xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/intel-iommu.h>
10 #include <linux/sync_file.h>
11 #include <linux/uaccess.h>
12 
13 #include <drm/drm_syncobj.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_gpu_commands.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_buffer_pool.h"
22 #include "gt/intel_gt_pm.h"
23 #include "gt/intel_ring.h"
24 
25 #include "pxp/intel_pxp.h"
26 
27 #include "i915_cmd_parser.h"
28 #include "i915_drv.h"
29 #include "i915_file_private.h"
30 #include "i915_gem_clflush.h"
31 #include "i915_gem_context.h"
32 #include "i915_gem_evict.h"
33 #include "i915_gem_ioctls.h"
34 #include "i915_trace.h"
35 #include "i915_user_extensions.h"
36 
37 struct eb_vma {
38 	struct i915_vma *vma;
39 	unsigned int flags;
40 
41 	/** This vma's place in the execbuf reservation list */
42 	struct drm_i915_gem_exec_object2 *exec;
43 	struct list_head bind_link;
44 	struct list_head reloc_link;
45 
46 	struct hlist_node node;
47 	u32 handle;
48 };
49 
50 enum {
51 	FORCE_CPU_RELOC = 1,
52 	FORCE_GTT_RELOC,
53 	FORCE_GPU_RELOC,
54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
55 };
56 
57 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
58 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
59 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
60 #define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
61 #define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
62 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
63 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
65 
66 #define __EXEC_HAS_RELOC	BIT(31)
67 #define __EXEC_ENGINE_PINNED	BIT(30)
68 #define __EXEC_USERPTR_USED	BIT(29)
69 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
70 #define UPDATE			PIN_OFFSET_FIXED
71 
72 #define BATCH_OFFSET_BIAS (256*1024)
73 
74 #define __I915_EXEC_ILLEGAL_FLAGS \
75 	(__I915_EXEC_UNKNOWN_FLAGS | \
76 	 I915_EXEC_CONSTANTS_MASK  | \
77 	 I915_EXEC_RESOURCE_STREAMER)
78 
79 /* Catch emission of unexpected errors for CI! */
80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81 #undef EINVAL
82 #define EINVAL ({ \
83 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84 	22; \
85 })
86 #endif
87 
88 /**
89  * DOC: User command execution
90  *
91  * Userspace submits commands to be executed on the GPU as an instruction
92  * stream within a GEM object we call a batchbuffer. This instructions may
93  * refer to other GEM objects containing auxiliary state such as kernels,
94  * samplers, render targets and even secondary batchbuffers. Userspace does
95  * not know where in the GPU memory these objects reside and so before the
96  * batchbuffer is passed to the GPU for execution, those addresses in the
97  * batchbuffer and auxiliary objects are updated. This is known as relocation,
98  * or patching. To try and avoid having to relocate each object on the next
99  * execution, userspace is told the location of those objects in this pass,
100  * but this remains just a hint as the kernel may choose a new location for
101  * any object in the future.
102  *
103  * At the level of talking to the hardware, submitting a batchbuffer for the
104  * GPU to execute is to add content to a buffer from which the HW
105  * command streamer is reading.
106  *
107  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108  *    Execlists, this command is not placed on the same buffer as the
109  *    remaining items.
110  *
111  * 2. Add a command to invalidate caches to the buffer.
112  *
113  * 3. Add a batchbuffer start command to the buffer; the start command is
114  *    essentially a token together with the GPU address of the batchbuffer
115  *    to be executed.
116  *
117  * 4. Add a pipeline flush to the buffer.
118  *
119  * 5. Add a memory write command to the buffer to record when the GPU
120  *    is done executing the batchbuffer. The memory write writes the
121  *    global sequence number of the request, ``i915_request::global_seqno``;
122  *    the i915 driver uses the current value in the register to determine
123  *    if the GPU has completed the batchbuffer.
124  *
125  * 6. Add a user interrupt command to the buffer. This command instructs
126  *    the GPU to issue an interrupt when the command, pipeline flush and
127  *    memory write are completed.
128  *
129  * 7. Inform the hardware of the additional commands added to the buffer
130  *    (by updating the tail pointer).
131  *
132  * Processing an execbuf ioctl is conceptually split up into a few phases.
133  *
134  * 1. Validation - Ensure all the pointers, handles and flags are valid.
135  * 2. Reservation - Assign GPU address space for every object
136  * 3. Relocation - Update any addresses to point to the final locations
137  * 4. Serialisation - Order the request with respect to its dependencies
138  * 5. Construction - Construct a request to execute the batchbuffer
139  * 6. Submission (at some point in the future execution)
140  *
141  * Reserving resources for the execbuf is the most complicated phase. We
142  * neither want to have to migrate the object in the address space, nor do
143  * we want to have to update any relocations pointing to this object. Ideally,
144  * we want to leave the object where it is and for all the existing relocations
145  * to match. If the object is given a new address, or if userspace thinks the
146  * object is elsewhere, we have to parse all the relocation entries and update
147  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148  * all the target addresses in all of its objects match the value in the
149  * relocation entries and that they all match the presumed offsets given by the
150  * list of execbuffer objects. Using this knowledge, we know that if we haven't
151  * moved any buffers, all the relocation entries are valid and we can skip
152  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154  *
155  *      The addresses written in the objects must match the corresponding
156  *      reloc.presumed_offset which in turn must match the corresponding
157  *      execobject.offset.
158  *
159  *      Any render targets written to in the batch must be flagged with
160  *      EXEC_OBJECT_WRITE.
161  *
162  *      To avoid stalling, execobject.offset should match the current
163  *      address of that object within the active context.
164  *
165  * The reservation is done is multiple phases. First we try and keep any
166  * object already bound in its current location - so as long as meets the
167  * constraints imposed by the new execbuffer. Any object left unbound after the
168  * first pass is then fitted into any available idle space. If an object does
169  * not fit, all objects are removed from the reservation and the process rerun
170  * after sorting the objects into a priority order (more difficult to fit
171  * objects are tried first). Failing that, the entire VM is cleared and we try
172  * to fit the execbuf once last time before concluding that it simply will not
173  * fit.
174  *
175  * A small complication to all of this is that we allow userspace not only to
176  * specify an alignment and a size for the object in the address space, but
177  * we also allow userspace to specify the exact offset. This objects are
178  * simpler to place (the location is known a priori) all we have to do is make
179  * sure the space is available.
180  *
181  * Once all the objects are in place, patching up the buried pointers to point
182  * to the final locations is a fairly simple job of walking over the relocation
183  * entry arrays, looking up the right address and rewriting the value into
184  * the object. Simple! ... The relocation entries are stored in user memory
185  * and so to access them we have to copy them into a local buffer. That copy
186  * has to avoid taking any pagefaults as they may lead back to a GEM object
187  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188  * the relocation into multiple passes. First we try to do everything within an
189  * atomic context (avoid the pagefaults) which requires that we never wait. If
190  * we detect that we may wait, or if we need to fault, then we have to fallback
191  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192  * bells yet?) Dropping the mutex means that we lose all the state we have
193  * built up so far for the execbuf and we must reset any global data. However,
194  * we do leave the objects pinned in their final locations - which is a
195  * potential issue for concurrent execbufs. Once we have left the mutex, we can
196  * allocate and copy all the relocation entries into a large array at our
197  * leisure, reacquire the mutex, reclaim all the objects and other state and
198  * then proceed to update any incorrect addresses with the objects.
199  *
200  * As we process the relocation entries, we maintain a record of whether the
201  * object is being written to. Using NORELOC, we expect userspace to provide
202  * this information instead. We also check whether we can skip the relocation
203  * by comparing the expected value inside the relocation entry with the target's
204  * final address. If they differ, we have to map the current object and rewrite
205  * the 4 or 8 byte pointer within.
206  *
207  * Serialising an execbuf is quite simple according to the rules of the GEM
208  * ABI. Execution within each context is ordered by the order of submission.
209  * Writes to any GEM object are in order of submission and are exclusive. Reads
210  * from a GEM object are unordered with respect to other reads, but ordered by
211  * writes. A write submitted after a read cannot occur before the read, and
212  * similarly any read submitted after a write cannot occur before the write.
213  * Writes are ordered between engines such that only one write occurs at any
214  * time (completing any reads beforehand) - using semaphores where available
215  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217  * reads before starting, and any read (either using set-domain or pread) must
218  * flush all GPU writes before starting. (Note we only employ a barrier before,
219  * we currently rely on userspace not concurrently starting a new execution
220  * whilst reading or writing to an object. This may be an advantage or not
221  * depending on how much you trust userspace not to shoot themselves in the
222  * foot.) Serialisation may just result in the request being inserted into
223  * a DAG awaiting its turn, but most simple is to wait on the CPU until
224  * all dependencies are resolved.
225  *
226  * After all of that, is just a matter of closing the request and handing it to
227  * the hardware (well, leaving it in a queue to be executed). However, we also
228  * offer the ability for batchbuffers to be run with elevated privileges so
229  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230  * Before any batch is given extra privileges we first must check that it
231  * contains no nefarious instructions, we check that each instruction is from
232  * our whitelist and all registers are also from an allowed list. We first
233  * copy the user's batchbuffer to a shadow (so that the user doesn't have
234  * access to it, either by the CPU or GPU as we scan it) and then parse each
235  * instruction. If everything is ok, we set a flag telling the hardware to run
236  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237  */
238 
239 struct eb_fence {
240 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241 	struct dma_fence *dma_fence;
242 	u64 value;
243 	struct dma_fence_chain *chain_fence;
244 };
245 
246 struct i915_execbuffer {
247 	struct drm_i915_private *i915; /** i915 backpointer */
248 	struct drm_file *file; /** per-file lookup tables and limits */
249 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
251 	struct eb_vma *vma;
252 
253 	struct intel_gt *gt; /* gt for the execbuf */
254 	struct intel_context *context; /* logical state for the request */
255 	struct i915_gem_context *gem_context; /** caller's context */
256 
257 	/** our requests to build */
258 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259 	/** identity of the batch obj/vma */
260 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
261 	struct i915_vma *trampoline; /** trampoline used for chaining */
262 
263 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
264 	struct dma_fence *composite_fence;
265 
266 	/** actual size of execobj[] as we may extend it for the cmdparser */
267 	unsigned int buffer_count;
268 
269 	/* number of batches in execbuf IOCTL */
270 	unsigned int num_batches;
271 
272 	/** list of vma not yet bound during reservation phase */
273 	struct list_head unbound;
274 
275 	/** list of vma that have execobj.relocation_count */
276 	struct list_head relocs;
277 
278 	struct i915_gem_ww_ctx ww;
279 
280 	/**
281 	 * Track the most recently used object for relocations, as we
282 	 * frequently have to perform multiple relocations within the same
283 	 * obj/page
284 	 */
285 	struct reloc_cache {
286 		struct drm_mm_node node; /** temporary GTT binding */
287 		unsigned long vaddr; /** Current kmap address */
288 		unsigned long page; /** Currently mapped page index */
289 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
290 		bool use_64bit_reloc : 1;
291 		bool has_llc : 1;
292 		bool has_fence : 1;
293 		bool needs_unfenced : 1;
294 	} reloc_cache;
295 
296 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
297 
298 	/** Length of batch within object */
299 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
300 	u32 batch_start_offset; /** Location within object of batch */
301 	u32 batch_flags; /** Flags composed for emit_bb_start() */
302 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
303 
304 	/**
305 	 * Indicate either the size of the hastable used to resolve
306 	 * relocation handles, or if negative that we are using a direct
307 	 * index into the execobj[].
308 	 */
309 	int lut_size;
310 	struct hlist_head *buckets; /** ht for relocation handles */
311 
312 	struct eb_fence *fences;
313 	unsigned long num_fences;
314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316 #endif
317 };
318 
319 static int eb_parse(struct i915_execbuffer *eb);
320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
321 static void eb_unpin_engine(struct i915_execbuffer *eb);
322 static void eb_capture_release(struct i915_execbuffer *eb);
323 
324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325 {
326 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
327 		(intel_engine_using_cmd_parser(eb->context->engine) &&
328 		 eb->args->batch_len);
329 }
330 
331 static int eb_create(struct i915_execbuffer *eb)
332 {
333 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334 		unsigned int size = 1 + ilog2(eb->buffer_count);
335 
336 		/*
337 		 * Without a 1:1 association between relocation handles and
338 		 * the execobject[] index, we instead create a hashtable.
339 		 * We size it dynamically based on available memory, starting
340 		 * first with 1:1 assocative hash and scaling back until
341 		 * the allocation succeeds.
342 		 *
343 		 * Later on we use a positive lut_size to indicate we are
344 		 * using this hashtable, and a negative value to indicate a
345 		 * direct lookup.
346 		 */
347 		do {
348 			gfp_t flags;
349 
350 			/* While we can still reduce the allocation size, don't
351 			 * raise a warning and allow the allocation to fail.
352 			 * On the last pass though, we want to try as hard
353 			 * as possible to perform the allocation and warn
354 			 * if it fails.
355 			 */
356 			flags = GFP_KERNEL;
357 			if (size > 1)
358 				flags |= __GFP_NORETRY | __GFP_NOWARN;
359 
360 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
361 					      flags);
362 			if (eb->buckets)
363 				break;
364 		} while (--size);
365 
366 		if (unlikely(!size))
367 			return -ENOMEM;
368 
369 		eb->lut_size = size;
370 	} else {
371 		eb->lut_size = -eb->buffer_count;
372 	}
373 
374 	return 0;
375 }
376 
377 static bool
378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
379 		 const struct i915_vma *vma,
380 		 unsigned int flags)
381 {
382 	if (vma->node.size < entry->pad_to_size)
383 		return true;
384 
385 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
386 		return true;
387 
388 	if (flags & EXEC_OBJECT_PINNED &&
389 	    vma->node.start != entry->offset)
390 		return true;
391 
392 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
393 	    vma->node.start < BATCH_OFFSET_BIAS)
394 		return true;
395 
396 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
397 	    (vma->node.start + vma->node.size + 4095) >> 32)
398 		return true;
399 
400 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
401 	    !i915_vma_is_map_and_fenceable(vma))
402 		return true;
403 
404 	return false;
405 }
406 
407 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
408 			unsigned int exec_flags)
409 {
410 	u64 pin_flags = 0;
411 
412 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
413 		pin_flags |= PIN_GLOBAL;
414 
415 	/*
416 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
417 	 * limit address to the first 4GBs for unflagged objects.
418 	 */
419 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
420 		pin_flags |= PIN_ZONE_4G;
421 
422 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
423 		pin_flags |= PIN_MAPPABLE;
424 
425 	if (exec_flags & EXEC_OBJECT_PINNED)
426 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
427 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
428 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
429 
430 	return pin_flags;
431 }
432 
433 static inline int
434 eb_pin_vma(struct i915_execbuffer *eb,
435 	   const struct drm_i915_gem_exec_object2 *entry,
436 	   struct eb_vma *ev)
437 {
438 	struct i915_vma *vma = ev->vma;
439 	u64 pin_flags;
440 	int err;
441 
442 	if (vma->node.size)
443 		pin_flags = vma->node.start;
444 	else
445 		pin_flags = entry->offset & PIN_OFFSET_MASK;
446 
447 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
448 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
449 		pin_flags |= PIN_GLOBAL;
450 
451 	/* Attempt to reuse the current location if available */
452 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
453 	if (err == -EDEADLK)
454 		return err;
455 
456 	if (unlikely(err)) {
457 		if (entry->flags & EXEC_OBJECT_PINNED)
458 			return err;
459 
460 		/* Failing that pick any _free_ space if suitable */
461 		err = i915_vma_pin_ww(vma, &eb->ww,
462 					     entry->pad_to_size,
463 					     entry->alignment,
464 					     eb_pin_flags(entry, ev->flags) |
465 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
466 		if (unlikely(err))
467 			return err;
468 	}
469 
470 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
471 		err = i915_vma_pin_fence(vma);
472 		if (unlikely(err))
473 			return err;
474 
475 		if (vma->fence)
476 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
477 	}
478 
479 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
480 	if (eb_vma_misplaced(entry, vma, ev->flags))
481 		return -EBADSLT;
482 
483 	return 0;
484 }
485 
486 static inline void
487 eb_unreserve_vma(struct eb_vma *ev)
488 {
489 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
490 		__i915_vma_unpin_fence(ev->vma);
491 
492 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
493 }
494 
495 static int
496 eb_validate_vma(struct i915_execbuffer *eb,
497 		struct drm_i915_gem_exec_object2 *entry,
498 		struct i915_vma *vma)
499 {
500 	/* Relocations are disallowed for all platforms after TGL-LP.  This
501 	 * also covers all platforms with local memory.
502 	 */
503 	if (entry->relocation_count &&
504 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
505 		return -EINVAL;
506 
507 	if (unlikely(entry->flags & eb->invalid_flags))
508 		return -EINVAL;
509 
510 	if (unlikely(entry->alignment &&
511 		     !is_power_of_2_u64(entry->alignment)))
512 		return -EINVAL;
513 
514 	/*
515 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
516 	 * any non-page-aligned or non-canonical addresses.
517 	 */
518 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
519 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
520 		return -EINVAL;
521 
522 	/* pad_to_size was once a reserved field, so sanitize it */
523 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
524 		if (unlikely(offset_in_page(entry->pad_to_size)))
525 			return -EINVAL;
526 	} else {
527 		entry->pad_to_size = 0;
528 	}
529 	/*
530 	 * From drm_mm perspective address space is continuous,
531 	 * so from this point we're always using non-canonical
532 	 * form internally.
533 	 */
534 	entry->offset = gen8_noncanonical_addr(entry->offset);
535 
536 	if (!eb->reloc_cache.has_fence) {
537 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
538 	} else {
539 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
540 		     eb->reloc_cache.needs_unfenced) &&
541 		    i915_gem_object_is_tiled(vma->obj))
542 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
543 	}
544 
545 	return 0;
546 }
547 
548 static inline bool
549 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
550 {
551 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
552 		buffer_idx < eb->num_batches :
553 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
554 }
555 
556 static int
557 eb_add_vma(struct i915_execbuffer *eb,
558 	   unsigned int *current_batch,
559 	   unsigned int i,
560 	   struct i915_vma *vma)
561 {
562 	struct drm_i915_private *i915 = eb->i915;
563 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
564 	struct eb_vma *ev = &eb->vma[i];
565 
566 	ev->vma = vma;
567 	ev->exec = entry;
568 	ev->flags = entry->flags;
569 
570 	if (eb->lut_size > 0) {
571 		ev->handle = entry->handle;
572 		hlist_add_head(&ev->node,
573 			       &eb->buckets[hash_32(entry->handle,
574 						    eb->lut_size)]);
575 	}
576 
577 	if (entry->relocation_count)
578 		list_add_tail(&ev->reloc_link, &eb->relocs);
579 
580 	/*
581 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
582 	 * to negative relocation deltas. Usually that works out ok since the
583 	 * relocate address is still positive, except when the batch is placed
584 	 * very low in the GTT. Ensure this doesn't happen.
585 	 *
586 	 * Note that actual hangs have only been observed on gen7, but for
587 	 * paranoia do it everywhere.
588 	 */
589 	if (is_batch_buffer(eb, i)) {
590 		if (entry->relocation_count &&
591 		    !(ev->flags & EXEC_OBJECT_PINNED))
592 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
593 		if (eb->reloc_cache.has_fence)
594 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
595 
596 		eb->batches[*current_batch] = ev;
597 
598 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
599 			drm_dbg(&i915->drm,
600 				"Attempting to use self-modifying batch buffer\n");
601 			return -EINVAL;
602 		}
603 
604 		if (range_overflows_t(u64,
605 				      eb->batch_start_offset,
606 				      eb->args->batch_len,
607 				      ev->vma->size)) {
608 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
609 			return -EINVAL;
610 		}
611 
612 		if (eb->args->batch_len == 0)
613 			eb->batch_len[*current_batch] = ev->vma->size -
614 				eb->batch_start_offset;
615 		else
616 			eb->batch_len[*current_batch] = eb->args->batch_len;
617 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
618 			drm_dbg(&i915->drm, "Invalid batch length\n");
619 			return -EINVAL;
620 		}
621 
622 		++*current_batch;
623 	}
624 
625 	return 0;
626 }
627 
628 static inline int use_cpu_reloc(const struct reloc_cache *cache,
629 				const struct drm_i915_gem_object *obj)
630 {
631 	if (!i915_gem_object_has_struct_page(obj))
632 		return false;
633 
634 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
635 		return true;
636 
637 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
638 		return false;
639 
640 	return (cache->has_llc ||
641 		obj->cache_dirty ||
642 		obj->cache_level != I915_CACHE_NONE);
643 }
644 
645 static int eb_reserve_vma(struct i915_execbuffer *eb,
646 			  struct eb_vma *ev,
647 			  u64 pin_flags)
648 {
649 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
650 	struct i915_vma *vma = ev->vma;
651 	int err;
652 
653 	if (drm_mm_node_allocated(&vma->node) &&
654 	    eb_vma_misplaced(entry, vma, ev->flags)) {
655 		err = i915_vma_unbind(vma);
656 		if (err)
657 			return err;
658 	}
659 
660 	err = i915_vma_pin_ww(vma, &eb->ww,
661 			   entry->pad_to_size, entry->alignment,
662 			   eb_pin_flags(entry, ev->flags) | pin_flags);
663 	if (err)
664 		return err;
665 
666 	if (entry->offset != vma->node.start) {
667 		entry->offset = vma->node.start | UPDATE;
668 		eb->args->flags |= __EXEC_HAS_RELOC;
669 	}
670 
671 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
672 		err = i915_vma_pin_fence(vma);
673 		if (unlikely(err))
674 			return err;
675 
676 		if (vma->fence)
677 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
678 	}
679 
680 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
681 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
682 
683 	return 0;
684 }
685 
686 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
687 {
688 	const unsigned int count = eb->buffer_count;
689 	unsigned int i;
690 	struct list_head last;
691 	bool unpinned = false;
692 
693 	/* Resort *all* the objects into priority order */
694 	INIT_LIST_HEAD(&eb->unbound);
695 	INIT_LIST_HEAD(&last);
696 
697 	for (i = 0; i < count; i++) {
698 		struct eb_vma *ev = &eb->vma[i];
699 		unsigned int flags = ev->flags;
700 
701 		if (!force && flags & EXEC_OBJECT_PINNED &&
702 		    flags & __EXEC_OBJECT_HAS_PIN)
703 			continue;
704 
705 		unpinned = true;
706 		eb_unreserve_vma(ev);
707 
708 		if (flags & EXEC_OBJECT_PINNED)
709 			/* Pinned must have their slot */
710 			list_add(&ev->bind_link, &eb->unbound);
711 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
712 			/* Map require the lowest 256MiB (aperture) */
713 			list_add_tail(&ev->bind_link, &eb->unbound);
714 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
715 			/* Prioritise 4GiB region for restricted bo */
716 			list_add(&ev->bind_link, &last);
717 		else
718 			list_add_tail(&ev->bind_link, &last);
719 	}
720 
721 	list_splice_tail(&last, &eb->unbound);
722 	return unpinned;
723 }
724 
725 static int eb_reserve(struct i915_execbuffer *eb)
726 {
727 	struct eb_vma *ev;
728 	unsigned int pass;
729 	int err = 0;
730 	bool unpinned;
731 
732 	/*
733 	 * Attempt to pin all of the buffers into the GTT.
734 	 * This is done in 2 phases:
735 	 *
736 	 * 1. Unbind all objects that do not match the GTT constraints for
737 	 *    the execbuffer (fenceable, mappable, alignment etc).
738 	 * 2. Bind new objects.
739 	 *
740 	 * This avoid unnecessary unbinding of later objects in order to make
741 	 * room for the earlier objects *unless* we need to defragment.
742 	 *
743 	 * Defragmenting is skipped if all objects are pinned at a fixed location.
744 	 */
745 	for (pass = 0; pass <= 2; pass++) {
746 		int pin_flags = PIN_USER | PIN_VALIDATE;
747 
748 		if (pass == 0)
749 			pin_flags |= PIN_NONBLOCK;
750 
751 		if (pass >= 1)
752 			unpinned = eb_unbind(eb, pass == 2);
753 
754 		if (pass == 2) {
755 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
756 			if (!err) {
757 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
758 				mutex_unlock(&eb->context->vm->mutex);
759 			}
760 			if (err)
761 				return err;
762 		}
763 
764 		list_for_each_entry(ev, &eb->unbound, bind_link) {
765 			err = eb_reserve_vma(eb, ev, pin_flags);
766 			if (err)
767 				break;
768 		}
769 
770 		if (err != -ENOSPC)
771 			break;
772 	}
773 
774 	return err;
775 }
776 
777 static int eb_select_context(struct i915_execbuffer *eb)
778 {
779 	struct i915_gem_context *ctx;
780 
781 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
782 	if (unlikely(IS_ERR(ctx)))
783 		return PTR_ERR(ctx);
784 
785 	eb->gem_context = ctx;
786 	if (i915_gem_context_has_full_ppgtt(ctx))
787 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
788 
789 	return 0;
790 }
791 
792 static int __eb_add_lut(struct i915_execbuffer *eb,
793 			u32 handle, struct i915_vma *vma)
794 {
795 	struct i915_gem_context *ctx = eb->gem_context;
796 	struct i915_lut_handle *lut;
797 	int err;
798 
799 	lut = i915_lut_handle_alloc();
800 	if (unlikely(!lut))
801 		return -ENOMEM;
802 
803 	i915_vma_get(vma);
804 	if (!atomic_fetch_inc(&vma->open_count))
805 		i915_vma_reopen(vma);
806 	lut->handle = handle;
807 	lut->ctx = ctx;
808 
809 	/* Check that the context hasn't been closed in the meantime */
810 	err = -EINTR;
811 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
812 		if (likely(!i915_gem_context_is_closed(ctx)))
813 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
814 		else
815 			err = -ENOENT;
816 		if (err == 0) { /* And nor has this handle */
817 			struct drm_i915_gem_object *obj = vma->obj;
818 
819 			spin_lock(&obj->lut_lock);
820 			if (idr_find(&eb->file->object_idr, handle) == obj) {
821 				list_add(&lut->obj_link, &obj->lut_list);
822 			} else {
823 				radix_tree_delete(&ctx->handles_vma, handle);
824 				err = -ENOENT;
825 			}
826 			spin_unlock(&obj->lut_lock);
827 		}
828 		mutex_unlock(&ctx->lut_mutex);
829 	}
830 	if (unlikely(err))
831 		goto err;
832 
833 	return 0;
834 
835 err:
836 	i915_vma_close(vma);
837 	i915_vma_put(vma);
838 	i915_lut_handle_free(lut);
839 	return err;
840 }
841 
842 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
843 {
844 	struct i915_address_space *vm = eb->context->vm;
845 
846 	do {
847 		struct drm_i915_gem_object *obj;
848 		struct i915_vma *vma;
849 		int err;
850 
851 		rcu_read_lock();
852 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
853 		if (likely(vma && vma->vm == vm))
854 			vma = i915_vma_tryget(vma);
855 		rcu_read_unlock();
856 		if (likely(vma))
857 			return vma;
858 
859 		obj = i915_gem_object_lookup(eb->file, handle);
860 		if (unlikely(!obj))
861 			return ERR_PTR(-ENOENT);
862 
863 		/*
864 		 * If the user has opted-in for protected-object tracking, make
865 		 * sure the object encryption can be used.
866 		 * We only need to do this when the object is first used with
867 		 * this context, because the context itself will be banned when
868 		 * the protected objects become invalid.
869 		 */
870 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
871 		    i915_gem_object_is_protected(obj)) {
872 			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
873 			if (err) {
874 				i915_gem_object_put(obj);
875 				return ERR_PTR(err);
876 			}
877 		}
878 
879 		vma = i915_vma_instance(obj, vm, NULL);
880 		if (IS_ERR(vma)) {
881 			i915_gem_object_put(obj);
882 			return vma;
883 		}
884 
885 		err = __eb_add_lut(eb, handle, vma);
886 		if (likely(!err))
887 			return vma;
888 
889 		i915_gem_object_put(obj);
890 		if (err != -EEXIST)
891 			return ERR_PTR(err);
892 	} while (1);
893 }
894 
895 static int eb_lookup_vmas(struct i915_execbuffer *eb)
896 {
897 	unsigned int i, current_batch = 0;
898 	int err = 0;
899 
900 	INIT_LIST_HEAD(&eb->relocs);
901 
902 	for (i = 0; i < eb->buffer_count; i++) {
903 		struct i915_vma *vma;
904 
905 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
906 		if (IS_ERR(vma)) {
907 			err = PTR_ERR(vma);
908 			goto err;
909 		}
910 
911 		err = eb_validate_vma(eb, &eb->exec[i], vma);
912 		if (unlikely(err)) {
913 			i915_vma_put(vma);
914 			goto err;
915 		}
916 
917 		err = eb_add_vma(eb, &current_batch, i, vma);
918 		if (err)
919 			return err;
920 
921 		if (i915_gem_object_is_userptr(vma->obj)) {
922 			err = i915_gem_object_userptr_submit_init(vma->obj);
923 			if (err) {
924 				if (i + 1 < eb->buffer_count) {
925 					/*
926 					 * Execbuffer code expects last vma entry to be NULL,
927 					 * since we already initialized this entry,
928 					 * set the next value to NULL or we mess up
929 					 * cleanup handling.
930 					 */
931 					eb->vma[i + 1].vma = NULL;
932 				}
933 
934 				return err;
935 			}
936 
937 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
938 			eb->args->flags |= __EXEC_USERPTR_USED;
939 		}
940 	}
941 
942 	return 0;
943 
944 err:
945 	eb->vma[i].vma = NULL;
946 	return err;
947 }
948 
949 static int eb_lock_vmas(struct i915_execbuffer *eb)
950 {
951 	unsigned int i;
952 	int err;
953 
954 	for (i = 0; i < eb->buffer_count; i++) {
955 		struct eb_vma *ev = &eb->vma[i];
956 		struct i915_vma *vma = ev->vma;
957 
958 		err = i915_gem_object_lock(vma->obj, &eb->ww);
959 		if (err)
960 			return err;
961 	}
962 
963 	return 0;
964 }
965 
966 static int eb_validate_vmas(struct i915_execbuffer *eb)
967 {
968 	unsigned int i;
969 	int err;
970 
971 	INIT_LIST_HEAD(&eb->unbound);
972 
973 	err = eb_lock_vmas(eb);
974 	if (err)
975 		return err;
976 
977 	for (i = 0; i < eb->buffer_count; i++) {
978 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
979 		struct eb_vma *ev = &eb->vma[i];
980 		struct i915_vma *vma = ev->vma;
981 
982 		err = eb_pin_vma(eb, entry, ev);
983 		if (err == -EDEADLK)
984 			return err;
985 
986 		if (!err) {
987 			if (entry->offset != vma->node.start) {
988 				entry->offset = vma->node.start | UPDATE;
989 				eb->args->flags |= __EXEC_HAS_RELOC;
990 			}
991 		} else {
992 			eb_unreserve_vma(ev);
993 
994 			list_add_tail(&ev->bind_link, &eb->unbound);
995 			if (drm_mm_node_allocated(&vma->node)) {
996 				err = i915_vma_unbind(vma);
997 				if (err)
998 					return err;
999 			}
1000 		}
1001 
1002 		/* Reserve enough slots to accommodate composite fences */
1003 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1004 		if (err)
1005 			return err;
1006 
1007 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1008 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1009 	}
1010 
1011 	if (!list_empty(&eb->unbound))
1012 		return eb_reserve(eb);
1013 
1014 	return 0;
1015 }
1016 
1017 static struct eb_vma *
1018 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1019 {
1020 	if (eb->lut_size < 0) {
1021 		if (handle >= -eb->lut_size)
1022 			return NULL;
1023 		return &eb->vma[handle];
1024 	} else {
1025 		struct hlist_head *head;
1026 		struct eb_vma *ev;
1027 
1028 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1029 		hlist_for_each_entry(ev, head, node) {
1030 			if (ev->handle == handle)
1031 				return ev;
1032 		}
1033 		return NULL;
1034 	}
1035 }
1036 
1037 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1038 {
1039 	const unsigned int count = eb->buffer_count;
1040 	unsigned int i;
1041 
1042 	for (i = 0; i < count; i++) {
1043 		struct eb_vma *ev = &eb->vma[i];
1044 		struct i915_vma *vma = ev->vma;
1045 
1046 		if (!vma)
1047 			break;
1048 
1049 		eb_unreserve_vma(ev);
1050 
1051 		if (final)
1052 			i915_vma_put(vma);
1053 	}
1054 
1055 	eb_capture_release(eb);
1056 	eb_unpin_engine(eb);
1057 }
1058 
1059 static void eb_destroy(const struct i915_execbuffer *eb)
1060 {
1061 	if (eb->lut_size > 0)
1062 		kfree(eb->buckets);
1063 }
1064 
1065 static inline u64
1066 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1067 		  const struct i915_vma *target)
1068 {
1069 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1070 }
1071 
1072 static void reloc_cache_init(struct reloc_cache *cache,
1073 			     struct drm_i915_private *i915)
1074 {
1075 	cache->page = -1;
1076 	cache->vaddr = 0;
1077 	/* Must be a variable in the struct to allow GCC to unroll. */
1078 	cache->graphics_ver = GRAPHICS_VER(i915);
1079 	cache->has_llc = HAS_LLC(i915);
1080 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1081 	cache->has_fence = cache->graphics_ver < 4;
1082 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1083 	cache->node.flags = 0;
1084 }
1085 
1086 static inline void *unmask_page(unsigned long p)
1087 {
1088 	return (void *)(uintptr_t)(p & PAGE_MASK);
1089 }
1090 
1091 static inline unsigned int unmask_flags(unsigned long p)
1092 {
1093 	return p & ~PAGE_MASK;
1094 }
1095 
1096 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1097 
1098 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1099 {
1100 	struct drm_i915_private *i915 =
1101 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1102 	return to_gt(i915)->ggtt;
1103 }
1104 
1105 static void reloc_cache_unmap(struct reloc_cache *cache)
1106 {
1107 	void *vaddr;
1108 
1109 	if (!cache->vaddr)
1110 		return;
1111 
1112 	vaddr = unmask_page(cache->vaddr);
1113 	if (cache->vaddr & KMAP)
1114 		kunmap_atomic(vaddr);
1115 	else
1116 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1117 }
1118 
1119 static void reloc_cache_remap(struct reloc_cache *cache,
1120 			      struct drm_i915_gem_object *obj)
1121 {
1122 	void *vaddr;
1123 
1124 	if (!cache->vaddr)
1125 		return;
1126 
1127 	if (cache->vaddr & KMAP) {
1128 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1129 
1130 		vaddr = kmap_atomic(page);
1131 		cache->vaddr = unmask_flags(cache->vaddr) |
1132 			(unsigned long)vaddr;
1133 	} else {
1134 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1135 		unsigned long offset;
1136 
1137 		offset = cache->node.start;
1138 		if (!drm_mm_node_allocated(&cache->node))
1139 			offset += cache->page << PAGE_SHIFT;
1140 
1141 		cache->vaddr = (unsigned long)
1142 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1143 	}
1144 }
1145 
1146 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1147 {
1148 	void *vaddr;
1149 
1150 	if (!cache->vaddr)
1151 		return;
1152 
1153 	vaddr = unmask_page(cache->vaddr);
1154 	if (cache->vaddr & KMAP) {
1155 		struct drm_i915_gem_object *obj =
1156 			(struct drm_i915_gem_object *)cache->node.mm;
1157 		if (cache->vaddr & CLFLUSH_AFTER)
1158 			mb();
1159 
1160 		kunmap_atomic(vaddr);
1161 		i915_gem_object_finish_access(obj);
1162 	} else {
1163 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1164 
1165 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1166 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1167 
1168 		if (drm_mm_node_allocated(&cache->node)) {
1169 			ggtt->vm.clear_range(&ggtt->vm,
1170 					     cache->node.start,
1171 					     cache->node.size);
1172 			mutex_lock(&ggtt->vm.mutex);
1173 			drm_mm_remove_node(&cache->node);
1174 			mutex_unlock(&ggtt->vm.mutex);
1175 		} else {
1176 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1177 		}
1178 	}
1179 
1180 	cache->vaddr = 0;
1181 	cache->page = -1;
1182 }
1183 
1184 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1185 			struct reloc_cache *cache,
1186 			unsigned long pageno)
1187 {
1188 	void *vaddr;
1189 	struct page *page;
1190 
1191 	if (cache->vaddr) {
1192 		kunmap_atomic(unmask_page(cache->vaddr));
1193 	} else {
1194 		unsigned int flushes;
1195 		int err;
1196 
1197 		err = i915_gem_object_prepare_write(obj, &flushes);
1198 		if (err)
1199 			return ERR_PTR(err);
1200 
1201 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1202 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1203 
1204 		cache->vaddr = flushes | KMAP;
1205 		cache->node.mm = (void *)obj;
1206 		if (flushes)
1207 			mb();
1208 	}
1209 
1210 	page = i915_gem_object_get_page(obj, pageno);
1211 	if (!obj->mm.dirty)
1212 		set_page_dirty(page);
1213 
1214 	vaddr = kmap_atomic(page);
1215 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1216 	cache->page = pageno;
1217 
1218 	return vaddr;
1219 }
1220 
1221 static void *reloc_iomap(struct i915_vma *batch,
1222 			 struct i915_execbuffer *eb,
1223 			 unsigned long page)
1224 {
1225 	struct drm_i915_gem_object *obj = batch->obj;
1226 	struct reloc_cache *cache = &eb->reloc_cache;
1227 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1228 	unsigned long offset;
1229 	void *vaddr;
1230 
1231 	if (cache->vaddr) {
1232 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1233 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1234 	} else {
1235 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1236 		int err;
1237 
1238 		if (i915_gem_object_is_tiled(obj))
1239 			return ERR_PTR(-EINVAL);
1240 
1241 		if (use_cpu_reloc(cache, obj))
1242 			return NULL;
1243 
1244 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1245 		if (err)
1246 			return ERR_PTR(err);
1247 
1248 		/*
1249 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1250 		 * VMA from the object list because we no longer pin.
1251 		 *
1252 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1253 		 * is not inside ggtt, or the batch buffer is not misplaced.
1254 		 */
1255 		if (!i915_is_ggtt(batch->vm) ||
1256 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1257 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1258 							  PIN_MAPPABLE |
1259 							  PIN_NONBLOCK /* NOWARN */ |
1260 							  PIN_NOEVICT);
1261 		}
1262 
1263 		if (vma == ERR_PTR(-EDEADLK))
1264 			return vma;
1265 
1266 		if (IS_ERR(vma)) {
1267 			memset(&cache->node, 0, sizeof(cache->node));
1268 			mutex_lock(&ggtt->vm.mutex);
1269 			err = drm_mm_insert_node_in_range
1270 				(&ggtt->vm.mm, &cache->node,
1271 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1272 				 0, ggtt->mappable_end,
1273 				 DRM_MM_INSERT_LOW);
1274 			mutex_unlock(&ggtt->vm.mutex);
1275 			if (err) /* no inactive aperture space, use cpu reloc */
1276 				return NULL;
1277 		} else {
1278 			cache->node.start = vma->node.start;
1279 			cache->node.mm = (void *)vma;
1280 		}
1281 	}
1282 
1283 	offset = cache->node.start;
1284 	if (drm_mm_node_allocated(&cache->node)) {
1285 		ggtt->vm.insert_page(&ggtt->vm,
1286 				     i915_gem_object_get_dma_address(obj, page),
1287 				     offset, I915_CACHE_NONE, 0);
1288 	} else {
1289 		offset += page << PAGE_SHIFT;
1290 	}
1291 
1292 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1293 							 offset);
1294 	cache->page = page;
1295 	cache->vaddr = (unsigned long)vaddr;
1296 
1297 	return vaddr;
1298 }
1299 
1300 static void *reloc_vaddr(struct i915_vma *vma,
1301 			 struct i915_execbuffer *eb,
1302 			 unsigned long page)
1303 {
1304 	struct reloc_cache *cache = &eb->reloc_cache;
1305 	void *vaddr;
1306 
1307 	if (cache->page == page) {
1308 		vaddr = unmask_page(cache->vaddr);
1309 	} else {
1310 		vaddr = NULL;
1311 		if ((cache->vaddr & KMAP) == 0)
1312 			vaddr = reloc_iomap(vma, eb, page);
1313 		if (!vaddr)
1314 			vaddr = reloc_kmap(vma->obj, cache, page);
1315 	}
1316 
1317 	return vaddr;
1318 }
1319 
1320 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1321 {
1322 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1323 		if (flushes & CLFLUSH_BEFORE)
1324 			drm_clflush_virt_range(addr, sizeof(*addr));
1325 
1326 		*addr = value;
1327 
1328 		/*
1329 		 * Writes to the same cacheline are serialised by the CPU
1330 		 * (including clflush). On the write path, we only require
1331 		 * that it hits memory in an orderly fashion and place
1332 		 * mb barriers at the start and end of the relocation phase
1333 		 * to ensure ordering of clflush wrt to the system.
1334 		 */
1335 		if (flushes & CLFLUSH_AFTER)
1336 			drm_clflush_virt_range(addr, sizeof(*addr));
1337 	} else
1338 		*addr = value;
1339 }
1340 
1341 static u64
1342 relocate_entry(struct i915_vma *vma,
1343 	       const struct drm_i915_gem_relocation_entry *reloc,
1344 	       struct i915_execbuffer *eb,
1345 	       const struct i915_vma *target)
1346 {
1347 	u64 target_addr = relocation_target(reloc, target);
1348 	u64 offset = reloc->offset;
1349 	bool wide = eb->reloc_cache.use_64bit_reloc;
1350 	void *vaddr;
1351 
1352 repeat:
1353 	vaddr = reloc_vaddr(vma, eb,
1354 			    offset >> PAGE_SHIFT);
1355 	if (IS_ERR(vaddr))
1356 		return PTR_ERR(vaddr);
1357 
1358 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1359 	clflush_write32(vaddr + offset_in_page(offset),
1360 			lower_32_bits(target_addr),
1361 			eb->reloc_cache.vaddr);
1362 
1363 	if (wide) {
1364 		offset += sizeof(u32);
1365 		target_addr >>= 32;
1366 		wide = false;
1367 		goto repeat;
1368 	}
1369 
1370 	return target->node.start | UPDATE;
1371 }
1372 
1373 static u64
1374 eb_relocate_entry(struct i915_execbuffer *eb,
1375 		  struct eb_vma *ev,
1376 		  const struct drm_i915_gem_relocation_entry *reloc)
1377 {
1378 	struct drm_i915_private *i915 = eb->i915;
1379 	struct eb_vma *target;
1380 	int err;
1381 
1382 	/* we've already hold a reference to all valid objects */
1383 	target = eb_get_vma(eb, reloc->target_handle);
1384 	if (unlikely(!target))
1385 		return -ENOENT;
1386 
1387 	/* Validate that the target is in a valid r/w GPU domain */
1388 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1389 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1390 			  "target %d offset %d "
1391 			  "read %08x write %08x",
1392 			  reloc->target_handle,
1393 			  (int) reloc->offset,
1394 			  reloc->read_domains,
1395 			  reloc->write_domain);
1396 		return -EINVAL;
1397 	}
1398 	if (unlikely((reloc->write_domain | reloc->read_domains)
1399 		     & ~I915_GEM_GPU_DOMAINS)) {
1400 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1401 			  "target %d offset %d "
1402 			  "read %08x write %08x",
1403 			  reloc->target_handle,
1404 			  (int) reloc->offset,
1405 			  reloc->read_domains,
1406 			  reloc->write_domain);
1407 		return -EINVAL;
1408 	}
1409 
1410 	if (reloc->write_domain) {
1411 		target->flags |= EXEC_OBJECT_WRITE;
1412 
1413 		/*
1414 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1415 		 * for MI and pipe_control writes because the gpu doesn't
1416 		 * properly redirect them through the ppgtt for non_secure
1417 		 * batchbuffers.
1418 		 */
1419 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1420 		    GRAPHICS_VER(eb->i915) == 6 &&
1421 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1422 			struct i915_vma *vma = target->vma;
1423 
1424 			reloc_cache_unmap(&eb->reloc_cache);
1425 			mutex_lock(&vma->vm->mutex);
1426 			err = i915_vma_bind(target->vma,
1427 					    target->vma->obj->cache_level,
1428 					    PIN_GLOBAL, NULL, NULL);
1429 			mutex_unlock(&vma->vm->mutex);
1430 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1431 			if (err)
1432 				return err;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * If the relocation already has the right value in it, no
1438 	 * more work needs to be done.
1439 	 */
1440 	if (!DBG_FORCE_RELOC &&
1441 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1442 		return 0;
1443 
1444 	/* Check that the relocation address is valid... */
1445 	if (unlikely(reloc->offset >
1446 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1447 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1448 			  "target %d offset %d size %d.\n",
1449 			  reloc->target_handle,
1450 			  (int)reloc->offset,
1451 			  (int)ev->vma->size);
1452 		return -EINVAL;
1453 	}
1454 	if (unlikely(reloc->offset & 3)) {
1455 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1456 			  "target %d offset %d.\n",
1457 			  reloc->target_handle,
1458 			  (int)reloc->offset);
1459 		return -EINVAL;
1460 	}
1461 
1462 	/*
1463 	 * If we write into the object, we need to force the synchronisation
1464 	 * barrier, either with an asynchronous clflush or if we executed the
1465 	 * patching using the GPU (though that should be serialised by the
1466 	 * timeline). To be completely sure, and since we are required to
1467 	 * do relocations we are already stalling, disable the user's opt
1468 	 * out of our synchronisation.
1469 	 */
1470 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1471 
1472 	/* and update the user's relocation entry */
1473 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1474 }
1475 
1476 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1477 {
1478 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1479 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1480 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1481 	struct drm_i915_gem_relocation_entry __user *urelocs =
1482 		u64_to_user_ptr(entry->relocs_ptr);
1483 	unsigned long remain = entry->relocation_count;
1484 
1485 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1486 		return -EINVAL;
1487 
1488 	/*
1489 	 * We must check that the entire relocation array is safe
1490 	 * to read. However, if the array is not writable the user loses
1491 	 * the updated relocation values.
1492 	 */
1493 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1494 		return -EFAULT;
1495 
1496 	do {
1497 		struct drm_i915_gem_relocation_entry *r = stack;
1498 		unsigned int count =
1499 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1500 		unsigned int copied;
1501 
1502 		/*
1503 		 * This is the fast path and we cannot handle a pagefault
1504 		 * whilst holding the struct mutex lest the user pass in the
1505 		 * relocations contained within a mmaped bo. For in such a case
1506 		 * we, the page fault handler would call i915_gem_fault() and
1507 		 * we would try to acquire the struct mutex again. Obviously
1508 		 * this is bad and so lockdep complains vehemently.
1509 		 */
1510 		pagefault_disable();
1511 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1512 		pagefault_enable();
1513 		if (unlikely(copied)) {
1514 			remain = -EFAULT;
1515 			goto out;
1516 		}
1517 
1518 		remain -= count;
1519 		do {
1520 			u64 offset = eb_relocate_entry(eb, ev, r);
1521 
1522 			if (likely(offset == 0)) {
1523 			} else if ((s64)offset < 0) {
1524 				remain = (int)offset;
1525 				goto out;
1526 			} else {
1527 				/*
1528 				 * Note that reporting an error now
1529 				 * leaves everything in an inconsistent
1530 				 * state as we have *already* changed
1531 				 * the relocation value inside the
1532 				 * object. As we have not changed the
1533 				 * reloc.presumed_offset or will not
1534 				 * change the execobject.offset, on the
1535 				 * call we may not rewrite the value
1536 				 * inside the object, leaving it
1537 				 * dangling and causing a GPU hang. Unless
1538 				 * userspace dynamically rebuilds the
1539 				 * relocations on each execbuf rather than
1540 				 * presume a static tree.
1541 				 *
1542 				 * We did previously check if the relocations
1543 				 * were writable (access_ok), an error now
1544 				 * would be a strange race with mprotect,
1545 				 * having already demonstrated that we
1546 				 * can read from this userspace address.
1547 				 */
1548 				offset = gen8_canonical_addr(offset & ~UPDATE);
1549 				__put_user(offset,
1550 					   &urelocs[r - stack].presumed_offset);
1551 			}
1552 		} while (r++, --count);
1553 		urelocs += ARRAY_SIZE(stack);
1554 	} while (remain);
1555 out:
1556 	reloc_cache_reset(&eb->reloc_cache, eb);
1557 	return remain;
1558 }
1559 
1560 static int
1561 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1562 {
1563 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1564 	struct drm_i915_gem_relocation_entry *relocs =
1565 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1566 	unsigned int i;
1567 	int err;
1568 
1569 	for (i = 0; i < entry->relocation_count; i++) {
1570 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1571 
1572 		if ((s64)offset < 0) {
1573 			err = (int)offset;
1574 			goto err;
1575 		}
1576 	}
1577 	err = 0;
1578 err:
1579 	reloc_cache_reset(&eb->reloc_cache, eb);
1580 	return err;
1581 }
1582 
1583 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1584 {
1585 	const char __user *addr, *end;
1586 	unsigned long size;
1587 	char __maybe_unused c;
1588 
1589 	size = entry->relocation_count;
1590 	if (size == 0)
1591 		return 0;
1592 
1593 	if (size > N_RELOC(ULONG_MAX))
1594 		return -EINVAL;
1595 
1596 	addr = u64_to_user_ptr(entry->relocs_ptr);
1597 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1598 	if (!access_ok(addr, size))
1599 		return -EFAULT;
1600 
1601 	end = addr + size;
1602 	for (; addr < end; addr += PAGE_SIZE) {
1603 		int err = __get_user(c, addr);
1604 		if (err)
1605 			return err;
1606 	}
1607 	return __get_user(c, end - 1);
1608 }
1609 
1610 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1611 {
1612 	struct drm_i915_gem_relocation_entry *relocs;
1613 	const unsigned int count = eb->buffer_count;
1614 	unsigned int i;
1615 	int err;
1616 
1617 	for (i = 0; i < count; i++) {
1618 		const unsigned int nreloc = eb->exec[i].relocation_count;
1619 		struct drm_i915_gem_relocation_entry __user *urelocs;
1620 		unsigned long size;
1621 		unsigned long copied;
1622 
1623 		if (nreloc == 0)
1624 			continue;
1625 
1626 		err = check_relocations(&eb->exec[i]);
1627 		if (err)
1628 			goto err;
1629 
1630 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1631 		size = nreloc * sizeof(*relocs);
1632 
1633 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1634 		if (!relocs) {
1635 			err = -ENOMEM;
1636 			goto err;
1637 		}
1638 
1639 		/* copy_from_user is limited to < 4GiB */
1640 		copied = 0;
1641 		do {
1642 			unsigned int len =
1643 				min_t(u64, BIT_ULL(31), size - copied);
1644 
1645 			if (__copy_from_user((char *)relocs + copied,
1646 					     (char __user *)urelocs + copied,
1647 					     len))
1648 				goto end;
1649 
1650 			copied += len;
1651 		} while (copied < size);
1652 
1653 		/*
1654 		 * As we do not update the known relocation offsets after
1655 		 * relocating (due to the complexities in lock handling),
1656 		 * we need to mark them as invalid now so that we force the
1657 		 * relocation processing next time. Just in case the target
1658 		 * object is evicted and then rebound into its old
1659 		 * presumed_offset before the next execbuffer - if that
1660 		 * happened we would make the mistake of assuming that the
1661 		 * relocations were valid.
1662 		 */
1663 		if (!user_access_begin(urelocs, size))
1664 			goto end;
1665 
1666 		for (copied = 0; copied < nreloc; copied++)
1667 			unsafe_put_user(-1,
1668 					&urelocs[copied].presumed_offset,
1669 					end_user);
1670 		user_access_end();
1671 
1672 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1673 	}
1674 
1675 	return 0;
1676 
1677 end_user:
1678 	user_access_end();
1679 end:
1680 	kvfree(relocs);
1681 	err = -EFAULT;
1682 err:
1683 	while (i--) {
1684 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1685 		if (eb->exec[i].relocation_count)
1686 			kvfree(relocs);
1687 	}
1688 	return err;
1689 }
1690 
1691 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1692 {
1693 	const unsigned int count = eb->buffer_count;
1694 	unsigned int i;
1695 
1696 	for (i = 0; i < count; i++) {
1697 		int err;
1698 
1699 		err = check_relocations(&eb->exec[i]);
1700 		if (err)
1701 			return err;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1708 {
1709 	const unsigned int count = eb->buffer_count;
1710 	unsigned int i;
1711 	int ret;
1712 
1713 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1714 		return 0;
1715 
1716 	for (i = 0; i < count; i++) {
1717 		struct eb_vma *ev = &eb->vma[i];
1718 
1719 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1720 			continue;
1721 
1722 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1723 		if (ret)
1724 			return ret;
1725 
1726 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1733 {
1734 	bool have_copy = false;
1735 	struct eb_vma *ev;
1736 	int err = 0;
1737 
1738 repeat:
1739 	if (signal_pending(current)) {
1740 		err = -ERESTARTSYS;
1741 		goto out;
1742 	}
1743 
1744 	/* We may process another execbuffer during the unlock... */
1745 	eb_release_vmas(eb, false);
1746 	i915_gem_ww_ctx_fini(&eb->ww);
1747 
1748 	/*
1749 	 * We take 3 passes through the slowpatch.
1750 	 *
1751 	 * 1 - we try to just prefault all the user relocation entries and
1752 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1753 	 *
1754 	 * 2 - we copy the user entries to a local buffer here outside of the
1755 	 * local and allow ourselves to wait upon any rendering before
1756 	 * relocations
1757 	 *
1758 	 * 3 - we already have a local copy of the relocation entries, but
1759 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1760 	 */
1761 	if (!err) {
1762 		err = eb_prefault_relocations(eb);
1763 	} else if (!have_copy) {
1764 		err = eb_copy_relocations(eb);
1765 		have_copy = err == 0;
1766 	} else {
1767 		cond_resched();
1768 		err = 0;
1769 	}
1770 
1771 	if (!err)
1772 		err = eb_reinit_userptr(eb);
1773 
1774 	i915_gem_ww_ctx_init(&eb->ww, true);
1775 	if (err)
1776 		goto out;
1777 
1778 	/* reacquire the objects */
1779 repeat_validate:
1780 	err = eb_pin_engine(eb, false);
1781 	if (err)
1782 		goto err;
1783 
1784 	err = eb_validate_vmas(eb);
1785 	if (err)
1786 		goto err;
1787 
1788 	GEM_BUG_ON(!eb->batches[0]);
1789 
1790 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1791 		if (!have_copy) {
1792 			err = eb_relocate_vma(eb, ev);
1793 			if (err)
1794 				break;
1795 		} else {
1796 			err = eb_relocate_vma_slow(eb, ev);
1797 			if (err)
1798 				break;
1799 		}
1800 	}
1801 
1802 	if (err == -EDEADLK)
1803 		goto err;
1804 
1805 	if (err && !have_copy)
1806 		goto repeat;
1807 
1808 	if (err)
1809 		goto err;
1810 
1811 	/* as last step, parse the command buffer */
1812 	err = eb_parse(eb);
1813 	if (err)
1814 		goto err;
1815 
1816 	/*
1817 	 * Leave the user relocations as are, this is the painfully slow path,
1818 	 * and we want to avoid the complication of dropping the lock whilst
1819 	 * having buffers reserved in the aperture and so causing spurious
1820 	 * ENOSPC for random operations.
1821 	 */
1822 
1823 err:
1824 	if (err == -EDEADLK) {
1825 		eb_release_vmas(eb, false);
1826 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1827 		if (!err)
1828 			goto repeat_validate;
1829 	}
1830 
1831 	if (err == -EAGAIN)
1832 		goto repeat;
1833 
1834 out:
1835 	if (have_copy) {
1836 		const unsigned int count = eb->buffer_count;
1837 		unsigned int i;
1838 
1839 		for (i = 0; i < count; i++) {
1840 			const struct drm_i915_gem_exec_object2 *entry =
1841 				&eb->exec[i];
1842 			struct drm_i915_gem_relocation_entry *relocs;
1843 
1844 			if (!entry->relocation_count)
1845 				continue;
1846 
1847 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1848 			kvfree(relocs);
1849 		}
1850 	}
1851 
1852 	return err;
1853 }
1854 
1855 static int eb_relocate_parse(struct i915_execbuffer *eb)
1856 {
1857 	int err;
1858 	bool throttle = true;
1859 
1860 retry:
1861 	err = eb_pin_engine(eb, throttle);
1862 	if (err) {
1863 		if (err != -EDEADLK)
1864 			return err;
1865 
1866 		goto err;
1867 	}
1868 
1869 	/* only throttle once, even if we didn't need to throttle */
1870 	throttle = false;
1871 
1872 	err = eb_validate_vmas(eb);
1873 	if (err == -EAGAIN)
1874 		goto slow;
1875 	else if (err)
1876 		goto err;
1877 
1878 	/* The objects are in their final locations, apply the relocations. */
1879 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1880 		struct eb_vma *ev;
1881 
1882 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1883 			err = eb_relocate_vma(eb, ev);
1884 			if (err)
1885 				break;
1886 		}
1887 
1888 		if (err == -EDEADLK)
1889 			goto err;
1890 		else if (err)
1891 			goto slow;
1892 	}
1893 
1894 	if (!err)
1895 		err = eb_parse(eb);
1896 
1897 err:
1898 	if (err == -EDEADLK) {
1899 		eb_release_vmas(eb, false);
1900 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1901 		if (!err)
1902 			goto retry;
1903 	}
1904 
1905 	return err;
1906 
1907 slow:
1908 	err = eb_relocate_parse_slow(eb);
1909 	if (err)
1910 		/*
1911 		 * If the user expects the execobject.offset and
1912 		 * reloc.presumed_offset to be an exact match,
1913 		 * as for using NO_RELOC, then we cannot update
1914 		 * the execobject.offset until we have completed
1915 		 * relocation.
1916 		 */
1917 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1918 
1919 	return err;
1920 }
1921 
1922 /*
1923  * Using two helper loops for the order of which requests / batches are created
1924  * and added the to backend. Requests are created in order from the parent to
1925  * the last child. Requests are added in the reverse order, from the last child
1926  * to parent. This is done for locking reasons as the timeline lock is acquired
1927  * during request creation and released when the request is added to the
1928  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1929  * the ordering.
1930  */
1931 #define for_each_batch_create_order(_eb, _i) \
1932 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1933 #define for_each_batch_add_order(_eb, _i) \
1934 	BUILD_BUG_ON(!typecheck(int, _i)); \
1935 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1936 
1937 static struct i915_request *
1938 eb_find_first_request_added(struct i915_execbuffer *eb)
1939 {
1940 	int i;
1941 
1942 	for_each_batch_add_order(eb, i)
1943 		if (eb->requests[i])
1944 			return eb->requests[i];
1945 
1946 	GEM_BUG_ON("Request not found");
1947 
1948 	return NULL;
1949 }
1950 
1951 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1952 
1953 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1954 static void eb_capture_stage(struct i915_execbuffer *eb)
1955 {
1956 	const unsigned int count = eb->buffer_count;
1957 	unsigned int i = count, j;
1958 
1959 	while (i--) {
1960 		struct eb_vma *ev = &eb->vma[i];
1961 		struct i915_vma *vma = ev->vma;
1962 		unsigned int flags = ev->flags;
1963 
1964 		if (!(flags & EXEC_OBJECT_CAPTURE))
1965 			continue;
1966 
1967 		for_each_batch_create_order(eb, j) {
1968 			struct i915_capture_list *capture;
1969 
1970 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1971 			if (!capture)
1972 				continue;
1973 
1974 			capture->next = eb->capture_lists[j];
1975 			capture->vma_res = i915_vma_resource_get(vma->resource);
1976 			eb->capture_lists[j] = capture;
1977 		}
1978 	}
1979 }
1980 
1981 /* Commit once we're in the critical path */
1982 static void eb_capture_commit(struct i915_execbuffer *eb)
1983 {
1984 	unsigned int j;
1985 
1986 	for_each_batch_create_order(eb, j) {
1987 		struct i915_request *rq = eb->requests[j];
1988 
1989 		if (!rq)
1990 			break;
1991 
1992 		rq->capture_list = eb->capture_lists[j];
1993 		eb->capture_lists[j] = NULL;
1994 	}
1995 }
1996 
1997 /*
1998  * Release anything that didn't get committed due to errors.
1999  * The capture_list will otherwise be freed at request retire.
2000  */
2001 static void eb_capture_release(struct i915_execbuffer *eb)
2002 {
2003 	unsigned int j;
2004 
2005 	for_each_batch_create_order(eb, j) {
2006 		if (eb->capture_lists[j]) {
2007 			i915_request_free_capture_list(eb->capture_lists[j]);
2008 			eb->capture_lists[j] = NULL;
2009 		}
2010 	}
2011 }
2012 
2013 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2014 {
2015 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2016 }
2017 
2018 #else
2019 
2020 static void eb_capture_stage(struct i915_execbuffer *eb)
2021 {
2022 }
2023 
2024 static void eb_capture_commit(struct i915_execbuffer *eb)
2025 {
2026 }
2027 
2028 static void eb_capture_release(struct i915_execbuffer *eb)
2029 {
2030 }
2031 
2032 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2033 {
2034 }
2035 
2036 #endif
2037 
2038 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2039 {
2040 	const unsigned int count = eb->buffer_count;
2041 	unsigned int i = count;
2042 	int err = 0, j;
2043 
2044 	while (i--) {
2045 		struct eb_vma *ev = &eb->vma[i];
2046 		struct i915_vma *vma = ev->vma;
2047 		unsigned int flags = ev->flags;
2048 		struct drm_i915_gem_object *obj = vma->obj;
2049 
2050 		assert_vma_held(vma);
2051 
2052 		/*
2053 		 * If the GPU is not _reading_ through the CPU cache, we need
2054 		 * to make sure that any writes (both previous GPU writes from
2055 		 * before a change in snooping levels and normal CPU writes)
2056 		 * caught in that cache are flushed to main memory.
2057 		 *
2058 		 * We want to say
2059 		 *   obj->cache_dirty &&
2060 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2061 		 * but gcc's optimiser doesn't handle that as well and emits
2062 		 * two jumps instead of one. Maybe one day...
2063 		 *
2064 		 * FIXME: There is also sync flushing in set_pages(), which
2065 		 * serves a different purpose(some of the time at least).
2066 		 *
2067 		 * We should consider:
2068 		 *
2069 		 *   1. Rip out the async flush code.
2070 		 *
2071 		 *   2. Or make the sync flushing use the async clflush path
2072 		 *   using mandatory fences underneath. Currently the below
2073 		 *   async flush happens after we bind the object.
2074 		 */
2075 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2076 			if (i915_gem_clflush_object(obj, 0))
2077 				flags &= ~EXEC_OBJECT_ASYNC;
2078 		}
2079 
2080 		/* We only need to await on the first request */
2081 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2082 			err = i915_request_await_object
2083 				(eb_find_first_request_added(eb), obj,
2084 				 flags & EXEC_OBJECT_WRITE);
2085 		}
2086 
2087 		for_each_batch_add_order(eb, j) {
2088 			if (err)
2089 				break;
2090 			if (!eb->requests[j])
2091 				continue;
2092 
2093 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2094 						       j ? NULL :
2095 						       eb->composite_fence ?
2096 						       eb->composite_fence :
2097 						       &eb->requests[j]->fence,
2098 						       flags | __EXEC_OBJECT_NO_RESERVE);
2099 		}
2100 	}
2101 
2102 #ifdef CONFIG_MMU_NOTIFIER
2103 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2104 		read_lock(&eb->i915->mm.notifier_lock);
2105 
2106 		/*
2107 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2108 		 * could not have been set
2109 		 */
2110 		for (i = 0; i < count; i++) {
2111 			struct eb_vma *ev = &eb->vma[i];
2112 			struct drm_i915_gem_object *obj = ev->vma->obj;
2113 
2114 			if (!i915_gem_object_is_userptr(obj))
2115 				continue;
2116 
2117 			err = i915_gem_object_userptr_submit_done(obj);
2118 			if (err)
2119 				break;
2120 		}
2121 
2122 		read_unlock(&eb->i915->mm.notifier_lock);
2123 	}
2124 #endif
2125 
2126 	if (unlikely(err))
2127 		goto err_skip;
2128 
2129 	/* Unconditionally flush any chipset caches (for streaming writes). */
2130 	intel_gt_chipset_flush(eb->gt);
2131 	eb_capture_commit(eb);
2132 
2133 	return 0;
2134 
2135 err_skip:
2136 	for_each_batch_create_order(eb, j) {
2137 		if (!eb->requests[j])
2138 			break;
2139 
2140 		i915_request_set_error_once(eb->requests[j], err);
2141 	}
2142 	return err;
2143 }
2144 
2145 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2146 {
2147 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2148 		return -EINVAL;
2149 
2150 	/* Kernel clipping was a DRI1 misfeature */
2151 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2152 			     I915_EXEC_USE_EXTENSIONS))) {
2153 		if (exec->num_cliprects || exec->cliprects_ptr)
2154 			return -EINVAL;
2155 	}
2156 
2157 	if (exec->DR4 == 0xffffffff) {
2158 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2159 		exec->DR4 = 0;
2160 	}
2161 	if (exec->DR1 || exec->DR4)
2162 		return -EINVAL;
2163 
2164 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2165 		return -EINVAL;
2166 
2167 	return 0;
2168 }
2169 
2170 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2171 {
2172 	u32 *cs;
2173 	int i;
2174 
2175 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2176 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2177 		return -EINVAL;
2178 	}
2179 
2180 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2181 	if (IS_ERR(cs))
2182 		return PTR_ERR(cs);
2183 
2184 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2185 	for (i = 0; i < 4; i++) {
2186 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2187 		*cs++ = 0;
2188 	}
2189 	*cs++ = MI_NOOP;
2190 	intel_ring_advance(rq, cs);
2191 
2192 	return 0;
2193 }
2194 
2195 static struct i915_vma *
2196 shadow_batch_pin(struct i915_execbuffer *eb,
2197 		 struct drm_i915_gem_object *obj,
2198 		 struct i915_address_space *vm,
2199 		 unsigned int flags)
2200 {
2201 	struct i915_vma *vma;
2202 	int err;
2203 
2204 	vma = i915_vma_instance(obj, vm, NULL);
2205 	if (IS_ERR(vma))
2206 		return vma;
2207 
2208 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2209 	if (err)
2210 		return ERR_PTR(err);
2211 
2212 	return vma;
2213 }
2214 
2215 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2216 {
2217 	/*
2218 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2219 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2220 	 * hsw should have this fixed, but bdw mucks it up again. */
2221 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2222 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2223 
2224 	return NULL;
2225 }
2226 
2227 static int eb_parse(struct i915_execbuffer *eb)
2228 {
2229 	struct drm_i915_private *i915 = eb->i915;
2230 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2231 	struct i915_vma *shadow, *trampoline, *batch;
2232 	unsigned long len;
2233 	int err;
2234 
2235 	if (!eb_use_cmdparser(eb)) {
2236 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2237 		if (IS_ERR(batch))
2238 			return PTR_ERR(batch);
2239 
2240 		goto secure_batch;
2241 	}
2242 
2243 	if (intel_context_is_parallel(eb->context))
2244 		return -EINVAL;
2245 
2246 	len = eb->batch_len[0];
2247 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2248 		/*
2249 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2250 		 * post-scan tampering
2251 		 */
2252 		if (!eb->context->vm->has_read_only) {
2253 			drm_dbg(&i915->drm,
2254 				"Cannot prevent post-scan tampering without RO capable vm\n");
2255 			return -EINVAL;
2256 		}
2257 	} else {
2258 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2259 	}
2260 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2261 		return -EINVAL;
2262 
2263 	if (!pool) {
2264 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2265 						I915_MAP_WB);
2266 		if (IS_ERR(pool))
2267 			return PTR_ERR(pool);
2268 		eb->batch_pool = pool;
2269 	}
2270 
2271 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2272 	if (err)
2273 		return err;
2274 
2275 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2276 	if (IS_ERR(shadow))
2277 		return PTR_ERR(shadow);
2278 
2279 	intel_gt_buffer_pool_mark_used(pool);
2280 	i915_gem_object_set_readonly(shadow->obj);
2281 	shadow->private = pool;
2282 
2283 	trampoline = NULL;
2284 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2285 		trampoline = shadow;
2286 
2287 		shadow = shadow_batch_pin(eb, pool->obj,
2288 					  &eb->gt->ggtt->vm,
2289 					  PIN_GLOBAL);
2290 		if (IS_ERR(shadow))
2291 			return PTR_ERR(shadow);
2292 
2293 		shadow->private = pool;
2294 
2295 		eb->batch_flags |= I915_DISPATCH_SECURE;
2296 	}
2297 
2298 	batch = eb_dispatch_secure(eb, shadow);
2299 	if (IS_ERR(batch))
2300 		return PTR_ERR(batch);
2301 
2302 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2303 	if (err)
2304 		return err;
2305 
2306 	err = intel_engine_cmd_parser(eb->context->engine,
2307 				      eb->batches[0]->vma,
2308 				      eb->batch_start_offset,
2309 				      eb->batch_len[0],
2310 				      shadow, trampoline);
2311 	if (err)
2312 		return err;
2313 
2314 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2315 	eb->batches[0]->vma = i915_vma_get(shadow);
2316 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2317 
2318 	eb->trampoline = trampoline;
2319 	eb->batch_start_offset = 0;
2320 
2321 secure_batch:
2322 	if (batch) {
2323 		if (intel_context_is_parallel(eb->context))
2324 			return -EINVAL;
2325 
2326 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2327 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2328 		eb->batches[0]->vma = i915_vma_get(batch);
2329 	}
2330 	return 0;
2331 }
2332 
2333 static int eb_request_submit(struct i915_execbuffer *eb,
2334 			     struct i915_request *rq,
2335 			     struct i915_vma *batch,
2336 			     u64 batch_len)
2337 {
2338 	int err;
2339 
2340 	if (intel_context_nopreempt(rq->context))
2341 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2342 
2343 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2344 		err = i915_reset_gen7_sol_offsets(rq);
2345 		if (err)
2346 			return err;
2347 	}
2348 
2349 	/*
2350 	 * After we completed waiting for other engines (using HW semaphores)
2351 	 * then we can signal that this request/batch is ready to run. This
2352 	 * allows us to determine if the batch is still waiting on the GPU
2353 	 * or actually running by checking the breadcrumb.
2354 	 */
2355 	if (rq->context->engine->emit_init_breadcrumb) {
2356 		err = rq->context->engine->emit_init_breadcrumb(rq);
2357 		if (err)
2358 			return err;
2359 	}
2360 
2361 	err = rq->context->engine->emit_bb_start(rq,
2362 						 batch->node.start +
2363 						 eb->batch_start_offset,
2364 						 batch_len,
2365 						 eb->batch_flags);
2366 	if (err)
2367 		return err;
2368 
2369 	if (eb->trampoline) {
2370 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2371 		GEM_BUG_ON(eb->batch_start_offset);
2372 		err = rq->context->engine->emit_bb_start(rq,
2373 							 eb->trampoline->node.start +
2374 							 batch_len, 0, 0);
2375 		if (err)
2376 			return err;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static int eb_submit(struct i915_execbuffer *eb)
2383 {
2384 	unsigned int i;
2385 	int err;
2386 
2387 	err = eb_move_to_gpu(eb);
2388 
2389 	for_each_batch_create_order(eb, i) {
2390 		if (!eb->requests[i])
2391 			break;
2392 
2393 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2394 		if (!err)
2395 			err = eb_request_submit(eb, eb->requests[i],
2396 						eb->batches[i]->vma,
2397 						eb->batch_len[i]);
2398 	}
2399 
2400 	return err;
2401 }
2402 
2403 static int num_vcs_engines(struct drm_i915_private *i915)
2404 {
2405 	return hweight_long(VDBOX_MASK(to_gt(i915)));
2406 }
2407 
2408 /*
2409  * Find one BSD ring to dispatch the corresponding BSD command.
2410  * The engine index is returned.
2411  */
2412 static unsigned int
2413 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2414 			 struct drm_file *file)
2415 {
2416 	struct drm_i915_file_private *file_priv = file->driver_priv;
2417 
2418 	/* Check whether the file_priv has already selected one ring. */
2419 	if ((int)file_priv->bsd_engine < 0)
2420 		file_priv->bsd_engine =
2421 			get_random_int() % num_vcs_engines(dev_priv);
2422 
2423 	return file_priv->bsd_engine;
2424 }
2425 
2426 static const enum intel_engine_id user_ring_map[] = {
2427 	[I915_EXEC_DEFAULT]	= RCS0,
2428 	[I915_EXEC_RENDER]	= RCS0,
2429 	[I915_EXEC_BLT]		= BCS0,
2430 	[I915_EXEC_BSD]		= VCS0,
2431 	[I915_EXEC_VEBOX]	= VECS0
2432 };
2433 
2434 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2435 {
2436 	struct intel_ring *ring = ce->ring;
2437 	struct intel_timeline *tl = ce->timeline;
2438 	struct i915_request *rq;
2439 
2440 	/*
2441 	 * Completely unscientific finger-in-the-air estimates for suitable
2442 	 * maximum user request size (to avoid blocking) and then backoff.
2443 	 */
2444 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2445 		return NULL;
2446 
2447 	/*
2448 	 * Find a request that after waiting upon, there will be at least half
2449 	 * the ring available. The hysteresis allows us to compete for the
2450 	 * shared ring and should mean that we sleep less often prior to
2451 	 * claiming our resources, but not so long that the ring completely
2452 	 * drains before we can submit our next request.
2453 	 */
2454 	list_for_each_entry(rq, &tl->requests, link) {
2455 		if (rq->ring != ring)
2456 			continue;
2457 
2458 		if (__intel_ring_space(rq->postfix,
2459 				       ring->emit, ring->size) > ring->size / 2)
2460 			break;
2461 	}
2462 	if (&rq->link == &tl->requests)
2463 		return NULL; /* weird, we will check again later for real */
2464 
2465 	return i915_request_get(rq);
2466 }
2467 
2468 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2469 			   bool throttle)
2470 {
2471 	struct intel_timeline *tl;
2472 	struct i915_request *rq = NULL;
2473 
2474 	/*
2475 	 * Take a local wakeref for preparing to dispatch the execbuf as
2476 	 * we expect to access the hardware fairly frequently in the
2477 	 * process, and require the engine to be kept awake between accesses.
2478 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2479 	 * until the timeline is idle, which in turn releases the wakeref
2480 	 * taken on the engine, and the parent device.
2481 	 */
2482 	tl = intel_context_timeline_lock(ce);
2483 	if (IS_ERR(tl))
2484 		return PTR_ERR(tl);
2485 
2486 	intel_context_enter(ce);
2487 	if (throttle)
2488 		rq = eb_throttle(eb, ce);
2489 	intel_context_timeline_unlock(tl);
2490 
2491 	if (rq) {
2492 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2493 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2494 
2495 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2496 				      timeout) < 0) {
2497 			i915_request_put(rq);
2498 
2499 			/*
2500 			 * Error path, cannot use intel_context_timeline_lock as
2501 			 * that is user interruptable and this clean up step
2502 			 * must be done.
2503 			 */
2504 			mutex_lock(&ce->timeline->mutex);
2505 			intel_context_exit(ce);
2506 			mutex_unlock(&ce->timeline->mutex);
2507 
2508 			if (nonblock)
2509 				return -EWOULDBLOCK;
2510 			else
2511 				return -EINTR;
2512 		}
2513 		i915_request_put(rq);
2514 	}
2515 
2516 	return 0;
2517 }
2518 
2519 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2520 {
2521 	struct intel_context *ce = eb->context, *child;
2522 	int err;
2523 	int i = 0, j = 0;
2524 
2525 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2526 
2527 	if (unlikely(intel_context_is_banned(ce)))
2528 		return -EIO;
2529 
2530 	/*
2531 	 * Pinning the contexts may generate requests in order to acquire
2532 	 * GGTT space, so do this first before we reserve a seqno for
2533 	 * ourselves.
2534 	 */
2535 	err = intel_context_pin_ww(ce, &eb->ww);
2536 	if (err)
2537 		return err;
2538 	for_each_child(ce, child) {
2539 		err = intel_context_pin_ww(child, &eb->ww);
2540 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2541 	}
2542 
2543 	for_each_child(ce, child) {
2544 		err = eb_pin_timeline(eb, child, throttle);
2545 		if (err)
2546 			goto unwind;
2547 		++i;
2548 	}
2549 	err = eb_pin_timeline(eb, ce, throttle);
2550 	if (err)
2551 		goto unwind;
2552 
2553 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2554 	return 0;
2555 
2556 unwind:
2557 	for_each_child(ce, child) {
2558 		if (j++ < i) {
2559 			mutex_lock(&child->timeline->mutex);
2560 			intel_context_exit(child);
2561 			mutex_unlock(&child->timeline->mutex);
2562 		}
2563 	}
2564 	for_each_child(ce, child)
2565 		intel_context_unpin(child);
2566 	intel_context_unpin(ce);
2567 	return err;
2568 }
2569 
2570 static void eb_unpin_engine(struct i915_execbuffer *eb)
2571 {
2572 	struct intel_context *ce = eb->context, *child;
2573 
2574 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2575 		return;
2576 
2577 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2578 
2579 	for_each_child(ce, child) {
2580 		mutex_lock(&child->timeline->mutex);
2581 		intel_context_exit(child);
2582 		mutex_unlock(&child->timeline->mutex);
2583 
2584 		intel_context_unpin(child);
2585 	}
2586 
2587 	mutex_lock(&ce->timeline->mutex);
2588 	intel_context_exit(ce);
2589 	mutex_unlock(&ce->timeline->mutex);
2590 
2591 	intel_context_unpin(ce);
2592 }
2593 
2594 static unsigned int
2595 eb_select_legacy_ring(struct i915_execbuffer *eb)
2596 {
2597 	struct drm_i915_private *i915 = eb->i915;
2598 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2599 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2600 
2601 	if (user_ring_id != I915_EXEC_BSD &&
2602 	    (args->flags & I915_EXEC_BSD_MASK)) {
2603 		drm_dbg(&i915->drm,
2604 			"execbuf with non bsd ring but with invalid "
2605 			"bsd dispatch flags: %d\n", (int)(args->flags));
2606 		return -1;
2607 	}
2608 
2609 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2610 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2611 
2612 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2613 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2614 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2615 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2616 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2617 			bsd_idx--;
2618 		} else {
2619 			drm_dbg(&i915->drm,
2620 				"execbuf with unknown bsd ring: %u\n",
2621 				bsd_idx);
2622 			return -1;
2623 		}
2624 
2625 		return _VCS(bsd_idx);
2626 	}
2627 
2628 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2629 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2630 			user_ring_id);
2631 		return -1;
2632 	}
2633 
2634 	return user_ring_map[user_ring_id];
2635 }
2636 
2637 static int
2638 eb_select_engine(struct i915_execbuffer *eb)
2639 {
2640 	struct intel_context *ce, *child;
2641 	unsigned int idx;
2642 	int err;
2643 
2644 	if (i915_gem_context_user_engines(eb->gem_context))
2645 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2646 	else
2647 		idx = eb_select_legacy_ring(eb);
2648 
2649 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2650 	if (IS_ERR(ce))
2651 		return PTR_ERR(ce);
2652 
2653 	if (intel_context_is_parallel(ce)) {
2654 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2655 			intel_context_put(ce);
2656 			return -EINVAL;
2657 		}
2658 		if (eb->batch_start_offset || eb->args->batch_len) {
2659 			intel_context_put(ce);
2660 			return -EINVAL;
2661 		}
2662 	}
2663 	eb->num_batches = ce->parallel.number_children + 1;
2664 
2665 	for_each_child(ce, child)
2666 		intel_context_get(child);
2667 	intel_gt_pm_get(ce->engine->gt);
2668 
2669 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2670 		err = intel_context_alloc_state(ce);
2671 		if (err)
2672 			goto err;
2673 	}
2674 	for_each_child(ce, child) {
2675 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2676 			err = intel_context_alloc_state(child);
2677 			if (err)
2678 				goto err;
2679 		}
2680 	}
2681 
2682 	/*
2683 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2684 	 * EIO if the GPU is already wedged.
2685 	 */
2686 	err = intel_gt_terminally_wedged(ce->engine->gt);
2687 	if (err)
2688 		goto err;
2689 
2690 	if (!i915_vm_tryget(ce->vm)) {
2691 		err = -ENOENT;
2692 		goto err;
2693 	}
2694 
2695 	eb->context = ce;
2696 	eb->gt = ce->engine->gt;
2697 
2698 	/*
2699 	 * Make sure engine pool stays alive even if we call intel_context_put
2700 	 * during ww handling. The pool is destroyed when last pm reference
2701 	 * is dropped, which breaks our -EDEADLK handling.
2702 	 */
2703 	return err;
2704 
2705 err:
2706 	intel_gt_pm_put(ce->engine->gt);
2707 	for_each_child(ce, child)
2708 		intel_context_put(child);
2709 	intel_context_put(ce);
2710 	return err;
2711 }
2712 
2713 static void
2714 eb_put_engine(struct i915_execbuffer *eb)
2715 {
2716 	struct intel_context *child;
2717 
2718 	i915_vm_put(eb->context->vm);
2719 	intel_gt_pm_put(eb->gt);
2720 	for_each_child(eb->context, child)
2721 		intel_context_put(child);
2722 	intel_context_put(eb->context);
2723 }
2724 
2725 static void
2726 __free_fence_array(struct eb_fence *fences, unsigned int n)
2727 {
2728 	while (n--) {
2729 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2730 		dma_fence_put(fences[n].dma_fence);
2731 		dma_fence_chain_free(fences[n].chain_fence);
2732 	}
2733 	kvfree(fences);
2734 }
2735 
2736 static int
2737 add_timeline_fence_array(struct i915_execbuffer *eb,
2738 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2739 {
2740 	struct drm_i915_gem_exec_fence __user *user_fences;
2741 	u64 __user *user_values;
2742 	struct eb_fence *f;
2743 	u64 nfences;
2744 	int err = 0;
2745 
2746 	nfences = timeline_fences->fence_count;
2747 	if (!nfences)
2748 		return 0;
2749 
2750 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2751 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2752 	if (nfences > min_t(unsigned long,
2753 			    ULONG_MAX / sizeof(*user_fences),
2754 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2755 		return -EINVAL;
2756 
2757 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2758 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2759 		return -EFAULT;
2760 
2761 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2762 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2763 		return -EFAULT;
2764 
2765 	f = krealloc(eb->fences,
2766 		     (eb->num_fences + nfences) * sizeof(*f),
2767 		     __GFP_NOWARN | GFP_KERNEL);
2768 	if (!f)
2769 		return -ENOMEM;
2770 
2771 	eb->fences = f;
2772 	f += eb->num_fences;
2773 
2774 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2775 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2776 
2777 	while (nfences--) {
2778 		struct drm_i915_gem_exec_fence user_fence;
2779 		struct drm_syncobj *syncobj;
2780 		struct dma_fence *fence = NULL;
2781 		u64 point;
2782 
2783 		if (__copy_from_user(&user_fence,
2784 				     user_fences++,
2785 				     sizeof(user_fence)))
2786 			return -EFAULT;
2787 
2788 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2789 			return -EINVAL;
2790 
2791 		if (__get_user(point, user_values++))
2792 			return -EFAULT;
2793 
2794 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2795 		if (!syncobj) {
2796 			DRM_DEBUG("Invalid syncobj handle provided\n");
2797 			return -ENOENT;
2798 		}
2799 
2800 		fence = drm_syncobj_fence_get(syncobj);
2801 
2802 		if (!fence && user_fence.flags &&
2803 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2804 			DRM_DEBUG("Syncobj handle has no fence\n");
2805 			drm_syncobj_put(syncobj);
2806 			return -EINVAL;
2807 		}
2808 
2809 		if (fence)
2810 			err = dma_fence_chain_find_seqno(&fence, point);
2811 
2812 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2813 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2814 			dma_fence_put(fence);
2815 			drm_syncobj_put(syncobj);
2816 			return err;
2817 		}
2818 
2819 		/*
2820 		 * A point might have been signaled already and
2821 		 * garbage collected from the timeline. In this case
2822 		 * just ignore the point and carry on.
2823 		 */
2824 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2825 			drm_syncobj_put(syncobj);
2826 			continue;
2827 		}
2828 
2829 		/*
2830 		 * For timeline syncobjs we need to preallocate chains for
2831 		 * later signaling.
2832 		 */
2833 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2834 			/*
2835 			 * Waiting and signaling the same point (when point !=
2836 			 * 0) would break the timeline.
2837 			 */
2838 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2839 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2840 				dma_fence_put(fence);
2841 				drm_syncobj_put(syncobj);
2842 				return -EINVAL;
2843 			}
2844 
2845 			f->chain_fence = dma_fence_chain_alloc();
2846 			if (!f->chain_fence) {
2847 				drm_syncobj_put(syncobj);
2848 				dma_fence_put(fence);
2849 				return -ENOMEM;
2850 			}
2851 		} else {
2852 			f->chain_fence = NULL;
2853 		}
2854 
2855 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2856 		f->dma_fence = fence;
2857 		f->value = point;
2858 		f++;
2859 		eb->num_fences++;
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 static int add_fence_array(struct i915_execbuffer *eb)
2866 {
2867 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2868 	struct drm_i915_gem_exec_fence __user *user;
2869 	unsigned long num_fences = args->num_cliprects;
2870 	struct eb_fence *f;
2871 
2872 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2873 		return 0;
2874 
2875 	if (!num_fences)
2876 		return 0;
2877 
2878 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2879 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2880 	if (num_fences > min_t(unsigned long,
2881 			       ULONG_MAX / sizeof(*user),
2882 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2883 		return -EINVAL;
2884 
2885 	user = u64_to_user_ptr(args->cliprects_ptr);
2886 	if (!access_ok(user, num_fences * sizeof(*user)))
2887 		return -EFAULT;
2888 
2889 	f = krealloc(eb->fences,
2890 		     (eb->num_fences + num_fences) * sizeof(*f),
2891 		     __GFP_NOWARN | GFP_KERNEL);
2892 	if (!f)
2893 		return -ENOMEM;
2894 
2895 	eb->fences = f;
2896 	f += eb->num_fences;
2897 	while (num_fences--) {
2898 		struct drm_i915_gem_exec_fence user_fence;
2899 		struct drm_syncobj *syncobj;
2900 		struct dma_fence *fence = NULL;
2901 
2902 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2903 			return -EFAULT;
2904 
2905 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2906 			return -EINVAL;
2907 
2908 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2909 		if (!syncobj) {
2910 			DRM_DEBUG("Invalid syncobj handle provided\n");
2911 			return -ENOENT;
2912 		}
2913 
2914 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2915 			fence = drm_syncobj_fence_get(syncobj);
2916 			if (!fence) {
2917 				DRM_DEBUG("Syncobj handle has no fence\n");
2918 				drm_syncobj_put(syncobj);
2919 				return -EINVAL;
2920 			}
2921 		}
2922 
2923 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2924 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2925 
2926 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2927 		f->dma_fence = fence;
2928 		f->value = 0;
2929 		f->chain_fence = NULL;
2930 		f++;
2931 		eb->num_fences++;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static void put_fence_array(struct eb_fence *fences, int num_fences)
2938 {
2939 	if (fences)
2940 		__free_fence_array(fences, num_fences);
2941 }
2942 
2943 static int
2944 await_fence_array(struct i915_execbuffer *eb,
2945 		  struct i915_request *rq)
2946 {
2947 	unsigned int n;
2948 	int err;
2949 
2950 	for (n = 0; n < eb->num_fences; n++) {
2951 		struct drm_syncobj *syncobj;
2952 		unsigned int flags;
2953 
2954 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2955 
2956 		if (!eb->fences[n].dma_fence)
2957 			continue;
2958 
2959 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2960 		if (err < 0)
2961 			return err;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 static void signal_fence_array(const struct i915_execbuffer *eb,
2968 			       struct dma_fence * const fence)
2969 {
2970 	unsigned int n;
2971 
2972 	for (n = 0; n < eb->num_fences; n++) {
2973 		struct drm_syncobj *syncobj;
2974 		unsigned int flags;
2975 
2976 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2977 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2978 			continue;
2979 
2980 		if (eb->fences[n].chain_fence) {
2981 			drm_syncobj_add_point(syncobj,
2982 					      eb->fences[n].chain_fence,
2983 					      fence,
2984 					      eb->fences[n].value);
2985 			/*
2986 			 * The chain's ownership is transferred to the
2987 			 * timeline.
2988 			 */
2989 			eb->fences[n].chain_fence = NULL;
2990 		} else {
2991 			drm_syncobj_replace_fence(syncobj, fence);
2992 		}
2993 	}
2994 }
2995 
2996 static int
2997 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2998 {
2999 	struct i915_execbuffer *eb = data;
3000 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3001 
3002 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3003 		return -EFAULT;
3004 
3005 	return add_timeline_fence_array(eb, &timeline_fences);
3006 }
3007 
3008 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3009 {
3010 	struct i915_request *rq, *rn;
3011 
3012 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3013 		if (rq == end || !i915_request_retire(rq))
3014 			break;
3015 }
3016 
3017 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3018 			  int err, bool last_parallel)
3019 {
3020 	struct intel_timeline * const tl = i915_request_timeline(rq);
3021 	struct i915_sched_attr attr = {};
3022 	struct i915_request *prev;
3023 
3024 	lockdep_assert_held(&tl->mutex);
3025 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3026 
3027 	trace_i915_request_add(rq);
3028 
3029 	prev = __i915_request_commit(rq);
3030 
3031 	/* Check that the context wasn't destroyed before submission */
3032 	if (likely(!intel_context_is_closed(eb->context))) {
3033 		attr = eb->gem_context->sched;
3034 	} else {
3035 		/* Serialise with context_close via the add_to_timeline */
3036 		i915_request_set_error_once(rq, -ENOENT);
3037 		__i915_request_skip(rq);
3038 		err = -ENOENT; /* override any transient errors */
3039 	}
3040 
3041 	if (intel_context_is_parallel(eb->context)) {
3042 		if (err) {
3043 			__i915_request_skip(rq);
3044 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3045 				&rq->fence.flags);
3046 		}
3047 		if (last_parallel)
3048 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3049 				&rq->fence.flags);
3050 	}
3051 
3052 	__i915_request_queue(rq, &attr);
3053 
3054 	/* Try to clean up the client's timeline after submitting the request */
3055 	if (prev)
3056 		retire_requests(tl, prev);
3057 
3058 	mutex_unlock(&tl->mutex);
3059 
3060 	return err;
3061 }
3062 
3063 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3064 {
3065 	int i;
3066 
3067 	/*
3068 	 * We iterate in reverse order of creation to release timeline mutexes in
3069 	 * same order.
3070 	 */
3071 	for_each_batch_add_order(eb, i) {
3072 		struct i915_request *rq = eb->requests[i];
3073 
3074 		if (!rq)
3075 			continue;
3076 		err |= eb_request_add(eb, rq, err, i == 0);
3077 	}
3078 
3079 	return err;
3080 }
3081 
3082 static const i915_user_extension_fn execbuf_extensions[] = {
3083 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3084 };
3085 
3086 static int
3087 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3088 			  struct i915_execbuffer *eb)
3089 {
3090 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3091 		return 0;
3092 
3093 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3094 	 * have another flag also using it at the same time.
3095 	 */
3096 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3097 		return -EINVAL;
3098 
3099 	if (args->num_cliprects != 0)
3100 		return -EINVAL;
3101 
3102 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3103 				    execbuf_extensions,
3104 				    ARRAY_SIZE(execbuf_extensions),
3105 				    eb);
3106 }
3107 
3108 static void eb_requests_get(struct i915_execbuffer *eb)
3109 {
3110 	unsigned int i;
3111 
3112 	for_each_batch_create_order(eb, i) {
3113 		if (!eb->requests[i])
3114 			break;
3115 
3116 		i915_request_get(eb->requests[i]);
3117 	}
3118 }
3119 
3120 static void eb_requests_put(struct i915_execbuffer *eb)
3121 {
3122 	unsigned int i;
3123 
3124 	for_each_batch_create_order(eb, i) {
3125 		if (!eb->requests[i])
3126 			break;
3127 
3128 		i915_request_put(eb->requests[i]);
3129 	}
3130 }
3131 
3132 static struct sync_file *
3133 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3134 {
3135 	struct sync_file *out_fence = NULL;
3136 	struct dma_fence_array *fence_array;
3137 	struct dma_fence **fences;
3138 	unsigned int i;
3139 
3140 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3141 
3142 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3143 	if (!fences)
3144 		return ERR_PTR(-ENOMEM);
3145 
3146 	for_each_batch_create_order(eb, i) {
3147 		fences[i] = &eb->requests[i]->fence;
3148 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3149 			  &eb->requests[i]->fence.flags);
3150 	}
3151 
3152 	fence_array = dma_fence_array_create(eb->num_batches,
3153 					     fences,
3154 					     eb->context->parallel.fence_context,
3155 					     eb->context->parallel.seqno++,
3156 					     false);
3157 	if (!fence_array) {
3158 		kfree(fences);
3159 		return ERR_PTR(-ENOMEM);
3160 	}
3161 
3162 	/* Move ownership to the dma_fence_array created above */
3163 	for_each_batch_create_order(eb, i)
3164 		dma_fence_get(fences[i]);
3165 
3166 	if (out_fence_fd != -1) {
3167 		out_fence = sync_file_create(&fence_array->base);
3168 		/* sync_file now owns fence_arry, drop creation ref */
3169 		dma_fence_put(&fence_array->base);
3170 		if (!out_fence)
3171 			return ERR_PTR(-ENOMEM);
3172 	}
3173 
3174 	eb->composite_fence = &fence_array->base;
3175 
3176 	return out_fence;
3177 }
3178 
3179 static struct sync_file *
3180 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3181 	      struct dma_fence *in_fence, int out_fence_fd)
3182 {
3183 	struct sync_file *out_fence = NULL;
3184 	int err;
3185 
3186 	if (unlikely(eb->gem_context->syncobj)) {
3187 		struct dma_fence *fence;
3188 
3189 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3190 		err = i915_request_await_dma_fence(rq, fence);
3191 		dma_fence_put(fence);
3192 		if (err)
3193 			return ERR_PTR(err);
3194 	}
3195 
3196 	if (in_fence) {
3197 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3198 			err = i915_request_await_execution(rq, in_fence);
3199 		else
3200 			err = i915_request_await_dma_fence(rq, in_fence);
3201 		if (err < 0)
3202 			return ERR_PTR(err);
3203 	}
3204 
3205 	if (eb->fences) {
3206 		err = await_fence_array(eb, rq);
3207 		if (err)
3208 			return ERR_PTR(err);
3209 	}
3210 
3211 	if (intel_context_is_parallel(eb->context)) {
3212 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3213 		if (IS_ERR(out_fence))
3214 			return ERR_PTR(-ENOMEM);
3215 	} else if (out_fence_fd != -1) {
3216 		out_fence = sync_file_create(&rq->fence);
3217 		if (!out_fence)
3218 			return ERR_PTR(-ENOMEM);
3219 	}
3220 
3221 	return out_fence;
3222 }
3223 
3224 static struct intel_context *
3225 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3226 {
3227 	struct intel_context *child;
3228 
3229 	if (likely(context_number == 0))
3230 		return eb->context;
3231 
3232 	for_each_child(eb->context, child)
3233 		if (!--context_number)
3234 			return child;
3235 
3236 	GEM_BUG_ON("Context not found");
3237 
3238 	return NULL;
3239 }
3240 
3241 static struct sync_file *
3242 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3243 		   int out_fence_fd)
3244 {
3245 	struct sync_file *out_fence = NULL;
3246 	unsigned int i;
3247 
3248 	for_each_batch_create_order(eb, i) {
3249 		/* Allocate a request for this batch buffer nice and early. */
3250 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3251 		if (IS_ERR(eb->requests[i])) {
3252 			out_fence = ERR_CAST(eb->requests[i]);
3253 			eb->requests[i] = NULL;
3254 			return out_fence;
3255 		}
3256 
3257 		/*
3258 		 * Only the first request added (committed to backend) has to
3259 		 * take the in fences into account as all subsequent requests
3260 		 * will have fences inserted inbetween them.
3261 		 */
3262 		if (i + 1 == eb->num_batches) {
3263 			out_fence = eb_fences_add(eb, eb->requests[i],
3264 						  in_fence, out_fence_fd);
3265 			if (IS_ERR(out_fence))
3266 				return out_fence;
3267 		}
3268 
3269 		/*
3270 		 * Not really on stack, but we don't want to call
3271 		 * kfree on the batch_snapshot when we put it, so use the
3272 		 * _onstack interface.
3273 		 */
3274 		if (eb->batches[i]->vma)
3275 			eb->requests[i]->batch_res =
3276 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3277 		if (eb->batch_pool) {
3278 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3279 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3280 							 eb->requests[i]);
3281 		}
3282 	}
3283 
3284 	return out_fence;
3285 }
3286 
3287 static int
3288 i915_gem_do_execbuffer(struct drm_device *dev,
3289 		       struct drm_file *file,
3290 		       struct drm_i915_gem_execbuffer2 *args,
3291 		       struct drm_i915_gem_exec_object2 *exec)
3292 {
3293 	struct drm_i915_private *i915 = to_i915(dev);
3294 	struct i915_execbuffer eb;
3295 	struct dma_fence *in_fence = NULL;
3296 	struct sync_file *out_fence = NULL;
3297 	int out_fence_fd = -1;
3298 	int err;
3299 
3300 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3301 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3302 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3303 
3304 	eb.i915 = i915;
3305 	eb.file = file;
3306 	eb.args = args;
3307 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3308 		args->flags |= __EXEC_HAS_RELOC;
3309 
3310 	eb.exec = exec;
3311 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3312 	eb.vma[0].vma = NULL;
3313 	eb.batch_pool = NULL;
3314 
3315 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3316 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3317 
3318 	eb.buffer_count = args->buffer_count;
3319 	eb.batch_start_offset = args->batch_start_offset;
3320 	eb.trampoline = NULL;
3321 
3322 	eb.fences = NULL;
3323 	eb.num_fences = 0;
3324 
3325 	eb_capture_list_clear(&eb);
3326 
3327 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3328 	       ARRAY_SIZE(eb.requests));
3329 	eb.composite_fence = NULL;
3330 
3331 	eb.batch_flags = 0;
3332 	if (args->flags & I915_EXEC_SECURE) {
3333 		if (GRAPHICS_VER(i915) >= 11)
3334 			return -ENODEV;
3335 
3336 		/* Return -EPERM to trigger fallback code on old binaries. */
3337 		if (!HAS_SECURE_BATCHES(i915))
3338 			return -EPERM;
3339 
3340 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3341 			return -EPERM;
3342 
3343 		eb.batch_flags |= I915_DISPATCH_SECURE;
3344 	}
3345 	if (args->flags & I915_EXEC_IS_PINNED)
3346 		eb.batch_flags |= I915_DISPATCH_PINNED;
3347 
3348 	err = parse_execbuf2_extensions(args, &eb);
3349 	if (err)
3350 		goto err_ext;
3351 
3352 	err = add_fence_array(&eb);
3353 	if (err)
3354 		goto err_ext;
3355 
3356 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3357 	if (args->flags & IN_FENCES) {
3358 		if ((args->flags & IN_FENCES) == IN_FENCES)
3359 			return -EINVAL;
3360 
3361 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3362 		if (!in_fence) {
3363 			err = -EINVAL;
3364 			goto err_ext;
3365 		}
3366 	}
3367 #undef IN_FENCES
3368 
3369 	if (args->flags & I915_EXEC_FENCE_OUT) {
3370 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3371 		if (out_fence_fd < 0) {
3372 			err = out_fence_fd;
3373 			goto err_in_fence;
3374 		}
3375 	}
3376 
3377 	err = eb_create(&eb);
3378 	if (err)
3379 		goto err_out_fence;
3380 
3381 	GEM_BUG_ON(!eb.lut_size);
3382 
3383 	err = eb_select_context(&eb);
3384 	if (unlikely(err))
3385 		goto err_destroy;
3386 
3387 	err = eb_select_engine(&eb);
3388 	if (unlikely(err))
3389 		goto err_context;
3390 
3391 	err = eb_lookup_vmas(&eb);
3392 	if (err) {
3393 		eb_release_vmas(&eb, true);
3394 		goto err_engine;
3395 	}
3396 
3397 	i915_gem_ww_ctx_init(&eb.ww, true);
3398 
3399 	err = eb_relocate_parse(&eb);
3400 	if (err) {
3401 		/*
3402 		 * If the user expects the execobject.offset and
3403 		 * reloc.presumed_offset to be an exact match,
3404 		 * as for using NO_RELOC, then we cannot update
3405 		 * the execobject.offset until we have completed
3406 		 * relocation.
3407 		 */
3408 		args->flags &= ~__EXEC_HAS_RELOC;
3409 		goto err_vma;
3410 	}
3411 
3412 	ww_acquire_done(&eb.ww.ctx);
3413 	eb_capture_stage(&eb);
3414 
3415 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3416 	if (IS_ERR(out_fence)) {
3417 		err = PTR_ERR(out_fence);
3418 		out_fence = NULL;
3419 		if (eb.requests[0])
3420 			goto err_request;
3421 		else
3422 			goto err_vma;
3423 	}
3424 
3425 	err = eb_submit(&eb);
3426 
3427 err_request:
3428 	eb_requests_get(&eb);
3429 	err = eb_requests_add(&eb, err);
3430 
3431 	if (eb.fences)
3432 		signal_fence_array(&eb, eb.composite_fence ?
3433 				   eb.composite_fence :
3434 				   &eb.requests[0]->fence);
3435 
3436 	if (out_fence) {
3437 		if (err == 0) {
3438 			fd_install(out_fence_fd, out_fence->file);
3439 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3440 			args->rsvd2 |= (u64)out_fence_fd << 32;
3441 			out_fence_fd = -1;
3442 		} else {
3443 			fput(out_fence->file);
3444 		}
3445 	}
3446 
3447 	if (unlikely(eb.gem_context->syncobj)) {
3448 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3449 					  eb.composite_fence ?
3450 					  eb.composite_fence :
3451 					  &eb.requests[0]->fence);
3452 	}
3453 
3454 	if (!out_fence && eb.composite_fence)
3455 		dma_fence_put(eb.composite_fence);
3456 
3457 	eb_requests_put(&eb);
3458 
3459 err_vma:
3460 	eb_release_vmas(&eb, true);
3461 	WARN_ON(err == -EDEADLK);
3462 	i915_gem_ww_ctx_fini(&eb.ww);
3463 
3464 	if (eb.batch_pool)
3465 		intel_gt_buffer_pool_put(eb.batch_pool);
3466 err_engine:
3467 	eb_put_engine(&eb);
3468 err_context:
3469 	i915_gem_context_put(eb.gem_context);
3470 err_destroy:
3471 	eb_destroy(&eb);
3472 err_out_fence:
3473 	if (out_fence_fd != -1)
3474 		put_unused_fd(out_fence_fd);
3475 err_in_fence:
3476 	dma_fence_put(in_fence);
3477 err_ext:
3478 	put_fence_array(eb.fences, eb.num_fences);
3479 	return err;
3480 }
3481 
3482 static size_t eb_element_size(void)
3483 {
3484 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3485 }
3486 
3487 static bool check_buffer_count(size_t count)
3488 {
3489 	const size_t sz = eb_element_size();
3490 
3491 	/*
3492 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3493 	 * array size (see eb_create()). Otherwise, we can accept an array as
3494 	 * large as can be addressed (though use large arrays at your peril)!
3495 	 */
3496 
3497 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3498 }
3499 
3500 int
3501 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3502 			   struct drm_file *file)
3503 {
3504 	struct drm_i915_private *i915 = to_i915(dev);
3505 	struct drm_i915_gem_execbuffer2 *args = data;
3506 	struct drm_i915_gem_exec_object2 *exec2_list;
3507 	const size_t count = args->buffer_count;
3508 	int err;
3509 
3510 	if (!check_buffer_count(count)) {
3511 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3512 		return -EINVAL;
3513 	}
3514 
3515 	err = i915_gem_check_execbuffer(args);
3516 	if (err)
3517 		return err;
3518 
3519 	/* Allocate extra slots for use by the command parser */
3520 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3521 				    __GFP_NOWARN | GFP_KERNEL);
3522 	if (exec2_list == NULL) {
3523 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3524 			count);
3525 		return -ENOMEM;
3526 	}
3527 	if (copy_from_user(exec2_list,
3528 			   u64_to_user_ptr(args->buffers_ptr),
3529 			   sizeof(*exec2_list) * count)) {
3530 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3531 		kvfree(exec2_list);
3532 		return -EFAULT;
3533 	}
3534 
3535 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3536 
3537 	/*
3538 	 * Now that we have begun execution of the batchbuffer, we ignore
3539 	 * any new error after this point. Also given that we have already
3540 	 * updated the associated relocations, we try to write out the current
3541 	 * object locations irrespective of any error.
3542 	 */
3543 	if (args->flags & __EXEC_HAS_RELOC) {
3544 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3545 			u64_to_user_ptr(args->buffers_ptr);
3546 		unsigned int i;
3547 
3548 		/* Copy the new buffer offsets back to the user's exec list. */
3549 		/*
3550 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3551 		 * because we checked 'count' in check_buffer_count().
3552 		 *
3553 		 * And this range already got effectively checked earlier
3554 		 * when we did the "copy_from_user()" above.
3555 		 */
3556 		if (!user_write_access_begin(user_exec_list,
3557 					     count * sizeof(*user_exec_list)))
3558 			goto end;
3559 
3560 		for (i = 0; i < args->buffer_count; i++) {
3561 			if (!(exec2_list[i].offset & UPDATE))
3562 				continue;
3563 
3564 			exec2_list[i].offset =
3565 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3566 			unsafe_put_user(exec2_list[i].offset,
3567 					&user_exec_list[i].offset,
3568 					end_user);
3569 		}
3570 end_user:
3571 		user_write_access_end();
3572 end:;
3573 	}
3574 
3575 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3576 	kvfree(exec2_list);
3577 	return err;
3578 }
3579