr)); 1377 } else 1378 *addr = value; 1379 } 1380 1381 static u64 1382 relocate_entry(struct i915_vma *vma, 1383 const struct drm_i915_gem_relocation_entry *reloc, 1384 struct i915_execbuffer *eb, 1385 const struct i915_vma *target) 1386 { 1387 u64 target_addr = relocation_target(reloc, target); 1388 u64 offset = reloc->offset; 1389 bool wide = eb->reloc_cache.use_64bit_reloc; 1390 void *vaddr; 1391 1392 repeat: 1393 vaddr = reloc_vaddr(vma, eb, 1394 offset >> PAGE_SHIFT); 1395 if (IS_ERR(vaddr)) 1396 return PTR_ERR(vaddr); 1397 1398 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1399 clflush_write32(vaddr + offset_in_page(offset), 1400 lower_32_bits(target_addr), 1401 eb->reloc_cache.vaddr); 1402 1403 if (wide) { 1404 offset += sizeof(u32); 1405 target_addr >>= 32; 1406 wide = false; 1407 goto repeat; 1408 } 1409 1410 return target->node.start | UPDATE; 1411 } 1412 1413 static u64 1414 eb_relocate_entry(struct i915_execbuffer *eb, 1415 struct eb_vma *ev, 1416 const struct drm_i915_gem_relocation_entry *reloc) 1417 { 1418 struct drm_i915_private *i915 = eb->i915; 1419 struct eb_vma *target; 1420 int err; 1421 1422 /* we've already hold a reference to all valid objects */ 1423 target = eb_get_vma(eb, reloc->target_handle); 1424 if (unlikely(!target)) 1425 return -ENOENT; 1426 1427 /* Validate that the target is in a valid r/w GPU domain */ 1428 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1429 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1430 "target %d offset %d " 1431 "read %08x write %08x", 1432 reloc->target_handle, 1433 (int) reloc->offset, 1434 reloc->read_domains, 1435 reloc->write_domain); 1436 return -EINVAL; 1437 } 1438 if (unlikely((reloc->write_domain | reloc->read_domains) 1439 & ~I915_GEM_GPU_DOMAINS)) { 1440 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1441 "target %d offset %d " 1442 "read %08x write %08x", 1443 reloc->target_handle, 1444 (int) reloc->offset, 1445 reloc->read_domains, 1446 reloc->write_domain); 1447 return -EINVAL; 1448 } 1449 1450 if (reloc->write_domain) { 1451 target->flags |= EXEC_OBJECT_WRITE; 1452 1453 /* 1454 * Sandybridge PPGTT errata: We need a global gtt mapping 1455 * for MI and pipe_control writes because the gpu doesn't 1456 * properly redirect them through the ppgtt for non_secure 1457 * batchbuffers. 1458 */ 1459 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1460 GRAPHICS_VER(eb->i915) == 6 && 1461 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1462 struct i915_vma *vma = target->vma; 1463 1464 reloc_cache_unmap(&eb->reloc_cache); 1465 mutex_lock(&vma->vm->mutex); 1466 err = i915_vma_bind(target->vma, 1467 target->vma->obj->cache_level, 1468 PIN_GLOBAL, NULL, NULL); 1469 mutex_unlock(&vma->vm->mutex); 1470 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1471 if (err) 1472 return err; 1473 } 1474 } 1475 1476 /* 1477 * If the relocation already has the right value in it, no 1478 * more work needs to be done. 1479 */ 1480 if (!DBG_FORCE_RELOC && 1481 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) 1482 return 0; 1483 1484 /* Check that the relocation address is valid... */ 1485 if (unlikely(reloc->offset > 1486 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1487 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1488 "target %d offset %d size %d.\n", 1489 reloc->target_handle, 1490 (int)reloc->offset, 1491 (int)ev->vma->size); 1492 return -EINVAL; 1493 } 1494 if (unlikely(reloc->offset & 3)) { 1495 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1496 "target %d offset %d.\n", 1497 reloc->target_handle, 1498 (int)reloc->offset); 1499 return -EINVAL; 1500 } 1501 1502 /* 1503 * If we write into the object, we need to force the synchronisation 1504 * barrier, either with an asynchronous clflush or if we executed the 1505 * patching using the GPU (though that should be serialised by the 1506 * timeline). To be completely sure, and since we are required to 1507 * do relocations we are already stalling, disable the user's opt 1508 * out of our synchronisation. 1509 */ 1510 ev->flags &= ~EXEC_OBJECT_ASYNC; 1511 1512 /* and update the user's relocation entry */ 1513 return relocate_entry(ev->vma, reloc, eb, target->vma); 1514 } 1515 1516 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1517 { 1518 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1519 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1520 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1521 struct drm_i915_gem_relocation_entry __user *urelocs = 1522 u64_to_user_ptr(entry->relocs_ptr); 1523 unsigned long remain = entry->relocation_count; 1524 1525 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1526 return -EINVAL; 1527 1528 /* 1529 * We must check that the entire relocation array is safe 1530 * to read. However, if the array is not writable the user loses 1531 * the updated relocation values. 1532 */ 1533 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1534 return -EFAULT; 1535 1536 do { 1537 struct drm_i915_gem_relocation_entry *r = stack; 1538 unsigned int count = 1539 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1540 unsigned int copied; 1541 1542 /* 1543 * This is the fast path and we cannot handle a pagefault 1544 * whilst holding the struct mutex lest the user pass in the 1545 * relocations contained within a mmaped bo. For in such a case 1546 * we, the page fault handler would call i915_gem_fault() and 1547 * we would try to acquire the struct mutex again. Obviously 1548 * this is bad and so lockdep complains vehemently. 1549 */ 1550 pagefault_disable(); 1551 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1552 pagefault_enable(); 1553 if (unlikely(copied)) { 1554 remain = -EFAULT; 1555 goto out; 1556 } 1557 1558 remain -= count; 1559 do { 1560 u64 offset = eb_relocate_entry(eb, ev, r); 1561 1562 if (likely(offset == 0)) { 1563 } else if ((s64)offset < 0) { 1564 remain = (int)offset; 1565 goto out; 1566 } else { 1567 /* 1568 * Note that reporting an error now 1569 * leaves everything in an inconsistent 1570 * state as we have *already* changed 1571 * the relocation value inside the 1572 * object. As we have not changed the 1573 * reloc.presumed_offset or will not 1574 * change the execobject.offset, on the 1575 * call we may not rewrite the value 1576 * inside the object, leaving it 1577 * dangling and causing a GPU hang. Unless 1578 * userspace dynamically rebuilds the 1579 * relocations on each execbuf rather than 1580 * presume a static tree. 1581 * 1582 * We did previously check if the relocations 1583 * were writable (access_ok), an error now 1584 * would be a strange race with mprotect, 1585 * having already demonstrated that we 1586 * can read from this userspace address. 1587 */ 1588 offset = gen8_canonical_addr(offset & ~UPDATE); 1589 __put_user(offset, 1590 &urelocs[r - stack].presumed_offset); 1591 } 1592 } while (r++, --count); 1593 urelocs += ARRAY_SIZE(stack); 1594 } while (remain); 1595 out: 1596 reloc_cache_reset(&eb->reloc_cache, eb); 1597 return remain; 1598 } 1599 1600 static int 1601 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1602 { 1603 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1604 struct drm_i915_gem_relocation_entry *relocs = 1605 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1606 unsigned int i; 1607 int err; 1608 1609 for (i = 0; i < entry->relocation_count; i++) { 1610 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1611 1612 if ((s64)offset < 0) { 1613 err = (int)offset; 1614 goto err; 1615 } 1616 } 1617 err = 0; 1618 err: 1619 reloc_cache_reset(&eb->reloc_cache, eb); 1620 return err; 1621 } 1622 1623 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1624 { 1625 const char __user *addr, *end; 1626 unsigned long size; 1627 char __maybe_unused c; 1628 1629 size = entry->relocation_count; 1630 if (size == 0) 1631 return 0; 1632 1633 if (size > N_RELOC(ULONG_MAX)) 1634 return -EINVAL; 1635 1636 addr = u64_to_user_ptr(entry->relocs_ptr); 1637 size *= sizeof(struct drm_i915_gem_relocation_entry); 1638 if (!access_ok(addr, size)) 1639 return -EFAULT; 1640 1641 end = addr + size; 1642 for (; addr < end; addr += PAGE_SIZE) { 1643 int err = __get_user(c, addr); 1644 if (err) 1645 return err; 1646 } 1647 return __get_user(c, end - 1); 1648 } 1649 1650 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1651 { 1652 struct drm_i915_gem_relocation_entry *relocs; 1653 const unsigned int count = eb->buffer_count; 1654 unsigned int i; 1655 int err; 1656 1657 for (i = 0; i < count; i++) { 1658 const unsigned int nreloc = eb->exec[i].relocation_count; 1659 struct drm_i915_gem_relocation_entry __user *urelocs; 1660 unsigned long size; 1661 unsigned long copied; 1662 1663 if (nreloc == 0) 1664 continue; 1665 1666 err = check_relocations(&eb->exec[i]); 1667 if (err) 1668 goto err; 1669 1670 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1671 size = nreloc * sizeof(*relocs); 1672 1673 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1674 if (!relocs) { 1675 err = -ENOMEM; 1676 goto err; 1677 } 1678 1679 /* copy_from_user is limited to < 4GiB */ 1680 copied = 0; 1681 do { 1682 unsigned int len = 1683 min_t(u64, BIT_ULL(31), size - copied); 1684 1685 if (__copy_from_user((char *)relocs + copied, 1686 (char __user *)urelocs + copied, 1687 len)) 1688 goto end; 1689 1690 copied += len; 1691 } while (copied < size); 1692 1693 /* 1694 * As we do not update the known relocation offsets after 1695 * relocating (due to the complexities in lock handling), 1696 * we need to mark them as invalid now so that we force the 1697 * relocation processing next time. Just in case the target 1698 * object is evicted and then rebound into its old 1699 * presumed_offset before the next execbuffer - if that 1700 * happened we would make the mistake of assuming that the 1701 * relocations were valid. 1702 */ 1703 if (!user_access_begin(urelocs, size)) 1704 goto end; 1705 1706 for (copied = 0; copied < nreloc; copied++) 1707 unsafe_put_user(-1, 1708 &urelocs[copied].presumed_offset, 1709 end_user); 1710 user_access_end(); 1711 1712 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1713 } 1714 1715 return 0; 1716 1717 end_user: 1718 user_access_end(); 1719 end: 1720 kvfree(relocs); 1721 err = -EFAULT; 1722 err: 1723 while (i--) { 1724 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1725 if (eb->exec[i].relocation_count) 1726 kvfree(relocs); 1727 } 1728 return err; 1729 } 1730 1731 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1732 { 1733 const unsigned int count = eb->buffer_count; 1734 unsigned int i; 1735 1736 for (i = 0; i < count; i++) { 1737 int err; 1738 1739 err = check_relocations(&eb->exec[i]); 1740 if (err) 1741 return err; 1742 } 1743 1744 return 0; 1745 } 1746 1747 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1748 { 1749 const unsigned int count = eb->buffer_count; 1750 unsigned int i; 1751 int ret; 1752 1753 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1754 return 0; 1755 1756 for (i = 0; i < count; i++) { 1757 struct eb_vma *ev = &eb->vma[i]; 1758 1759 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1760 continue; 1761 1762 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1763 if (ret) 1764 return ret; 1765 1766 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1767 } 1768 1769 return 0; 1770 } 1771 1772 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1773 { 1774 bool have_copy = false; 1775 struct eb_vma *ev; 1776 int err = 0; 1777 1778 repeat: 1779 if (signal_pending(current)) { 1780 err = -ERESTARTSYS; 1781 goto out; 1782 } 1783 1784 /* We may process another execbuffer during the unlock... */ 1785 eb_release_vmas(eb, false); 1786 i915_gem_ww_ctx_fini(&eb->ww); 1787 1788 /* 1789 * We take 3 passes through the slowpatch. 1790 * 1791 * 1 - we try to just prefault all the user relocation entries and 1792 * then attempt to reuse the atomic pagefault disabled fast path again. 1793 * 1794 * 2 - we copy the user entries to a local buffer here outside of the 1795 * local and allow ourselves to wait upon any rendering before 1796 * relocations 1797 * 1798 * 3 - we already have a local copy of the relocation entries, but 1799 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1800 */ 1801 if (!err) { 1802 err = eb_prefault_relocations(eb); 1803 } else if (!have_copy) { 1804 err = eb_copy_relocations(eb); 1805 have_copy = err == 0; 1806 } else { 1807 cond_resched(); 1808 err = 0; 1809 } 1810 1811 if (!err) 1812 err = eb_reinit_userptr(eb); 1813 1814 i915_gem_ww_ctx_init(&eb->ww, true); 1815 if (err) 1816 goto out; 1817 1818 /* reacquire the objects */ 1819 repeat_validate: 1820 err = eb_pin_engine(eb, false); 1821 if (err) 1822 goto err; 1823 1824 err = eb_validate_vmas(eb); 1825 if (err) 1826 goto err; 1827 1828 GEM_BUG_ON(!eb->batches[0]); 1829 1830 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1831 if (!have_copy) { 1832 err = eb_relocate_vma(eb, ev); 1833 if (err) 1834 break; 1835 } else { 1836 err = eb_relocate_vma_slow(eb, ev); 1837 if (err) 1838 break; 1839 } 1840 } 1841 1842 if (err == -EDEADLK) 1843 goto err; 1844 1845 if (err && !have_copy) 1846 goto repeat; 1847 1848 if (err) 1849 goto err; 1850 1851 /* as last step, parse the command buffer */ 1852 err = eb_parse(eb); 1853 if (err) 1854 goto err; 1855 1856 /* 1857 * Leave the user relocations as are, this is the painfully slow path, 1858 * and we want to avoid the complication of dropping the lock whilst 1859 * having buffers reserved in the aperture and so causing spurious 1860 * ENOSPC for random operations. 1861 */ 1862 1863 err: 1864 if (err == -EDEADLK) { 1865 eb_release_vmas(eb, false); 1866 err = i915_gem_ww_ctx_backoff(&eb->ww); 1867 if (!err) 1868 goto repeat_validate; 1869 } 1870 1871 if (err == -EAGAIN) 1872 goto repeat; 1873 1874 out: 1875 if (have_copy) { 1876 const unsigned int count = eb->buffer_count; 1877 unsigned int i; 1878 1879 for (i = 0; i < count; i++) { 1880 const struct drm_i915_gem_exec_object2 *entry = 1881 &eb->exec[i]; 1882 struct drm_i915_gem_relocation_entry *relocs; 1883 1884 if (!entry->relocation_count) 1885 continue; 1886 1887 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1888 kvfree(relocs); 1889 } 1890 } 1891 1892 return err; 1893 } 1894 1895 static int eb_relocate_parse(struct i915_execbuffer *eb) 1896 { 1897 int err; 1898 bool throttle = true; 1899 1900 retry: 1901 err = eb_pin_engine(eb, throttle); 1902 if (err) { 1903 if (err != -EDEADLK) 1904 return err; 1905 1906 goto err; 1907 } 1908 1909 /* only throttle once, even if we didn't need to throttle */ 1910 throttle = false; 1911 1912 err = eb_validate_vmas(eb); 1913 if (err == -EAGAIN) 1914 goto slow; 1915 else if (err) 1916 goto err; 1917 1918 /* The objects are in their final locations, apply the relocations. */ 1919 if (eb->args->flags & __EXEC_HAS_RELOC) { 1920 struct eb_vma *ev; 1921 1922 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1923 err = eb_relocate_vma(eb, ev); 1924 if (err) 1925 break; 1926 } 1927 1928 if (err == -EDEADLK) 1929 goto err; 1930 else if (err) 1931 goto slow; 1932 } 1933 1934 if (!err) 1935 err = eb_parse(eb); 1936 1937 err: 1938 if (err == -EDEADLK) { 1939 eb_release_vmas(eb, false); 1940 err = i915_gem_ww_ctx_backoff(&eb->ww); 1941 if (!err) 1942 goto retry; 1943 } 1944 1945 return err; 1946 1947 slow: 1948 err = eb_relocate_parse_slow(eb); 1949 if (err) 1950 /* 1951 * If the user expects the execobject.offset and 1952 * reloc.presumed_offset to be an exact match, 1953 * as for using NO_RELOC, then we cannot update 1954 * the execobject.offset until we have completed 1955 * relocation. 1956 */ 1957 eb->args->flags &= ~__EXEC_HAS_RELOC; 1958 1959 return err; 1960 } 1961 1962 /* 1963 * Using two helper loops for the order of which requests / batches are created 1964 * and added the to backend. Requests are created in order from the parent to 1965 * the last child. Requests are added in the reverse order, from the last child 1966 * to parent. This is done for locking reasons as the timeline lock is acquired 1967 * during request creation and released when the request is added to the 1968 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1969 * the ordering. 1970 */ 1971 #define for_each_batch_create_order(_eb, _i) \ 1972 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1973 #define for_each_batch_add_order(_eb, _i) \ 1974 BUILD_BUG_ON(!typecheck(int, _i)); \ 1975 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1976 1977 static struct i915_request * 1978 eb_find_first_request_added(struct i915_execbuffer *eb) 1979 { 1980 int i; 1981 1982 for_each_batch_add_order(eb, i) 1983 if (eb->requests[i]) 1984 return eb->requests[i]; 1985 1986 GEM_BUG_ON("Request not found"); 1987 1988 return NULL; 1989 } 1990 1991 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1992 1993 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1994 static int eb_capture_stage(struct i915_execbuffer *eb) 1995 { 1996 const unsigned int count = eb->buffer_count; 1997 unsigned int i = count, j; 1998 1999 while (i--) { 2000 struct eb_vma *ev = &eb->vma[i]; 2001 struct i915_vma *vma = ev->vma; 2002 unsigned int flags = ev->flags; 2003 2004 if (!(flags & EXEC_OBJECT_CAPTURE)) 2005 continue; 2006 2007 if (i915_gem_context_is_recoverable(eb->gem_context) && 2008 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2009 return -EINVAL; 2010 2011 for_each_batch_create_order(eb, j) { 2012 struct i915_capture_list *capture; 2013 2014 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2015 if (!capture) 2016 continue; 2017 2018 capture->next = eb->capture_lists[j]; 2019 capture->vma_res = i915_vma_resource_get(vma->resource); 2020 eb->capture_lists[j] = capture; 2021 } 2022 } 2023 2024 return 0; 2025 } 2026 2027 /* Commit once we're in the critical path */ 2028 static void eb_capture_commit(struct i915_execbuffer *eb) 2029 { 2030 unsigned int j; 2031 2032 for_each_batch_create_order(eb, j) { 2033 struct i915_request *rq = eb->requests[j]; 2034 2035 if (!rq) 2036 break; 2037 2038 rq->capture_list = eb->capture_lists[j]; 2039 eb->capture_lists[j] = NULL; 2040 } 2041 } 2042 2043 /* 2044 * Release anything that didn't get committed due to errors. 2045 * The capture_list will otherwise be freed at request retire. 2046 */ 2047 static void eb_capture_release(struct i915_execbuffer *eb) 2048 { 2049 unsigned int j; 2050 2051 for_each_batch_create_order(eb, j) { 2052 if (eb->capture_lists[j]) { 2053 i915_request_free_capture_list(eb->capture_lists[j]); 2054 eb->capture_lists[j] = NULL; 2055 } 2056 } 2057 } 2058 2059 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2060 { 2061 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2062 } 2063 2064 #else 2065 2066 static int eb_capture_stage(struct i915_execbuffer *eb) 2067 { 2068 return 0; 2069 } 2070 2071 static void eb_capture_commit(struct i915_execbuffer *eb) 2072 { 2073 } 2074 2075 static void eb_capture_release(struct i915_execbuffer *eb) 2076 { 2077 } 2078 2079 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2080 { 2081 } 2082 2083 #endif 2084 2085 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2086 { 2087 const unsigned int count = eb->buffer_count; 2088 unsigned int i = count; 2089 int err = 0, j; 2090 2091 while (i--) { 2092 struct eb_vma *ev = &eb->vma[i]; 2093 struct i915_vma *vma = ev->vma; 2094 unsigned int flags = ev->flags; 2095 struct drm_i915_gem_object *obj = vma->obj; 2096 2097 assert_vma_held(vma); 2098 2099 /* 2100 * If the GPU is not _reading_ through the CPU cache, we need 2101 * to make sure that any writes (both previous GPU writes from 2102 * before a change in snooping levels and normal CPU writes) 2103 * caught in that cache are flushed to main memory. 2104 * 2105 * We want to say 2106 * obj->cache_dirty && 2107 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2108 * but gcc's optimiser doesn't handle that as well and emits 2109 * two jumps instead of one. Maybe one day... 2110 * 2111 * FIXME: There is also sync flushing in set_pages(), which 2112 * serves a different purpose(some of the time at least). 2113 * 2114 * We should consider: 2115 * 2116 * 1. Rip out the async flush code. 2117 * 2118 * 2. Or make the sync flushing use the async clflush path 2119 * using mandatory fences underneath. Currently the below 2120 * async flush happens after we bind the object. 2121 */ 2122 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2123 if (i915_gem_clflush_object(obj, 0)) 2124 flags &= ~EXEC_OBJECT_ASYNC; 2125 } 2126 2127 /* We only need to await on the first request */ 2128 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2129 err = i915_request_await_object 2130 (eb_find_first_request_added(eb), obj, 2131 flags & EXEC_OBJECT_WRITE); 2132 } 2133 2134 for_each_batch_add_order(eb, j) { 2135 if (err) 2136 break; 2137 if (!eb->requests[j]) 2138 continue; 2139 2140 err = _i915_vma_move_to_active(vma, eb->requests[j], 2141 j ? NULL : 2142 eb->composite_fence ? 2143 eb->composite_fence : 2144 &eb->requests[j]->fence, 2145 flags | __EXEC_OBJECT_NO_RESERVE | 2146 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2147 } 2148 } 2149 2150 #ifdef CONFIG_MMU_NOTIFIER 2151 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2152 read_lock(&eb->i915->mm.notifier_lock); 2153 2154 /* 2155 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2156 * could not have been set 2157 */ 2158 for (i = 0; i < count; i++) { 2159 struct eb_vma *ev = &eb->vma[i]; 2160 struct drm_i915_gem_object *obj = ev->vma->obj; 2161 2162 if (!i915_gem_object_is_userptr(obj)) 2163 continue; 2164 2165 err = i915_gem_object_userptr_submit_done(obj); 2166 if (err) 2167 break; 2168 } 2169 2170 read_unlock(&eb->i915->mm.notifier_lock); 2171 } 2172 #endif 2173 2174 if (unlikely(err)) 2175 goto err_skip; 2176 2177 /* Unconditionally flush any chipset caches (for streaming writes). */ 2178 intel_gt_chipset_flush(eb->gt); 2179 eb_capture_commit(eb); 2180 2181 return 0; 2182 2183 err_skip: 2184 for_each_batch_create_order(eb, j) { 2185 if (!eb->requests[j]) 2186 break; 2187 2188 i915_request_set_error_once(eb->requests[j], err); 2189 } 2190 return err; 2191 } 2192 2193 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2194 struct drm_i915_gem_execbuffer2 *exec) 2195 { 2196 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2197 return -EINVAL; 2198 2199 /* Kernel clipping was a DRI1 misfeature */ 2200 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2201 I915_EXEC_USE_EXTENSIONS))) { 2202 if (exec->num_cliprects || exec->cliprects_ptr) 2203 return -EINVAL; 2204 } 2205 2206 if (exec->DR4 == 0xffffffff) { 2207 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2208 exec->DR4 = 0; 2209 } 2210 if (exec->DR1 || exec->DR4) 2211 return -EINVAL; 2212 2213 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2214 return -EINVAL; 2215 2216 return 0; 2217 } 2218 2219 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2220 { 2221 u32 *cs; 2222 int i; 2223 2224 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2225 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2226 return -EINVAL; 2227 } 2228 2229 cs = intel_ring_begin(rq, 4 * 2 + 2); 2230 if (IS_ERR(cs)) 2231 return PTR_ERR(cs); 2232 2233 *cs++ = MI_LOAD_REGISTER_IMM(4); 2234 for (i = 0; i < 4; i++) { 2235 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2236 *cs++ = 0; 2237 } 2238 *cs++ = MI_NOOP; 2239 intel_ring_advance(rq, cs); 2240 2241 return 0; 2242 } 2243 2244 static struct i915_vma * 2245 shadow_batch_pin(struct i915_execbuffer *eb, 2246 struct drm_i915_gem_object *obj, 2247 struct i915_address_space *vm, 2248 unsigned int flags) 2249 { 2250 struct i915_vma *vma; 2251 int err; 2252 2253 vma = i915_vma_instance(obj, vm, NULL); 2254 if (IS_ERR(vma)) 2255 return vma; 2256 2257 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2258 if (err) 2259 return ERR_PTR(err); 2260 2261 return vma; 2262 } 2263 2264 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2265 { 2266 /* 2267 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2268 * batch" bit. Hence we need to pin secure batches into the global gtt. 2269 * hsw should have this fixed, but bdw mucks it up again. */ 2270 if (eb->batch_flags & I915_DISPATCH_SECURE) 2271 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2272 2273 return NULL; 2274 } 2275 2276 static int eb_parse(struct i915_execbuffer *eb) 2277 { 2278 struct drm_i915_private *i915 = eb->i915; 2279 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2280 struct i915_vma *shadow, *trampoline, *batch; 2281 unsigned long len; 2282 int err; 2283 2284 if (!eb_use_cmdparser(eb)) { 2285 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2286 if (IS_ERR(batch)) 2287 return PTR_ERR(batch); 2288 2289 goto secure_batch; 2290 } 2291 2292 if (intel_context_is_parallel(eb->context)) 2293 return -EINVAL; 2294 2295 len = eb->batch_len[0]; 2296 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2297 /* 2298 * ppGTT backed shadow buffers must be mapped RO, to prevent 2299 * post-scan tampering 2300 */ 2301 if (!eb->context->vm->has_read_only) { 2302 drm_dbg(&i915->drm, 2303 "Cannot prevent post-scan tampering without RO capable vm\n"); 2304 return -EINVAL; 2305 } 2306 } else { 2307 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2308 } 2309 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2310 return -EINVAL; 2311 2312 if (!pool) { 2313 pool = intel_gt_get_buffer_pool(eb->gt, len, 2314 I915_MAP_WB); 2315 if (IS_ERR(pool)) 2316 return PTR_ERR(pool); 2317 eb->batch_pool = pool; 2318 } 2319 2320 err = i915_gem_object_lock(pool->obj, &eb->ww); 2321 if (err) 2322 return err; 2323 2324 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2325 if (IS_ERR(shadow)) 2326 return PTR_ERR(shadow); 2327 2328 intel_gt_buffer_pool_mark_used(pool); 2329 i915_gem_object_set_readonly(shadow->obj); 2330 shadow->private = pool; 2331 2332 trampoline = NULL; 2333 if (CMDPARSER_USES_GGTT(eb->i915)) { 2334 trampoline = shadow; 2335 2336 shadow = shadow_batch_pin(eb, pool->obj, 2337 &eb->gt->ggtt->vm, 2338 PIN_GLOBAL); 2339 if (IS_ERR(shadow)) 2340 return PTR_ERR(shadow); 2341 2342 shadow->private = pool; 2343 2344 eb->batch_flags |= I915_DISPATCH_SECURE; 2345 } 2346 2347 batch = eb_dispatch_secure(eb, shadow); 2348 if (IS_ERR(batch)) 2349 return PTR_ERR(batch); 2350 2351 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2352 if (err) 2353 return err; 2354 2355 err = intel_engine_cmd_parser(eb->context->engine, 2356 eb->batches[0]->vma, 2357 eb->batch_start_offset, 2358 eb->batch_len[0], 2359 shadow, trampoline); 2360 if (err) 2361 return err; 2362 2363 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2364 eb->batches[0]->vma = i915_vma_get(shadow); 2365 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2366 2367 eb->trampoline = trampoline; 2368 eb->batch_start_offset = 0; 2369 2370 secure_batch: 2371 if (batch) { 2372 if (intel_context_is_parallel(eb->context)) 2373 return -EINVAL; 2374 2375 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2376 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2377 eb->batches[0]->vma = i915_vma_get(batch); 2378 } 2379 return 0; 2380 } 2381 2382 static int eb_request_submit(struct i915_execbuffer *eb, 2383 struct i915_request *rq, 2384 struct i915_vma *batch, 2385 u64 batch_len) 2386 { 2387 int err; 2388 2389 if (intel_context_nopreempt(rq->context)) 2390 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2391 2392 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2393 err = i915_reset_gen7_sol_offsets(rq); 2394 if (err) 2395 return err; 2396 } 2397 2398 /* 2399 * After we completed waiting for other engines (using HW semaphores) 2400 * then we can signal that this request/batch is ready to run. This 2401 * allows us to determine if the batch is still waiting on the GPU 2402 * or actually running by checking the breadcrumb. 2403 */ 2404 if (rq->context->engine->emit_init_breadcrumb) { 2405 err = rq->context->engine->emit_init_breadcrumb(rq); 2406 if (err) 2407 return err; 2408 } 2409 2410 err = rq->context->engine->emit_bb_start(rq, 2411 i915_vma_offset(batch) + 2412 eb->batch_start_offset, 2413 batch_len, 2414 eb->batch_flags); 2415 if (err) 2416 return err; 2417 2418 if (eb->trampoline) { 2419 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2420 GEM_BUG_ON(eb->batch_start_offset); 2421 err = rq->context->engine->emit_bb_start(rq, 2422 i915_vma_offset(eb->trampoline) + 2423 batch_len, 0, 0); 2424 if (err) 2425 return err; 2426 } 2427 2428 return 0; 2429 } 2430 2431 static int eb_submit(struct i915_execbuffer *eb) 2432 { 2433 unsigned int i; 2434 int err; 2435 2436 err = eb_move_to_gpu(eb); 2437 2438 for_each_batch_create_order(eb, i) { 2439 if (!eb->requests[i]) 2440 break; 2441 2442 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2443 if (!err) 2444 err = eb_request_submit(eb, eb->requests[i], 2445 eb->batches[i]->vma, 2446 eb->batch_len[i]); 2447 } 2448 2449 return err; 2450 } 2451 2452 /* 2453 * Find one BSD ring to dispatch the corresponding BSD command. 2454 * The engine index is returned. 2455 */ 2456 static unsigned int 2457 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2458 struct drm_file *file) 2459 { 2460 struct drm_i915_file_private *file_priv = file->driver_priv; 2461 2462 /* Check whether the file_priv has already selected one ring. */ 2463 if ((int)file_priv->bsd_engine < 0) 2464 file_priv->bsd_engine = 2465 get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); 2466 2467 return file_priv->bsd_engine; 2468 } 2469 2470 static const enum intel_engine_id user_ring_map[] = { 2471 [I915_EXEC_DEFAULT] = RCS0, 2472 [I915_EXEC_RENDER] = RCS0, 2473 [I915_EXEC_BLT] = BCS0, 2474 [I915_EXEC_BSD] = VCS0, 2475 [I915_EXEC_VEBOX] = VECS0 2476 }; 2477 2478 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2479 { 2480 struct intel_ring *ring = ce->ring; 2481 struct intel_timeline *tl = ce->timeline; 2482 struct i915_request *rq; 2483 2484 /* 2485 * Completely unscientific finger-in-the-air estimates for suitable 2486 * maximum user request size (to avoid blocking) and then backoff. 2487 */ 2488 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2489 return NULL; 2490 2491 /* 2492 * Find a request that after waiting upon, there will be at least half 2493 * the ring available. The hysteresis allows us to compete for the 2494 * shared ring and should mean that we sleep less often prior to 2495 * claiming our resources, but not so long that the ring completely 2496 * drains before we can submit our next request. 2497 */ 2498 list_for_each_entry(rq, &tl->requests, link) { 2499 if (rq->ring != ring) 2500 continue; 2501 2502 if (__intel_ring_space(rq->postfix, 2503 ring->emit, ring->size) > ring->size / 2) 2504 break; 2505 } 2506 if (&rq->link == &tl->requests) 2507 return NULL; /* weird, we will check again later for real */ 2508 2509 return i915_request_get(rq); 2510 } 2511 2512 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2513 bool throttle) 2514 { 2515 struct intel_timeline *tl; 2516 struct i915_request *rq = NULL; 2517 2518 /* 2519 * Take a local wakeref for preparing to dispatch the execbuf as 2520 * we expect to access the hardware fairly frequently in the 2521 * process, and require the engine to be kept awake between accesses. 2522 * Upon dispatch, we acquire another prolonged wakeref that we hold 2523 * until the timeline is idle, which in turn releases the wakeref 2524 * taken on the engine, and the parent device. 2525 */ 2526 tl = intel_context_timeline_lock(ce); 2527 if (IS_ERR(tl)) 2528 return PTR_ERR(tl); 2529 2530 intel_context_enter(ce); 2531 if (throttle) 2532 rq = eb_throttle(eb, ce); 2533 intel_context_timeline_unlock(tl); 2534 2535 if (rq) { 2536 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2537 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2538 2539 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2540 timeout) < 0) { 2541 i915_request_put(rq); 2542 2543 /* 2544 * Error path, cannot use intel_context_timeline_lock as 2545 * that is user interruptable and this clean up step 2546 * must be done. 2547 */ 2548 mutex_lock(&ce->timeline->mutex); 2549 intel_context_exit(ce); 2550 mutex_unlock(&ce->timeline->mutex); 2551 2552 if (nonblock) 2553 return -EWOULDBLOCK; 2554 else 2555 return -EINTR; 2556 } 2557 i915_request_put(rq); 2558 } 2559 2560 return 0; 2561 } 2562 2563 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2564 { 2565 struct intel_context *ce = eb->context, *child; 2566 int err; 2567 int i = 0, j = 0; 2568 2569 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2570 2571 if (unlikely(intel_context_is_banned(ce))) 2572 return -EIO; 2573 2574 /* 2575 * Pinning the contexts may generate requests in order to acquire 2576 * GGTT space, so do this first before we reserve a seqno for 2577 * ourselves. 2578 */ 2579 err = intel_context_pin_ww(ce, &eb->ww); 2580 if (err) 2581 return err; 2582 for_each_child(ce, child) { 2583 err = intel_context_pin_ww(child, &eb->ww); 2584 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2585 } 2586 2587 for_each_child(ce, child) { 2588 err = eb_pin_timeline(eb, child, throttle); 2589 if (err) 2590 goto unwind; 2591 ++i; 2592 } 2593 err = eb_pin_timeline(eb, ce, throttle); 2594 if (err) 2595 goto unwind; 2596 2597 eb->args->flags |= __EXEC_ENGINE_PINNED; 2598 return 0; 2599 2600 unwind: 2601 for_each_child(ce, child) { 2602 if (j++ < i) { 2603 mutex_lock(&child->timeline->mutex); 2604 intel_context_exit(child); 2605 mutex_unlock(&child->timeline->mutex); 2606 } 2607 } 2608 for_each_child(ce, child) 2609 intel_context_unpin(child); 2610 intel_context_unpin(ce); 2611 return err; 2612 } 2613 2614 static void eb_unpin_engine(struct i915_execbuffer *eb) 2615 { 2616 struct intel_context *ce = eb->context, *child; 2617 2618 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2619 return; 2620 2621 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2622 2623 for_each_child(ce, child) { 2624 mutex_lock(&child->timeline->mutex); 2625 intel_context_exit(child); 2626 mutex_unlock(&child->timeline->mutex); 2627 2628 intel_context_unpin(child); 2629 } 2630 2631 mutex_lock(&ce->timeline->mutex); 2632 intel_context_exit(ce); 2633 mutex_unlock(&ce->timeline->mutex); 2634 2635 intel_context_unpin(ce); 2636 } 2637 2638 static unsigned int 2639 eb_select_legacy_ring(struct i915_execbuffer *eb) 2640 { 2641 struct drm_i915_private *i915 = eb->i915; 2642 struct drm_i915_gem_execbuffer2 *args = eb->args; 2643 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2644 2645 if (user_ring_id != I915_EXEC_BSD && 2646 (args->flags & I915_EXEC_BSD_MASK)) { 2647 drm_dbg(&i915->drm, 2648 "execbuf with non bsd ring but with invalid " 2649 "bsd dispatch flags: %d\n", (int)(args->flags)); 2650 return -1; 2651 } 2652 2653 if (user_ring_id == I915_EXEC_BSD && 2654 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { 2655 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2656 2657 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2658 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2659 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2660 bsd_idx <= I915_EXEC_BSD_RING2) { 2661 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2662 bsd_idx--; 2663 } else { 2664 drm_dbg(&i915->drm, 2665 "execbuf with unknown bsd ring: %u\n", 2666 bsd_idx); 2667 return -1; 2668 } 2669 2670 return _VCS(bsd_idx); 2671 } 2672 2673 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2674 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2675 user_ring_id); 2676 return -1; 2677 } 2678 2679 return user_ring_map[user_ring_id]; 2680 } 2681 2682 static int 2683 eb_select_engine(struct i915_execbuffer *eb) 2684 { 2685 struct intel_context *ce, *child; 2686 unsigned int idx; 2687 int err; 2688 2689 if (i915_gem_context_user_engines(eb->gem_context)) 2690 idx = eb->args->flags & I915_EXEC_RING_MASK; 2691 else 2692 idx = eb_select_legacy_ring(eb); 2693 2694 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2695 if (IS_ERR(ce)) 2696 return PTR_ERR(ce); 2697 2698 if (intel_context_is_parallel(ce)) { 2699 if (eb->buffer_count < ce->parallel.number_children + 1) { 2700 intel_context_put(ce); 2701 return -EINVAL; 2702 } 2703 if (eb->batch_start_offset || eb->args->batch_len) { 2704 intel_context_put(ce); 2705 return -EINVAL; 2706 } 2707 } 2708 eb->num_batches = ce->parallel.number_children + 1; 2709 2710 for_each_child(ce, child) 2711 intel_context_get(child); 2712 intel_gt_pm_get(ce->engine->gt); 2713 2714 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2715 err = intel_context_alloc_state(ce); 2716 if (err) 2717 goto err; 2718 } 2719 for_each_child(ce, child) { 2720 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2721 err = intel_context_alloc_state(child); 2722 if (err) 2723 goto err; 2724 } 2725 } 2726 2727 /* 2728 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2729 * EIO if the GPU is already wedged. 2730 */ 2731 err = intel_gt_terminally_wedged(ce->engine->gt); 2732 if (err) 2733 goto err; 2734 2735 if (!i915_vm_tryget(ce->vm)) { 2736 err = -ENOENT; 2737 goto err; 2738 } 2739 2740 eb->context = ce; 2741 eb->gt = ce->engine->gt; 2742 2743 /* 2744 * Make sure engine pool stays alive even if we call intel_context_put 2745 * during ww handling. The pool is destroyed when last pm reference 2746 * is dropped, which breaks our -EDEADLK handling. 2747 */ 2748 return err; 2749 2750 err: 2751 intel_gt_pm_put(ce->engine->gt); 2752 for_each_child(ce, child) 2753 intel_context_put(child); 2754 intel_context_put(ce); 2755 return err; 2756 } 2757 2758 static void 2759 eb_put_engine(struct i915_execbuffer *eb) 2760 { 2761 struct intel_context *child; 2762 2763 i915_vm_put(eb->context->vm); 2764 intel_gt_pm_put(eb->gt); 2765 for_each_child(eb->context, child) 2766 intel_context_put(child); 2767 intel_context_put(eb->context); 2768 } 2769 2770 static void 2771 __free_fence_array(struct eb_fence *fences, unsigned int n) 2772 { 2773 while (n--) { 2774 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2775 dma_fence_put(fences[n].dma_fence); 2776 dma_fence_chain_free(fences[n].chain_fence); 2777 } 2778 kvfree(fences); 2779 } 2780 2781 static int 2782 add_timeline_fence_array(struct i915_execbuffer *eb, 2783 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2784 { 2785 struct drm_i915_gem_exec_fence __user *user_fences; 2786 u64 __user *user_values; 2787 struct eb_fence *f; 2788 u64 nfences; 2789 int err = 0; 2790 2791 nfences = timeline_fences->fence_count; 2792 if (!nfences) 2793 return 0; 2794 2795 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2796 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2797 if (nfences > min_t(unsigned long, 2798 ULONG_MAX / sizeof(*user_fences), 2799 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2800 return -EINVAL; 2801 2802 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2803 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2804 return -EFAULT; 2805 2806 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2807 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2808 return -EFAULT; 2809 2810 f = krealloc(eb->fences, 2811 (eb->num_fences + nfences) * sizeof(*f), 2812 __GFP_NOWARN | GFP_KERNEL); 2813 if (!f) 2814 return -ENOMEM; 2815 2816 eb->fences = f; 2817 f += eb->num_fences; 2818 2819 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2820 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2821 2822 while (nfences--) { 2823 struct drm_i915_gem_exec_fence user_fence; 2824 struct drm_syncobj *syncobj; 2825 struct dma_fence *fence = NULL; 2826 u64 point; 2827 2828 if (__copy_from_user(&user_fence, 2829 user_fences++, 2830 sizeof(user_fence))) 2831 return -EFAULT; 2832 2833 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2834 return -EINVAL; 2835 2836 if (__get_user(point, user_values++)) 2837 return -EFAULT; 2838 2839 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2840 if (!syncobj) { 2841 drm_dbg(&eb->i915->drm, 2842 "Invalid syncobj handle provided\n"); 2843 return -ENOENT; 2844 } 2845 2846 fence = drm_syncobj_fence_get(syncobj); 2847 2848 if (!fence && user_fence.flags && 2849 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2850 drm_dbg(&eb->i915->drm, 2851 "Syncobj handle has no fence\n"); 2852 drm_syncobj_put(syncobj); 2853 return -EINVAL; 2854 } 2855 2856 if (fence) 2857 err = dma_fence_chain_find_seqno(&fence, point); 2858 2859 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2860 drm_dbg(&eb->i915->drm, 2861 "Syncobj handle missing requested point %llu\n", 2862 point); 2863 dma_fence_put(fence); 2864 drm_syncobj_put(syncobj); 2865 return err; 2866 } 2867 2868 /* 2869 * A point might have been signaled already and 2870 * garbage collected from the timeline. In this case 2871 * just ignore the point and carry on. 2872 */ 2873 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2874 drm_syncobj_put(syncobj); 2875 continue; 2876 } 2877 2878 /* 2879 * For timeline syncobjs we need to preallocate chains for 2880 * later signaling. 2881 */ 2882 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2883 /* 2884 * Waiting and signaling the same point (when point != 2885 * 0) would break the timeline. 2886 */ 2887 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2888 drm_dbg(&eb->i915->drm, 2889 "Trying to wait & signal the same timeline point.\n"); 2890 dma_fence_put(fence); 2891 drm_syncobj_put(syncobj); 2892 return -EINVAL; 2893 } 2894 2895 f->chain_fence = dma_fence_chain_alloc(); 2896 if (!f->chain_fence) { 2897 drm_syncobj_put(syncobj); 2898 dma_fence_put(fence); 2899 return -ENOMEM; 2900 } 2901 } else { 2902 f->chain_fence = NULL; 2903 } 2904 2905 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2906 f->dma_fence = fence; 2907 f->value = point; 2908 f++; 2909 eb->num_fences++; 2910 } 2911 2912 return 0; 2913 } 2914 2915 static int add_fence_array(struct i915_execbuffer *eb) 2916 { 2917 struct drm_i915_gem_execbuffer2 *args = eb->args; 2918 struct drm_i915_gem_exec_fence __user *user; 2919 unsigned long num_fences = args->num_cliprects; 2920 struct eb_fence *f; 2921 2922 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2923 return 0; 2924 2925 if (!num_fences) 2926 return 0; 2927 2928 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2929 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2930 if (num_fences > min_t(unsigned long, 2931 ULONG_MAX / sizeof(*user), 2932 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2933 return -EINVAL; 2934 2935 user = u64_to_user_ptr(args->cliprects_ptr); 2936 if (!access_ok(user, num_fences * sizeof(*user))) 2937 return -EFAULT; 2938 2939 f = krealloc(eb->fences, 2940 (eb->num_fences + num_fences) * sizeof(*f), 2941 __GFP_NOWARN | GFP_KERNEL); 2942 if (!f) 2943 return -ENOMEM; 2944 2945 eb->fences = f; 2946 f += eb->num_fences; 2947 while (num_fences--) { 2948 struct drm_i915_gem_exec_fence user_fence; 2949 struct drm_syncobj *syncobj; 2950 struct dma_fence *fence = NULL; 2951 2952 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2953 return -EFAULT; 2954 2955 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2956 return -EINVAL; 2957 2958 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2959 if (!syncobj) { 2960 drm_dbg(&eb->i915->drm, 2961 "Invalid syncobj handle provided\n"); 2962 return -ENOENT; 2963 } 2964 2965 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2966 fence = drm_syncobj_fence_get(syncobj); 2967 if (!fence) { 2968 drm_dbg(&eb->i915->drm, 2969 "Syncobj handle has no fence\n"); 2970 drm_syncobj_put(syncobj); 2971 return -EINVAL; 2972 } 2973 } 2974 2975 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2976 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2977 2978 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2979 f->dma_fence = fence; 2980 f->value = 0; 2981 f->chain_fence = NULL; 2982 f++; 2983 eb->num_fences++; 2984 } 2985 2986 return 0; 2987 } 2988 2989 static void put_fence_array(struct eb_fence *fences, int num_fences) 2990 { 2991 if (fences) 2992 __free_fence_array(fences, num_fences); 2993 } 2994 2995 static int 2996 await_fence_array(struct i915_execbuffer *eb, 2997 struct i915_request *rq) 2998 { 2999 unsigned int n; 3000 int err; 3001 3002 for (n = 0; n < eb->num_fences; n++) { 3003 if (!eb->fences[n].dma_fence) 3004 continue; 3005 3006 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3007 if (err < 0) 3008 return err; 3009 } 3010 3011 return 0; 3012 } 3013 3014 static void signal_fence_array(const struct i915_execbuffer *eb, 3015 struct dma_fence * const fence) 3016 { 3017 unsigned int n; 3018 3019 for (n = 0; n < eb->num_fences; n++) { 3020 struct drm_syncobj *syncobj; 3021 unsigned int flags; 3022 3023 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3024 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3025 continue; 3026 3027 if (eb->fences[n].chain_fence) { 3028 drm_syncobj_add_point(syncobj, 3029 eb->fences[n].chain_fence, 3030 fence, 3031 eb->fences[n].value); 3032 /* 3033 * The chain's ownership is transferred to the 3034 * timeline. 3035 */ 3036 eb->fences[n].chain_fence = NULL; 3037 } else { 3038 drm_syncobj_replace_fence(syncobj, fence); 3039 } 3040 } 3041 } 3042 3043 static int 3044 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3045 { 3046 struct i915_execbuffer *eb = data; 3047 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3048 3049 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3050 return -EFAULT; 3051 3052 return add_timeline_fence_array(eb, &timeline_fences); 3053 } 3054 3055 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3056 { 3057 struct i915_request *rq, *rn; 3058 3059 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3060 if (rq == end || !i915_request_retire(rq)) 3061 break; 3062 } 3063 3064 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3065 int err, bool last_parallel) 3066 { 3067 struct intel_timeline * const tl = i915_request_timeline(rq); 3068 struct i915_sched_attr attr = {}; 3069 struct i915_request *prev; 3070 3071 lockdep_assert_held(&tl->mutex); 3072 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3073 3074 trace_i915_request_add(rq); 3075 3076 prev = __i915_request_commit(rq); 3077 3078 /* Check that the context wasn't destroyed before submission */ 3079 if (likely(!intel_context_is_closed(eb->context))) { 3080 attr = eb->gem_context->sched; 3081 } else { 3082 /* Serialise with context_close via the add_to_timeline */ 3083 i915_request_set_error_once(rq, -ENOENT); 3084 __i915_request_skip(rq); 3085 err = -ENOENT; /* override any transient errors */ 3086 } 3087 3088 if (intel_context_is_parallel(eb->context)) { 3089 if (err) { 3090 __i915_request_skip(rq); 3091 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3092 &rq->fence.flags); 3093 } 3094 if (last_parallel) 3095 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3096 &rq->fence.flags); 3097 } 3098 3099 __i915_request_queue(rq, &attr); 3100 3101 /* Try to clean up the client's timeline after submitting the request */ 3102 if (prev) 3103 retire_requests(tl, prev); 3104 3105 mutex_unlock(&tl->mutex); 3106 3107 return err; 3108 } 3109 3110 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3111 { 3112 int i; 3113 3114 /* 3115 * We iterate in reverse order of creation to release timeline mutexes in 3116 * same order. 3117 */ 3118 for_each_batch_add_order(eb, i) { 3119 struct i915_request *rq = eb->requests[i]; 3120 3121 if (!rq) 3122 continue; 3123 err |= eb_request_add(eb, rq, err, i == 0); 3124 } 3125 3126 return err; 3127 } 3128 3129 static const i915_user_extension_fn execbuf_extensions[] = { 3130 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3131 }; 3132 3133 static int 3134 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3135 struct i915_execbuffer *eb) 3136 { 3137 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3138 return 0; 3139 3140 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3141 * have another flag also using it at the same time. 3142 */ 3143 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3144 return -EINVAL; 3145 3146 if (args->num_cliprects != 0) 3147 return -EINVAL; 3148 3149 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3150 execbuf_extensions, 3151 ARRAY_SIZE(execbuf_extensions), 3152 eb); 3153 } 3154 3155 static void eb_requests_get(struct i915_execbuffer *eb) 3156 { 3157 unsigned int i; 3158 3159 for_each_batch_create_order(eb, i) { 3160 if (!eb->requests[i]) 3161 break; 3162 3163 i915_request_get(eb->requests[i]); 3164 } 3165 } 3166 3167 static void eb_requests_put(struct i915_execbuffer *eb) 3168 { 3169 unsigned int i; 3170 3171 for_each_batch_create_order(eb, i) { 3172 if (!eb->requests[i]) 3173 break; 3174 3175 i915_request_put(eb->requests[i]); 3176 } 3177 } 3178 3179 static struct sync_file * 3180 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3181 { 3182 struct sync_file *out_fence = NULL; 3183 struct dma_fence_array *fence_array; 3184 struct dma_fence **fences; 3185 unsigned int i; 3186 3187 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3188 3189 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3190 if (!fences) 3191 return ERR_PTR(-ENOMEM); 3192 3193 for_each_batch_create_order(eb, i) { 3194 fences[i] = &eb->requests[i]->fence; 3195 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3196 &eb->requests[i]->fence.flags); 3197 } 3198 3199 fence_array = dma_fence_array_create(eb->num_batches, 3200 fences, 3201 eb->context->parallel.fence_context, 3202 eb->context->parallel.seqno++, 3203 false); 3204 if (!fence_array) { 3205 kfree(fences); 3206 return ERR_PTR(-ENOMEM); 3207 } 3208 3209 /* Move ownership to the dma_fence_array created above */ 3210 for_each_batch_create_order(eb, i) 3211 dma_fence_get(fences[i]); 3212 3213 if (out_fence_fd != -1) { 3214 out_fence = sync_file_create(&fence_array->base); 3215 /* sync_file now owns fence_arry, drop creation ref */ 3216 dma_fence_put(&fence_array->base); 3217 if (!out_fence) 3218 return ERR_PTR(-ENOMEM); 3219 } 3220 3221 eb->composite_fence = &fence_array->base; 3222 3223 return out_fence; 3224 } 3225 3226 static struct sync_file * 3227 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3228 struct dma_fence *in_fence, int out_fence_fd) 3229 { 3230 struct sync_file *out_fence = NULL; 3231 int err; 3232 3233 if (unlikely(eb->gem_context->syncobj)) { 3234 struct dma_fence *fence; 3235 3236 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3237 err = i915_request_await_dma_fence(rq, fence); 3238 dma_fence_put(fence); 3239 if (err) 3240 return ERR_PTR(err); 3241 } 3242 3243 if (in_fence) { 3244 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3245 err = i915_request_await_execution(rq, in_fence); 3246 else 3247 err = i915_request_await_dma_fence(rq, in_fence); 3248 if (err < 0) 3249 return ERR_PTR(err); 3250 } 3251 3252 if (eb->fences) { 3253 err = await_fence_array(eb, rq); 3254 if (err) 3255 return ERR_PTR(err); 3256 } 3257 3258 if (intel_context_is_parallel(eb->context)) { 3259 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3260 if (IS_ERR(out_fence)) 3261 return ERR_PTR(-ENOMEM); 3262 } else if (out_fence_fd != -1) { 3263 out_fence = sync_file_create(&rq->fence); 3264 if (!out_fence) 3265 return ERR_PTR(-ENOMEM); 3266 } 3267 3268 return out_fence; 3269 } 3270 3271 static struct intel_context * 3272 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3273 { 3274 struct intel_context *child; 3275 3276 if (likely(context_number == 0)) 3277 return eb->context; 3278 3279 for_each_child(eb->context, child) 3280 if (!--context_number) 3281 return child; 3282 3283 GEM_BUG_ON("Context not found"); 3284 3285 return NULL; 3286 } 3287 3288 static struct sync_file * 3289 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3290 int out_fence_fd) 3291 { 3292 struct sync_file *out_fence = NULL; 3293 unsigned int i; 3294 3295 for_each_batch_create_order(eb, i) { 3296 /* Allocate a request for this batch buffer nice and early. */ 3297 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3298 if (IS_ERR(eb->requests[i])) { 3299 out_fence = ERR_CAST(eb->requests[i]); 3300 eb->requests[i] = NULL; 3301 return out_fence; 3302 } 3303 3304 /* 3305 * Only the first request added (committed to backend) has to 3306 * take the in fences into account as all subsequent requests 3307 * will have fences inserted inbetween them. 3308 */ 3309 if (i + 1 == eb->num_batches) { 3310 out_fence = eb_fences_add(eb, eb->requests[i], 3311 in_fence, out_fence_fd); 3312 if (IS_ERR(out_fence)) 3313 return out_fence; 3314 } 3315 3316 /* 3317 * Not really on stack, but we don't want to call 3318 * kfree on the batch_snapshot when we put it, so use the 3319 * _onstack interface. 3320 */ 3321 if (eb->batches[i]->vma) 3322 eb->requests[i]->batch_res = 3323 i915_vma_resource_get(eb->batches[i]->vma->resource); 3324 if (eb->batch_pool) { 3325 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3326 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3327 eb->requests[i]); 3328 } 3329 } 3330 3331 return out_fence; 3332 } 3333 3334 static int 3335 i915_gem_do_execbuffer(struct drm_device *dev, 3336 struct drm_file *file, 3337 struct drm_i915_gem_execbuffer2 *args, 3338 struct drm_i915_gem_exec_object2 *exec) 3339 { 3340 struct drm_i915_private *i915 = to_i915(dev); 3341 struct i915_execbuffer eb; 3342 struct dma_fence *in_fence = NULL; 3343 struct sync_file *out_fence = NULL; 3344 int out_fence_fd = -1; 3345 int err; 3346 3347 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3348 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3349 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3350 3351 eb.i915 = i915; 3352 eb.file = file; 3353 eb.args = args; 3354 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3355 args->flags |= __EXEC_HAS_RELOC; 3356 3357 eb.exec = exec; 3358 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3359 eb.vma[0].vma = NULL; 3360 eb.batch_pool = NULL; 3361 3362 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3363 reloc_cache_init(&eb.reloc_cache, eb.i915); 3364 3365 eb.buffer_count = args->buffer_count; 3366 eb.batch_start_offset = args->batch_start_offset; 3367 eb.trampoline = NULL; 3368 3369 eb.fences = NULL; 3370 eb.num_fences = 0; 3371 3372 eb_capture_list_clear(&eb); 3373 3374 memset(eb.requests, 0, sizeof(struct i915_request *) * 3375 ARRAY_SIZE(eb.requests)); 3376 eb.composite_fence = NULL; 3377 3378 eb.batch_flags = 0; 3379 if (args->flags & I915_EXEC_SECURE) { 3380 if (GRAPHICS_VER(i915) >= 11) 3381 return -ENODEV; 3382 3383 /* Return -EPERM to trigger fallback code on old binaries. */ 3384 if (!HAS_SECURE_BATCHES(i915)) 3385 return -EPERM; 3386 3387 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3388 return -EPERM; 3389 3390 eb.batch_flags |= I915_DISPATCH_SECURE; 3391 } 3392 if (args->flags & I915_EXEC_IS_PINNED) 3393 eb.batch_flags |= I915_DISPATCH_PINNED; 3394 3395 err = parse_execbuf2_extensions(args, &eb); 3396 if (err) 3397 goto err_ext; 3398 3399 err = add_fence_array(&eb); 3400 if (err) 3401 goto err_ext; 3402 3403 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3404 if (args->flags & IN_FENCES) { 3405 if ((args->flags & IN_FENCES) == IN_FENCES) 3406 return -EINVAL; 3407 3408 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3409 if (!in_fence) { 3410 err = -EINVAL; 3411 goto err_ext; 3412 } 3413 } 3414 #undef IN_FENCES 3415 3416 if (args->flags & I915_EXEC_FENCE_OUT) { 3417 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3418 if (out_fence_fd < 0) { 3419 err = out_fence_fd; 3420 goto err_in_fence; 3421 } 3422 } 3423 3424 err = eb_create(&eb); 3425 if (err) 3426 goto err_out_fence; 3427 3428 GEM_BUG_ON(!eb.lut_size); 3429 3430 err = eb_select_context(&eb); 3431 if (unlikely(err)) 3432 goto err_destroy; 3433 3434 err = eb_select_engine(&eb); 3435 if (unlikely(err)) 3436 goto err_context; 3437 3438 err = eb_lookup_vmas(&eb); 3439 if (err) { 3440 eb_release_vmas(&eb, true); 3441 goto err_engine; 3442 } 3443 3444 i915_gem_ww_ctx_init(&eb.ww, true); 3445 3446 err = eb_relocate_parse(&eb); 3447 if (err) { 3448 /* 3449 * If the user expects the execobject.offset and 3450 * reloc.presumed_offset to be an exact match, 3451 * as for using NO_RELOC, then we cannot update 3452 * the execobject.offset until we have completed 3453 * relocation. 3454 */ 3455 args->flags &= ~__EXEC_HAS_RELOC; 3456 goto err_vma; 3457 } 3458 3459 ww_acquire_done(&eb.ww.ctx); 3460 err = eb_capture_stage(&eb); 3461 if (err) 3462 goto err_vma; 3463 3464 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3465 if (IS_ERR(out_fence)) { 3466 err = PTR_ERR(out_fence); 3467 out_fence = NULL; 3468 if (eb.requests[0]) 3469 goto err_request; 3470 else 3471 goto err_vma; 3472 } 3473 3474 err = eb_submit(&eb); 3475 3476 err_request: 3477 eb_requests_get(&eb); 3478 err = eb_requests_add(&eb, err); 3479 3480 if (eb.fences) 3481 signal_fence_array(&eb, eb.composite_fence ? 3482 eb.composite_fence : 3483 &eb.requests[0]->fence); 3484 3485 if (unlikely(eb.gem_context->syncobj)) { 3486 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3487 eb.composite_fence ? 3488 eb.composite_fence : 3489 &eb.requests[0]->fence); 3490 } 3491 3492 if (out_fence) { 3493 if (err == 0) { 3494 fd_install(out_fence_fd, out_fence->file); 3495 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3496 args->rsvd2 |= (u64)out_fence_fd << 32; 3497 out_fence_fd = -1; 3498 } else { 3499 fput(out_fence->file); 3500 } 3501 } 3502 3503 if (!out_fence && eb.composite_fence) 3504 dma_fence_put(eb.composite_fence); 3505 3506 eb_requests_put(&eb); 3507 3508 err_vma: 3509 eb_release_vmas(&eb, true); 3510 WARN_ON(err == -EDEADLK); 3511 i915_gem_ww_ctx_fini(&eb.ww); 3512 3513 if (eb.batch_pool) 3514 intel_gt_buffer_pool_put(eb.batch_pool); 3515 err_engine: 3516 eb_put_engine(&eb); 3517 err_context: 3518 i915_gem_context_put(eb.gem_context); 3519 err_destroy: 3520 eb_destroy(&eb); 3521 err_out_fence: 3522 if (out_fence_fd != -1) 3523 put_unused_fd(out_fence_fd); 3524 err_in_fence: 3525 dma_fence_put(in_fence); 3526 err_ext: 3527 put_fence_array(eb.fences, eb.num_fences); 3528 return err; 3529 } 3530 3531 static size_t eb_element_size(void) 3532 { 3533 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3534 } 3535 3536 static bool check_buffer_count(size_t count) 3537 { 3538 const size_t sz = eb_element_size(); 3539 3540 /* 3541 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3542 * array size (see eb_create()). Otherwise, we can accept an array as 3543 * large as can be addressed (though use large arrays at your peril)! 3544 */ 3545 3546 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3547 } 3548 3549 int 3550 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3551 struct drm_file *file) 3552 { 3553 struct drm_i915_private *i915 = to_i915(dev); 3554 struct drm_i915_gem_execbuffer2 *args = data; 3555 struct drm_i915_gem_exec_object2 *exec2_list; 3556 const size_t count = args->buffer_count; 3557 int err; 3558 3559 if (!check_buffer_count(count)) { 3560 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3561 return -EINVAL; 3562 } 3563 3564 err = i915_gem_check_execbuffer(i915, args); 3565 if (err) 3566 return err; 3567 3568 /* Allocate extra slots for use by the command parser */ 3569 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3570 __GFP_NOWARN | GFP_KERNEL); 3571 if (exec2_list == NULL) { 3572 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3573 count); 3574 return -ENOMEM; 3575 } 3576 if (copy_from_user(exec2_list, 3577 u64_to_user_ptr(args->buffers_ptr), 3578 sizeof(*exec2_list) * count)) { 3579 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3580 kvfree(exec2_list); 3581 return -EFAULT; 3582 } 3583 3584 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3585 3586 /* 3587 * Now that we have begun execution of the batchbuffer, we ignore 3588 * any new error after this point. Also given that we have already 3589 * updated the associated relocations, we try to write out the current 3590 * object locations irrespective of any error. 3591 */ 3592 if (args->flags & __EXEC_HAS_RELOC) { 3593 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3594 u64_to_user_ptr(args->buffers_ptr); 3595 unsigned int i; 3596 3597 /* Copy the new buffer offsets back to the user's exec list. */ 3598 /* 3599 * Note: count * sizeof(*user_exec_list) does not overflow, 3600 * because we checked 'count' in check_buffer_count(). 3601 * 3602 * And this range already got effectively checked earlier 3603 * when we did the "copy_from_user()" above. 3604 */ 3605 if (!user_write_access_begin(user_exec_list, 3606 count * sizeof(*user_exec_list))) 3607 goto end; 3608 3609 for (i = 0; i < args->buffer_count; i++) { 3610 if (!(exec2_list[i].offset & UPDATE)) 3611 continue; 3612 3613 exec2_list[i].offset = 3614 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3615 unsafe_put_user(exec2_list[i].offset, 3616 &user_exec_list[i].offset, 3617 end_user); 3618 } 3619 end_user: 3620 user_write_access_end(); 3621 end:; 3622 } 3623 3624 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3625 kvfree(exec2_list); 3626 return err; 3627 } 3628