1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gt.h" 19 #include "gt/intel_gt_buffer_pool.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_ring.h" 22 23 #include "i915_drv.h" 24 #include "i915_gem_clflush.h" 25 #include "i915_gem_context.h" 26 #include "i915_gem_ioctls.h" 27 #include "i915_sw_fence_work.h" 28 #include "i915_trace.h" 29 30 struct eb_vma { 31 struct i915_vma *vma; 32 unsigned int flags; 33 34 /** This vma's place in the execbuf reservation list */ 35 struct drm_i915_gem_exec_object2 *exec; 36 struct list_head bind_link; 37 struct list_head reloc_link; 38 39 struct hlist_node node; 40 u32 handle; 41 }; 42 43 struct eb_vma_array { 44 struct kref kref; 45 struct eb_vma vma[]; 46 }; 47 48 enum { 49 FORCE_CPU_RELOC = 1, 50 FORCE_GTT_RELOC, 51 FORCE_GPU_RELOC, 52 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 53 }; 54 55 #define __EXEC_OBJECT_HAS_PIN BIT(31) 56 #define __EXEC_OBJECT_HAS_FENCE BIT(30) 57 #define __EXEC_OBJECT_NEEDS_MAP BIT(29) 58 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) 59 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ 60 61 #define __EXEC_HAS_RELOC BIT(31) 62 #define __EXEC_INTERNAL_FLAGS (~0u << 31) 63 #define UPDATE PIN_OFFSET_FIXED 64 65 #define BATCH_OFFSET_BIAS (256*1024) 66 67 #define __I915_EXEC_ILLEGAL_FLAGS \ 68 (__I915_EXEC_UNKNOWN_FLAGS | \ 69 I915_EXEC_CONSTANTS_MASK | \ 70 I915_EXEC_RESOURCE_STREAMER) 71 72 /* Catch emission of unexpected errors for CI! */ 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 74 #undef EINVAL 75 #define EINVAL ({ \ 76 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 77 22; \ 78 }) 79 #endif 80 81 /** 82 * DOC: User command execution 83 * 84 * Userspace submits commands to be executed on the GPU as an instruction 85 * stream within a GEM object we call a batchbuffer. This instructions may 86 * refer to other GEM objects containing auxiliary state such as kernels, 87 * samplers, render targets and even secondary batchbuffers. Userspace does 88 * not know where in the GPU memory these objects reside and so before the 89 * batchbuffer is passed to the GPU for execution, those addresses in the 90 * batchbuffer and auxiliary objects are updated. This is known as relocation, 91 * or patching. To try and avoid having to relocate each object on the next 92 * execution, userspace is told the location of those objects in this pass, 93 * but this remains just a hint as the kernel may choose a new location for 94 * any object in the future. 95 * 96 * At the level of talking to the hardware, submitting a batchbuffer for the 97 * GPU to execute is to add content to a buffer from which the HW 98 * command streamer is reading. 99 * 100 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 101 * Execlists, this command is not placed on the same buffer as the 102 * remaining items. 103 * 104 * 2. Add a command to invalidate caches to the buffer. 105 * 106 * 3. Add a batchbuffer start command to the buffer; the start command is 107 * essentially a token together with the GPU address of the batchbuffer 108 * to be executed. 109 * 110 * 4. Add a pipeline flush to the buffer. 111 * 112 * 5. Add a memory write command to the buffer to record when the GPU 113 * is done executing the batchbuffer. The memory write writes the 114 * global sequence number of the request, ``i915_request::global_seqno``; 115 * the i915 driver uses the current value in the register to determine 116 * if the GPU has completed the batchbuffer. 117 * 118 * 6. Add a user interrupt command to the buffer. This command instructs 119 * the GPU to issue an interrupt when the command, pipeline flush and 120 * memory write are completed. 121 * 122 * 7. Inform the hardware of the additional commands added to the buffer 123 * (by updating the tail pointer). 124 * 125 * Processing an execbuf ioctl is conceptually split up into a few phases. 126 * 127 * 1. Validation - Ensure all the pointers, handles and flags are valid. 128 * 2. Reservation - Assign GPU address space for every object 129 * 3. Relocation - Update any addresses to point to the final locations 130 * 4. Serialisation - Order the request with respect to its dependencies 131 * 5. Construction - Construct a request to execute the batchbuffer 132 * 6. Submission (at some point in the future execution) 133 * 134 * Reserving resources for the execbuf is the most complicated phase. We 135 * neither want to have to migrate the object in the address space, nor do 136 * we want to have to update any relocations pointing to this object. Ideally, 137 * we want to leave the object where it is and for all the existing relocations 138 * to match. If the object is given a new address, or if userspace thinks the 139 * object is elsewhere, we have to parse all the relocation entries and update 140 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 141 * all the target addresses in all of its objects match the value in the 142 * relocation entries and that they all match the presumed offsets given by the 143 * list of execbuffer objects. Using this knowledge, we know that if we haven't 144 * moved any buffers, all the relocation entries are valid and we can skip 145 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 146 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 147 * 148 * The addresses written in the objects must match the corresponding 149 * reloc.presumed_offset which in turn must match the corresponding 150 * execobject.offset. 151 * 152 * Any render targets written to in the batch must be flagged with 153 * EXEC_OBJECT_WRITE. 154 * 155 * To avoid stalling, execobject.offset should match the current 156 * address of that object within the active context. 157 * 158 * The reservation is done is multiple phases. First we try and keep any 159 * object already bound in its current location - so as long as meets the 160 * constraints imposed by the new execbuffer. Any object left unbound after the 161 * first pass is then fitted into any available idle space. If an object does 162 * not fit, all objects are removed from the reservation and the process rerun 163 * after sorting the objects into a priority order (more difficult to fit 164 * objects are tried first). Failing that, the entire VM is cleared and we try 165 * to fit the execbuf once last time before concluding that it simply will not 166 * fit. 167 * 168 * A small complication to all of this is that we allow userspace not only to 169 * specify an alignment and a size for the object in the address space, but 170 * we also allow userspace to specify the exact offset. This objects are 171 * simpler to place (the location is known a priori) all we have to do is make 172 * sure the space is available. 173 * 174 * Once all the objects are in place, patching up the buried pointers to point 175 * to the final locations is a fairly simple job of walking over the relocation 176 * entry arrays, looking up the right address and rewriting the value into 177 * the object. Simple! ... The relocation entries are stored in user memory 178 * and so to access them we have to copy them into a local buffer. That copy 179 * has to avoid taking any pagefaults as they may lead back to a GEM object 180 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 181 * the relocation into multiple passes. First we try to do everything within an 182 * atomic context (avoid the pagefaults) which requires that we never wait. If 183 * we detect that we may wait, or if we need to fault, then we have to fallback 184 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 185 * bells yet?) Dropping the mutex means that we lose all the state we have 186 * built up so far for the execbuf and we must reset any global data. However, 187 * we do leave the objects pinned in their final locations - which is a 188 * potential issue for concurrent execbufs. Once we have left the mutex, we can 189 * allocate and copy all the relocation entries into a large array at our 190 * leisure, reacquire the mutex, reclaim all the objects and other state and 191 * then proceed to update any incorrect addresses with the objects. 192 * 193 * As we process the relocation entries, we maintain a record of whether the 194 * object is being written to. Using NORELOC, we expect userspace to provide 195 * this information instead. We also check whether we can skip the relocation 196 * by comparing the expected value inside the relocation entry with the target's 197 * final address. If they differ, we have to map the current object and rewrite 198 * the 4 or 8 byte pointer within. 199 * 200 * Serialising an execbuf is quite simple according to the rules of the GEM 201 * ABI. Execution within each context is ordered by the order of submission. 202 * Writes to any GEM object are in order of submission and are exclusive. Reads 203 * from a GEM object are unordered with respect to other reads, but ordered by 204 * writes. A write submitted after a read cannot occur before the read, and 205 * similarly any read submitted after a write cannot occur before the write. 206 * Writes are ordered between engines such that only one write occurs at any 207 * time (completing any reads beforehand) - using semaphores where available 208 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 209 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 210 * reads before starting, and any read (either using set-domain or pread) must 211 * flush all GPU writes before starting. (Note we only employ a barrier before, 212 * we currently rely on userspace not concurrently starting a new execution 213 * whilst reading or writing to an object. This may be an advantage or not 214 * depending on how much you trust userspace not to shoot themselves in the 215 * foot.) Serialisation may just result in the request being inserted into 216 * a DAG awaiting its turn, but most simple is to wait on the CPU until 217 * all dependencies are resolved. 218 * 219 * After all of that, is just a matter of closing the request and handing it to 220 * the hardware (well, leaving it in a queue to be executed). However, we also 221 * offer the ability for batchbuffers to be run with elevated privileges so 222 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 223 * Before any batch is given extra privileges we first must check that it 224 * contains no nefarious instructions, we check that each instruction is from 225 * our whitelist and all registers are also from an allowed list. We first 226 * copy the user's batchbuffer to a shadow (so that the user doesn't have 227 * access to it, either by the CPU or GPU as we scan it) and then parse each 228 * instruction. If everything is ok, we set a flag telling the hardware to run 229 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 230 */ 231 232 struct i915_execbuffer { 233 struct drm_i915_private *i915; /** i915 backpointer */ 234 struct drm_file *file; /** per-file lookup tables and limits */ 235 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 236 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 237 struct eb_vma *vma; 238 239 struct intel_engine_cs *engine; /** engine to queue the request to */ 240 struct intel_context *context; /* logical state for the request */ 241 struct i915_gem_context *gem_context; /** caller's context */ 242 243 struct i915_request *request; /** our request to build */ 244 struct eb_vma *batch; /** identity of the batch obj/vma */ 245 struct i915_vma *trampoline; /** trampoline used for chaining */ 246 247 /** actual size of execobj[] as we may extend it for the cmdparser */ 248 unsigned int buffer_count; 249 250 /** list of vma not yet bound during reservation phase */ 251 struct list_head unbound; 252 253 /** list of vma that have execobj.relocation_count */ 254 struct list_head relocs; 255 256 /** 257 * Track the most recently used object for relocations, as we 258 * frequently have to perform multiple relocations within the same 259 * obj/page 260 */ 261 struct reloc_cache { 262 struct drm_mm_node node; /** temporary GTT binding */ 263 unsigned long vaddr; /** Current kmap address */ 264 unsigned long page; /** Currently mapped page index */ 265 unsigned int gen; /** Cached value of INTEL_GEN */ 266 bool use_64bit_reloc : 1; 267 bool has_llc : 1; 268 bool has_fence : 1; 269 bool needs_unfenced : 1; 270 271 struct i915_vma *target; 272 struct i915_request *rq; 273 struct i915_vma *rq_vma; 274 u32 *rq_cmd; 275 unsigned int rq_size; 276 } reloc_cache; 277 278 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 279 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 280 281 u32 batch_start_offset; /** Location within object of batch */ 282 u32 batch_len; /** Length of batch within object */ 283 u32 batch_flags; /** Flags composed for emit_bb_start() */ 284 285 /** 286 * Indicate either the size of the hastable used to resolve 287 * relocation handles, or if negative that we are using a direct 288 * index into the execobj[]. 289 */ 290 int lut_size; 291 struct hlist_head *buckets; /** ht for relocation handles */ 292 struct eb_vma_array *array; 293 }; 294 295 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 296 { 297 return intel_engine_requires_cmd_parser(eb->engine) || 298 (intel_engine_using_cmd_parser(eb->engine) && 299 eb->args->batch_len); 300 } 301 302 static struct eb_vma_array *eb_vma_array_create(unsigned int count) 303 { 304 struct eb_vma_array *arr; 305 306 arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN); 307 if (!arr) 308 return NULL; 309 310 kref_init(&arr->kref); 311 arr->vma[0].vma = NULL; 312 313 return arr; 314 } 315 316 static inline void eb_unreserve_vma(struct eb_vma *ev) 317 { 318 struct i915_vma *vma = ev->vma; 319 320 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 321 __i915_vma_unpin_fence(vma); 322 323 if (ev->flags & __EXEC_OBJECT_HAS_PIN) 324 __i915_vma_unpin(vma); 325 326 ev->flags &= ~(__EXEC_OBJECT_HAS_PIN | 327 __EXEC_OBJECT_HAS_FENCE); 328 } 329 330 static void eb_vma_array_destroy(struct kref *kref) 331 { 332 struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref); 333 struct eb_vma *ev = arr->vma; 334 335 while (ev->vma) { 336 eb_unreserve_vma(ev); 337 i915_vma_put(ev->vma); 338 ev++; 339 } 340 341 kvfree(arr); 342 } 343 344 static void eb_vma_array_put(struct eb_vma_array *arr) 345 { 346 kref_put(&arr->kref, eb_vma_array_destroy); 347 } 348 349 static int eb_create(struct i915_execbuffer *eb) 350 { 351 /* Allocate an extra slot for use by the command parser + sentinel */ 352 eb->array = eb_vma_array_create(eb->buffer_count + 2); 353 if (!eb->array) 354 return -ENOMEM; 355 356 eb->vma = eb->array->vma; 357 358 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 359 unsigned int size = 1 + ilog2(eb->buffer_count); 360 361 /* 362 * Without a 1:1 association between relocation handles and 363 * the execobject[] index, we instead create a hashtable. 364 * We size it dynamically based on available memory, starting 365 * first with 1:1 assocative hash and scaling back until 366 * the allocation succeeds. 367 * 368 * Later on we use a positive lut_size to indicate we are 369 * using this hashtable, and a negative value to indicate a 370 * direct lookup. 371 */ 372 do { 373 gfp_t flags; 374 375 /* While we can still reduce the allocation size, don't 376 * raise a warning and allow the allocation to fail. 377 * On the last pass though, we want to try as hard 378 * as possible to perform the allocation and warn 379 * if it fails. 380 */ 381 flags = GFP_KERNEL; 382 if (size > 1) 383 flags |= __GFP_NORETRY | __GFP_NOWARN; 384 385 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 386 flags); 387 if (eb->buckets) 388 break; 389 } while (--size); 390 391 if (unlikely(!size)) { 392 eb_vma_array_put(eb->array); 393 return -ENOMEM; 394 } 395 396 eb->lut_size = size; 397 } else { 398 eb->lut_size = -eb->buffer_count; 399 } 400 401 return 0; 402 } 403 404 static bool 405 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 406 const struct i915_vma *vma, 407 unsigned int flags) 408 { 409 if (vma->node.size < entry->pad_to_size) 410 return true; 411 412 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 413 return true; 414 415 if (flags & EXEC_OBJECT_PINNED && 416 vma->node.start != entry->offset) 417 return true; 418 419 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 420 vma->node.start < BATCH_OFFSET_BIAS) 421 return true; 422 423 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 424 (vma->node.start + vma->node.size - 1) >> 32) 425 return true; 426 427 if (flags & __EXEC_OBJECT_NEEDS_MAP && 428 !i915_vma_is_map_and_fenceable(vma)) 429 return true; 430 431 return false; 432 } 433 434 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 435 unsigned int exec_flags) 436 { 437 u64 pin_flags = 0; 438 439 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 440 pin_flags |= PIN_GLOBAL; 441 442 /* 443 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 444 * limit address to the first 4GBs for unflagged objects. 445 */ 446 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 447 pin_flags |= PIN_ZONE_4G; 448 449 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 450 pin_flags |= PIN_MAPPABLE; 451 452 if (exec_flags & EXEC_OBJECT_PINNED) 453 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 454 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 455 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 456 457 return pin_flags; 458 } 459 460 static inline bool 461 eb_pin_vma(struct i915_execbuffer *eb, 462 const struct drm_i915_gem_exec_object2 *entry, 463 struct eb_vma *ev) 464 { 465 struct i915_vma *vma = ev->vma; 466 u64 pin_flags; 467 468 if (vma->node.size) 469 pin_flags = vma->node.start; 470 else 471 pin_flags = entry->offset & PIN_OFFSET_MASK; 472 473 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 475 pin_flags |= PIN_GLOBAL; 476 477 /* Attempt to reuse the current location if available */ 478 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) { 479 if (entry->flags & EXEC_OBJECT_PINNED) 480 return false; 481 482 /* Failing that pick any _free_ space if suitable */ 483 if (unlikely(i915_vma_pin(vma, 484 entry->pad_to_size, 485 entry->alignment, 486 eb_pin_flags(entry, ev->flags) | 487 PIN_USER | PIN_NOEVICT))) 488 return false; 489 } 490 491 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 492 if (unlikely(i915_vma_pin_fence(vma))) { 493 i915_vma_unpin(vma); 494 return false; 495 } 496 497 if (vma->fence) 498 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 499 } 500 501 ev->flags |= __EXEC_OBJECT_HAS_PIN; 502 return !eb_vma_misplaced(entry, vma, ev->flags); 503 } 504 505 static int 506 eb_validate_vma(struct i915_execbuffer *eb, 507 struct drm_i915_gem_exec_object2 *entry, 508 struct i915_vma *vma) 509 { 510 if (unlikely(entry->flags & eb->invalid_flags)) 511 return -EINVAL; 512 513 if (unlikely(entry->alignment && 514 !is_power_of_2_u64(entry->alignment))) 515 return -EINVAL; 516 517 /* 518 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 519 * any non-page-aligned or non-canonical addresses. 520 */ 521 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 522 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 523 return -EINVAL; 524 525 /* pad_to_size was once a reserved field, so sanitize it */ 526 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 527 if (unlikely(offset_in_page(entry->pad_to_size))) 528 return -EINVAL; 529 } else { 530 entry->pad_to_size = 0; 531 } 532 /* 533 * From drm_mm perspective address space is continuous, 534 * so from this point we're always using non-canonical 535 * form internally. 536 */ 537 entry->offset = gen8_noncanonical_addr(entry->offset); 538 539 if (!eb->reloc_cache.has_fence) { 540 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 541 } else { 542 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 543 eb->reloc_cache.needs_unfenced) && 544 i915_gem_object_is_tiled(vma->obj)) 545 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 546 } 547 548 if (!(entry->flags & EXEC_OBJECT_PINNED)) 549 entry->flags |= eb->context_flags; 550 551 return 0; 552 } 553 554 static void 555 eb_add_vma(struct i915_execbuffer *eb, 556 unsigned int i, unsigned batch_idx, 557 struct i915_vma *vma) 558 { 559 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 560 struct eb_vma *ev = &eb->vma[i]; 561 562 GEM_BUG_ON(i915_vma_is_closed(vma)); 563 564 ev->vma = vma; 565 ev->exec = entry; 566 ev->flags = entry->flags; 567 568 if (eb->lut_size > 0) { 569 ev->handle = entry->handle; 570 hlist_add_head(&ev->node, 571 &eb->buckets[hash_32(entry->handle, 572 eb->lut_size)]); 573 } 574 575 if (entry->relocation_count) 576 list_add_tail(&ev->reloc_link, &eb->relocs); 577 578 /* 579 * SNA is doing fancy tricks with compressing batch buffers, which leads 580 * to negative relocation deltas. Usually that works out ok since the 581 * relocate address is still positive, except when the batch is placed 582 * very low in the GTT. Ensure this doesn't happen. 583 * 584 * Note that actual hangs have only been observed on gen7, but for 585 * paranoia do it everywhere. 586 */ 587 if (i == batch_idx) { 588 if (entry->relocation_count && 589 !(ev->flags & EXEC_OBJECT_PINNED)) 590 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 591 if (eb->reloc_cache.has_fence) 592 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 593 594 eb->batch = ev; 595 } 596 597 if (eb_pin_vma(eb, entry, ev)) { 598 if (entry->offset != vma->node.start) { 599 entry->offset = vma->node.start | UPDATE; 600 eb->args->flags |= __EXEC_HAS_RELOC; 601 } 602 } else { 603 eb_unreserve_vma(ev); 604 list_add_tail(&ev->bind_link, &eb->unbound); 605 } 606 } 607 608 static inline int use_cpu_reloc(const struct reloc_cache *cache, 609 const struct drm_i915_gem_object *obj) 610 { 611 if (!i915_gem_object_has_struct_page(obj)) 612 return false; 613 614 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 615 return true; 616 617 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 618 return false; 619 620 return (cache->has_llc || 621 obj->cache_dirty || 622 obj->cache_level != I915_CACHE_NONE); 623 } 624 625 static int eb_reserve_vma(const struct i915_execbuffer *eb, 626 struct eb_vma *ev, 627 u64 pin_flags) 628 { 629 struct drm_i915_gem_exec_object2 *entry = ev->exec; 630 struct i915_vma *vma = ev->vma; 631 int err; 632 633 if (drm_mm_node_allocated(&vma->node) && 634 eb_vma_misplaced(entry, vma, ev->flags)) { 635 err = i915_vma_unbind(vma); 636 if (err) 637 return err; 638 } 639 640 err = i915_vma_pin(vma, 641 entry->pad_to_size, entry->alignment, 642 eb_pin_flags(entry, ev->flags) | pin_flags); 643 if (err) 644 return err; 645 646 if (entry->offset != vma->node.start) { 647 entry->offset = vma->node.start | UPDATE; 648 eb->args->flags |= __EXEC_HAS_RELOC; 649 } 650 651 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 652 err = i915_vma_pin_fence(vma); 653 if (unlikely(err)) { 654 i915_vma_unpin(vma); 655 return err; 656 } 657 658 if (vma->fence) 659 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 660 } 661 662 ev->flags |= __EXEC_OBJECT_HAS_PIN; 663 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 664 665 return 0; 666 } 667 668 static int eb_reserve(struct i915_execbuffer *eb) 669 { 670 const unsigned int count = eb->buffer_count; 671 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 672 struct list_head last; 673 struct eb_vma *ev; 674 unsigned int i, pass; 675 int err = 0; 676 677 /* 678 * Attempt to pin all of the buffers into the GTT. 679 * This is done in 3 phases: 680 * 681 * 1a. Unbind all objects that do not match the GTT constraints for 682 * the execbuffer (fenceable, mappable, alignment etc). 683 * 1b. Increment pin count for already bound objects. 684 * 2. Bind new objects. 685 * 3. Decrement pin count. 686 * 687 * This avoid unnecessary unbinding of later objects in order to make 688 * room for the earlier objects *unless* we need to defragment. 689 */ 690 691 if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex)) 692 return -EINTR; 693 694 pass = 0; 695 do { 696 list_for_each_entry(ev, &eb->unbound, bind_link) { 697 err = eb_reserve_vma(eb, ev, pin_flags); 698 if (err) 699 break; 700 } 701 if (!(err == -ENOSPC || err == -EAGAIN)) 702 break; 703 704 /* Resort *all* the objects into priority order */ 705 INIT_LIST_HEAD(&eb->unbound); 706 INIT_LIST_HEAD(&last); 707 for (i = 0; i < count; i++) { 708 unsigned int flags; 709 710 ev = &eb->vma[i]; 711 flags = ev->flags; 712 if (flags & EXEC_OBJECT_PINNED && 713 flags & __EXEC_OBJECT_HAS_PIN) 714 continue; 715 716 eb_unreserve_vma(ev); 717 718 if (flags & EXEC_OBJECT_PINNED) 719 /* Pinned must have their slot */ 720 list_add(&ev->bind_link, &eb->unbound); 721 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 722 /* Map require the lowest 256MiB (aperture) */ 723 list_add_tail(&ev->bind_link, &eb->unbound); 724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 725 /* Prioritise 4GiB region for restricted bo */ 726 list_add(&ev->bind_link, &last); 727 else 728 list_add_tail(&ev->bind_link, &last); 729 } 730 list_splice_tail(&last, &eb->unbound); 731 732 if (err == -EAGAIN) { 733 mutex_unlock(&eb->i915->drm.struct_mutex); 734 flush_workqueue(eb->i915->mm.userptr_wq); 735 mutex_lock(&eb->i915->drm.struct_mutex); 736 continue; 737 } 738 739 switch (pass++) { 740 case 0: 741 break; 742 743 case 1: 744 /* Too fragmented, unbind everything and retry */ 745 mutex_lock(&eb->context->vm->mutex); 746 err = i915_gem_evict_vm(eb->context->vm); 747 mutex_unlock(&eb->context->vm->mutex); 748 if (err) 749 goto unlock; 750 break; 751 752 default: 753 err = -ENOSPC; 754 goto unlock; 755 } 756 757 pin_flags = PIN_USER; 758 } while (1); 759 760 unlock: 761 mutex_unlock(&eb->i915->drm.struct_mutex); 762 return err; 763 } 764 765 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 766 { 767 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 768 return 0; 769 else 770 return eb->buffer_count - 1; 771 } 772 773 static int eb_select_context(struct i915_execbuffer *eb) 774 { 775 struct i915_gem_context *ctx; 776 777 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 778 if (unlikely(!ctx)) 779 return -ENOENT; 780 781 eb->gem_context = ctx; 782 if (rcu_access_pointer(ctx->vm)) 783 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 784 785 eb->context_flags = 0; 786 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 787 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 788 789 return 0; 790 } 791 792 static int __eb_add_lut(struct i915_execbuffer *eb, 793 u32 handle, struct i915_vma *vma) 794 { 795 struct i915_gem_context *ctx = eb->gem_context; 796 struct i915_lut_handle *lut; 797 int err; 798 799 lut = i915_lut_handle_alloc(); 800 if (unlikely(!lut)) 801 return -ENOMEM; 802 803 i915_vma_get(vma); 804 if (!atomic_fetch_inc(&vma->open_count)) 805 i915_vma_reopen(vma); 806 lut->handle = handle; 807 lut->ctx = ctx; 808 809 /* Check that the context hasn't been closed in the meantime */ 810 err = -EINTR; 811 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 812 struct i915_address_space *vm = rcu_access_pointer(ctx->vm); 813 814 if (unlikely(vm && vma->vm != vm)) 815 err = -EAGAIN; /* user racing with ctx set-vm */ 816 else if (likely(!i915_gem_context_is_closed(ctx))) 817 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 818 else 819 err = -ENOENT; 820 if (err == 0) { /* And nor has this handle */ 821 struct drm_i915_gem_object *obj = vma->obj; 822 823 spin_lock(&obj->lut_lock); 824 if (idr_find(&eb->file->object_idr, handle) == obj) { 825 list_add(&lut->obj_link, &obj->lut_list); 826 } else { 827 radix_tree_delete(&ctx->handles_vma, handle); 828 err = -ENOENT; 829 } 830 spin_unlock(&obj->lut_lock); 831 } 832 mutex_unlock(&ctx->lut_mutex); 833 } 834 if (unlikely(err)) 835 goto err; 836 837 return 0; 838 839 err: 840 i915_vma_close(vma); 841 i915_vma_put(vma); 842 i915_lut_handle_free(lut); 843 return err; 844 } 845 846 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 847 { 848 struct i915_address_space *vm = eb->context->vm; 849 850 do { 851 struct drm_i915_gem_object *obj; 852 struct i915_vma *vma; 853 int err; 854 855 rcu_read_lock(); 856 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 857 if (likely(vma && vma->vm == vm)) 858 vma = i915_vma_tryget(vma); 859 rcu_read_unlock(); 860 if (likely(vma)) 861 return vma; 862 863 obj = i915_gem_object_lookup(eb->file, handle); 864 if (unlikely(!obj)) 865 return ERR_PTR(-ENOENT); 866 867 vma = i915_vma_instance(obj, vm, NULL); 868 if (IS_ERR(vma)) { 869 i915_gem_object_put(obj); 870 return vma; 871 } 872 873 err = __eb_add_lut(eb, handle, vma); 874 if (likely(!err)) 875 return vma; 876 877 i915_gem_object_put(obj); 878 if (err != -EEXIST) 879 return ERR_PTR(err); 880 } while (1); 881 } 882 883 static int eb_lookup_vmas(struct i915_execbuffer *eb) 884 { 885 unsigned int batch = eb_batch_index(eb); 886 unsigned int i; 887 int err = 0; 888 889 INIT_LIST_HEAD(&eb->relocs); 890 INIT_LIST_HEAD(&eb->unbound); 891 892 for (i = 0; i < eb->buffer_count; i++) { 893 struct i915_vma *vma; 894 895 vma = eb_lookup_vma(eb, eb->exec[i].handle); 896 if (IS_ERR(vma)) { 897 err = PTR_ERR(vma); 898 break; 899 } 900 901 err = eb_validate_vma(eb, &eb->exec[i], vma); 902 if (unlikely(err)) { 903 i915_vma_put(vma); 904 break; 905 } 906 907 eb_add_vma(eb, i, batch, vma); 908 } 909 910 eb->vma[i].vma = NULL; 911 return err; 912 } 913 914 static struct eb_vma * 915 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 916 { 917 if (eb->lut_size < 0) { 918 if (handle >= -eb->lut_size) 919 return NULL; 920 return &eb->vma[handle]; 921 } else { 922 struct hlist_head *head; 923 struct eb_vma *ev; 924 925 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 926 hlist_for_each_entry(ev, head, node) { 927 if (ev->handle == handle) 928 return ev; 929 } 930 return NULL; 931 } 932 } 933 934 static void eb_destroy(const struct i915_execbuffer *eb) 935 { 936 GEM_BUG_ON(eb->reloc_cache.rq); 937 938 if (eb->array) 939 eb_vma_array_put(eb->array); 940 941 if (eb->lut_size > 0) 942 kfree(eb->buckets); 943 } 944 945 static inline u64 946 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 947 const struct i915_vma *target) 948 { 949 return gen8_canonical_addr((int)reloc->delta + target->node.start); 950 } 951 952 static void reloc_cache_init(struct reloc_cache *cache, 953 struct drm_i915_private *i915) 954 { 955 cache->page = -1; 956 cache->vaddr = 0; 957 /* Must be a variable in the struct to allow GCC to unroll. */ 958 cache->gen = INTEL_GEN(i915); 959 cache->has_llc = HAS_LLC(i915); 960 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 961 cache->has_fence = cache->gen < 4; 962 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 963 cache->node.flags = 0; 964 cache->rq = NULL; 965 cache->target = NULL; 966 } 967 968 static inline void *unmask_page(unsigned long p) 969 { 970 return (void *)(uintptr_t)(p & PAGE_MASK); 971 } 972 973 static inline unsigned int unmask_flags(unsigned long p) 974 { 975 return p & ~PAGE_MASK; 976 } 977 978 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 979 980 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 981 { 982 struct drm_i915_private *i915 = 983 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 984 return &i915->ggtt; 985 } 986 987 #define RELOC_TAIL 4 988 989 static int reloc_gpu_chain(struct reloc_cache *cache) 990 { 991 struct intel_gt_buffer_pool_node *pool; 992 struct i915_request *rq = cache->rq; 993 struct i915_vma *batch; 994 u32 *cmd; 995 int err; 996 997 pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE); 998 if (IS_ERR(pool)) 999 return PTR_ERR(pool); 1000 1001 batch = i915_vma_instance(pool->obj, rq->context->vm, NULL); 1002 if (IS_ERR(batch)) { 1003 err = PTR_ERR(batch); 1004 goto out_pool; 1005 } 1006 1007 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1008 if (err) 1009 goto out_pool; 1010 1011 GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE / sizeof(u32)); 1012 cmd = cache->rq_cmd + cache->rq_size; 1013 *cmd++ = MI_ARB_CHECK; 1014 if (cache->gen >= 8) 1015 *cmd++ = MI_BATCH_BUFFER_START_GEN8; 1016 else if (cache->gen >= 6) 1017 *cmd++ = MI_BATCH_BUFFER_START; 1018 else 1019 *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; 1020 *cmd++ = lower_32_bits(batch->node.start); 1021 *cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */ 1022 i915_gem_object_flush_map(cache->rq_vma->obj); 1023 i915_gem_object_unpin_map(cache->rq_vma->obj); 1024 cache->rq_vma = NULL; 1025 1026 err = intel_gt_buffer_pool_mark_active(pool, rq); 1027 if (err == 0) { 1028 i915_vma_lock(batch); 1029 err = i915_request_await_object(rq, batch->obj, false); 1030 if (err == 0) 1031 err = i915_vma_move_to_active(batch, rq, 0); 1032 i915_vma_unlock(batch); 1033 } 1034 i915_vma_unpin(batch); 1035 if (err) 1036 goto out_pool; 1037 1038 cmd = i915_gem_object_pin_map(batch->obj, 1039 cache->has_llc ? 1040 I915_MAP_FORCE_WB : 1041 I915_MAP_FORCE_WC); 1042 if (IS_ERR(cmd)) { 1043 err = PTR_ERR(cmd); 1044 goto out_pool; 1045 } 1046 1047 /* Return with batch mapping (cmd) still pinned */ 1048 cache->rq_cmd = cmd; 1049 cache->rq_size = 0; 1050 cache->rq_vma = batch; 1051 1052 out_pool: 1053 intel_gt_buffer_pool_put(pool); 1054 return err; 1055 } 1056 1057 static unsigned int reloc_bb_flags(const struct reloc_cache *cache) 1058 { 1059 return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE; 1060 } 1061 1062 static int reloc_gpu_flush(struct reloc_cache *cache) 1063 { 1064 struct i915_request *rq; 1065 int err; 1066 1067 rq = fetch_and_zero(&cache->rq); 1068 if (!rq) 1069 return 0; 1070 1071 if (cache->rq_vma) { 1072 struct drm_i915_gem_object *obj = cache->rq_vma->obj; 1073 1074 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); 1075 cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END; 1076 1077 __i915_gem_object_flush_map(obj, 1078 0, sizeof(u32) * cache->rq_size); 1079 i915_gem_object_unpin_map(obj); 1080 } 1081 1082 err = 0; 1083 if (rq->engine->emit_init_breadcrumb) 1084 err = rq->engine->emit_init_breadcrumb(rq); 1085 if (!err) 1086 err = rq->engine->emit_bb_start(rq, 1087 rq->batch->node.start, 1088 PAGE_SIZE, 1089 reloc_bb_flags(cache)); 1090 if (err) 1091 i915_request_set_error_once(rq, err); 1092 1093 intel_gt_chipset_flush(rq->engine->gt); 1094 i915_request_add(rq); 1095 1096 return err; 1097 } 1098 1099 static void reloc_cache_reset(struct reloc_cache *cache) 1100 { 1101 void *vaddr; 1102 1103 if (!cache->vaddr) 1104 return; 1105 1106 vaddr = unmask_page(cache->vaddr); 1107 if (cache->vaddr & KMAP) { 1108 if (cache->vaddr & CLFLUSH_AFTER) 1109 mb(); 1110 1111 kunmap_atomic(vaddr); 1112 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 1113 } else { 1114 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1115 1116 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1117 io_mapping_unmap_atomic((void __iomem *)vaddr); 1118 1119 if (drm_mm_node_allocated(&cache->node)) { 1120 ggtt->vm.clear_range(&ggtt->vm, 1121 cache->node.start, 1122 cache->node.size); 1123 mutex_lock(&ggtt->vm.mutex); 1124 drm_mm_remove_node(&cache->node); 1125 mutex_unlock(&ggtt->vm.mutex); 1126 } else { 1127 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1128 } 1129 } 1130 1131 cache->vaddr = 0; 1132 cache->page = -1; 1133 } 1134 1135 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1136 struct reloc_cache *cache, 1137 unsigned long page) 1138 { 1139 void *vaddr; 1140 1141 if (cache->vaddr) { 1142 kunmap_atomic(unmask_page(cache->vaddr)); 1143 } else { 1144 unsigned int flushes; 1145 int err; 1146 1147 err = i915_gem_object_prepare_write(obj, &flushes); 1148 if (err) 1149 return ERR_PTR(err); 1150 1151 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1152 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1153 1154 cache->vaddr = flushes | KMAP; 1155 cache->node.mm = (void *)obj; 1156 if (flushes) 1157 mb(); 1158 } 1159 1160 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 1161 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1162 cache->page = page; 1163 1164 return vaddr; 1165 } 1166 1167 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1168 struct reloc_cache *cache, 1169 unsigned long page) 1170 { 1171 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1172 unsigned long offset; 1173 void *vaddr; 1174 1175 if (cache->vaddr) { 1176 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1177 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1178 } else { 1179 struct i915_vma *vma; 1180 int err; 1181 1182 if (i915_gem_object_is_tiled(obj)) 1183 return ERR_PTR(-EINVAL); 1184 1185 if (use_cpu_reloc(cache, obj)) 1186 return NULL; 1187 1188 i915_gem_object_lock(obj); 1189 err = i915_gem_object_set_to_gtt_domain(obj, true); 1190 i915_gem_object_unlock(obj); 1191 if (err) 1192 return ERR_PTR(err); 1193 1194 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1195 PIN_MAPPABLE | 1196 PIN_NONBLOCK /* NOWARN */ | 1197 PIN_NOEVICT); 1198 if (IS_ERR(vma)) { 1199 memset(&cache->node, 0, sizeof(cache->node)); 1200 mutex_lock(&ggtt->vm.mutex); 1201 err = drm_mm_insert_node_in_range 1202 (&ggtt->vm.mm, &cache->node, 1203 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1204 0, ggtt->mappable_end, 1205 DRM_MM_INSERT_LOW); 1206 mutex_unlock(&ggtt->vm.mutex); 1207 if (err) /* no inactive aperture space, use cpu reloc */ 1208 return NULL; 1209 } else { 1210 cache->node.start = vma->node.start; 1211 cache->node.mm = (void *)vma; 1212 } 1213 } 1214 1215 offset = cache->node.start; 1216 if (drm_mm_node_allocated(&cache->node)) { 1217 ggtt->vm.insert_page(&ggtt->vm, 1218 i915_gem_object_get_dma_address(obj, page), 1219 offset, I915_CACHE_NONE, 0); 1220 } else { 1221 offset += page << PAGE_SHIFT; 1222 } 1223 1224 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1225 offset); 1226 cache->page = page; 1227 cache->vaddr = (unsigned long)vaddr; 1228 1229 return vaddr; 1230 } 1231 1232 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1233 struct reloc_cache *cache, 1234 unsigned long page) 1235 { 1236 void *vaddr; 1237 1238 if (cache->page == page) { 1239 vaddr = unmask_page(cache->vaddr); 1240 } else { 1241 vaddr = NULL; 1242 if ((cache->vaddr & KMAP) == 0) 1243 vaddr = reloc_iomap(obj, cache, page); 1244 if (!vaddr) 1245 vaddr = reloc_kmap(obj, cache, page); 1246 } 1247 1248 return vaddr; 1249 } 1250 1251 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1252 { 1253 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1254 if (flushes & CLFLUSH_BEFORE) { 1255 clflushopt(addr); 1256 mb(); 1257 } 1258 1259 *addr = value; 1260 1261 /* 1262 * Writes to the same cacheline are serialised by the CPU 1263 * (including clflush). On the write path, we only require 1264 * that it hits memory in an orderly fashion and place 1265 * mb barriers at the start and end of the relocation phase 1266 * to ensure ordering of clflush wrt to the system. 1267 */ 1268 if (flushes & CLFLUSH_AFTER) 1269 clflushopt(addr); 1270 } else 1271 *addr = value; 1272 } 1273 1274 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1275 { 1276 struct drm_i915_gem_object *obj = vma->obj; 1277 int err; 1278 1279 i915_vma_lock(vma); 1280 1281 if (obj->cache_dirty & ~obj->cache_coherent) 1282 i915_gem_clflush_object(obj, 0); 1283 obj->write_domain = 0; 1284 1285 err = i915_request_await_object(rq, vma->obj, true); 1286 if (err == 0) 1287 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1288 1289 i915_vma_unlock(vma); 1290 1291 return err; 1292 } 1293 1294 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1295 struct intel_engine_cs *engine, 1296 unsigned int len) 1297 { 1298 struct reloc_cache *cache = &eb->reloc_cache; 1299 struct intel_gt_buffer_pool_node *pool; 1300 struct i915_request *rq; 1301 struct i915_vma *batch; 1302 u32 *cmd; 1303 int err; 1304 1305 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE); 1306 if (IS_ERR(pool)) 1307 return PTR_ERR(pool); 1308 1309 cmd = i915_gem_object_pin_map(pool->obj, 1310 cache->has_llc ? 1311 I915_MAP_FORCE_WB : 1312 I915_MAP_FORCE_WC); 1313 if (IS_ERR(cmd)) { 1314 err = PTR_ERR(cmd); 1315 goto out_pool; 1316 } 1317 1318 batch = i915_vma_instance(pool->obj, eb->context->vm, NULL); 1319 if (IS_ERR(batch)) { 1320 err = PTR_ERR(batch); 1321 goto err_unmap; 1322 } 1323 1324 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1325 if (err) 1326 goto err_unmap; 1327 1328 if (engine == eb->context->engine) { 1329 rq = i915_request_create(eb->context); 1330 } else { 1331 struct intel_context *ce; 1332 1333 ce = intel_context_create(engine); 1334 if (IS_ERR(ce)) { 1335 err = PTR_ERR(ce); 1336 goto err_unpin; 1337 } 1338 1339 i915_vm_put(ce->vm); 1340 ce->vm = i915_vm_get(eb->context->vm); 1341 1342 rq = intel_context_create_request(ce); 1343 intel_context_put(ce); 1344 } 1345 if (IS_ERR(rq)) { 1346 err = PTR_ERR(rq); 1347 goto err_unpin; 1348 } 1349 1350 err = intel_gt_buffer_pool_mark_active(pool, rq); 1351 if (err) 1352 goto err_request; 1353 1354 i915_vma_lock(batch); 1355 err = i915_request_await_object(rq, batch->obj, false); 1356 if (err == 0) 1357 err = i915_vma_move_to_active(batch, rq, 0); 1358 i915_vma_unlock(batch); 1359 if (err) 1360 goto skip_request; 1361 1362 rq->batch = batch; 1363 i915_vma_unpin(batch); 1364 1365 cache->rq = rq; 1366 cache->rq_cmd = cmd; 1367 cache->rq_size = 0; 1368 cache->rq_vma = batch; 1369 1370 /* Return with batch mapping (cmd) still pinned */ 1371 goto out_pool; 1372 1373 skip_request: 1374 i915_request_set_error_once(rq, err); 1375 err_request: 1376 i915_request_add(rq); 1377 err_unpin: 1378 i915_vma_unpin(batch); 1379 err_unmap: 1380 i915_gem_object_unpin_map(pool->obj); 1381 out_pool: 1382 intel_gt_buffer_pool_put(pool); 1383 return err; 1384 } 1385 1386 static bool reloc_can_use_engine(const struct intel_engine_cs *engine) 1387 { 1388 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6); 1389 } 1390 1391 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1392 struct i915_vma *vma, 1393 unsigned int len) 1394 { 1395 struct reloc_cache *cache = &eb->reloc_cache; 1396 u32 *cmd; 1397 int err; 1398 1399 if (unlikely(!cache->rq)) { 1400 struct intel_engine_cs *engine = eb->engine; 1401 1402 if (!reloc_can_use_engine(engine)) { 1403 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0]; 1404 if (!engine) 1405 return ERR_PTR(-ENODEV); 1406 } 1407 1408 err = __reloc_gpu_alloc(eb, engine, len); 1409 if (unlikely(err)) 1410 return ERR_PTR(err); 1411 } 1412 1413 if (vma != cache->target) { 1414 err = reloc_move_to_gpu(cache->rq, vma); 1415 if (unlikely(err)) { 1416 i915_request_set_error_once(cache->rq, err); 1417 return ERR_PTR(err); 1418 } 1419 1420 cache->target = vma; 1421 } 1422 1423 if (unlikely(cache->rq_size + len > 1424 PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) { 1425 err = reloc_gpu_chain(cache); 1426 if (unlikely(err)) { 1427 i915_request_set_error_once(cache->rq, err); 1428 return ERR_PTR(err); 1429 } 1430 } 1431 1432 GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE / sizeof(u32)); 1433 cmd = cache->rq_cmd + cache->rq_size; 1434 cache->rq_size += len; 1435 1436 return cmd; 1437 } 1438 1439 static inline bool use_reloc_gpu(struct i915_vma *vma) 1440 { 1441 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) 1442 return true; 1443 1444 if (DBG_FORCE_RELOC) 1445 return false; 1446 1447 return !dma_resv_test_signaled_rcu(vma->resv, true); 1448 } 1449 1450 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset) 1451 { 1452 struct page *page; 1453 unsigned long addr; 1454 1455 GEM_BUG_ON(vma->pages != vma->obj->mm.pages); 1456 1457 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT); 1458 addr = PFN_PHYS(page_to_pfn(page)); 1459 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */ 1460 1461 return addr + offset_in_page(offset); 1462 } 1463 1464 static bool __reloc_entry_gpu(struct i915_execbuffer *eb, 1465 struct i915_vma *vma, 1466 u64 offset, 1467 u64 target_addr) 1468 { 1469 const unsigned int gen = eb->reloc_cache.gen; 1470 unsigned int len; 1471 u32 *batch; 1472 u64 addr; 1473 1474 if (gen >= 8) 1475 len = offset & 7 ? 8 : 5; 1476 else if (gen >= 4) 1477 len = 4; 1478 else 1479 len = 3; 1480 1481 batch = reloc_gpu(eb, vma, len); 1482 if (IS_ERR(batch)) 1483 return false; 1484 1485 addr = gen8_canonical_addr(vma->node.start + offset); 1486 if (gen >= 8) { 1487 if (offset & 7) { 1488 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1489 *batch++ = lower_32_bits(addr); 1490 *batch++ = upper_32_bits(addr); 1491 *batch++ = lower_32_bits(target_addr); 1492 1493 addr = gen8_canonical_addr(addr + 4); 1494 1495 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1496 *batch++ = lower_32_bits(addr); 1497 *batch++ = upper_32_bits(addr); 1498 *batch++ = upper_32_bits(target_addr); 1499 } else { 1500 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1501 *batch++ = lower_32_bits(addr); 1502 *batch++ = upper_32_bits(addr); 1503 *batch++ = lower_32_bits(target_addr); 1504 *batch++ = upper_32_bits(target_addr); 1505 } 1506 } else if (gen >= 6) { 1507 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1508 *batch++ = 0; 1509 *batch++ = addr; 1510 *batch++ = target_addr; 1511 } else if (IS_I965G(eb->i915)) { 1512 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1513 *batch++ = 0; 1514 *batch++ = vma_phys_addr(vma, offset); 1515 *batch++ = target_addr; 1516 } else if (gen >= 4) { 1517 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1518 *batch++ = 0; 1519 *batch++ = addr; 1520 *batch++ = target_addr; 1521 } else if (gen >= 3 && 1522 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) { 1523 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1524 *batch++ = addr; 1525 *batch++ = target_addr; 1526 } else { 1527 *batch++ = MI_STORE_DWORD_IMM; 1528 *batch++ = vma_phys_addr(vma, offset); 1529 *batch++ = target_addr; 1530 } 1531 1532 return true; 1533 } 1534 1535 static bool reloc_entry_gpu(struct i915_execbuffer *eb, 1536 struct i915_vma *vma, 1537 u64 offset, 1538 u64 target_addr) 1539 { 1540 if (eb->reloc_cache.vaddr) 1541 return false; 1542 1543 if (!use_reloc_gpu(vma)) 1544 return false; 1545 1546 return __reloc_entry_gpu(eb, vma, offset, target_addr); 1547 } 1548 1549 static u64 1550 relocate_entry(struct i915_vma *vma, 1551 const struct drm_i915_gem_relocation_entry *reloc, 1552 struct i915_execbuffer *eb, 1553 const struct i915_vma *target) 1554 { 1555 u64 target_addr = relocation_target(reloc, target); 1556 u64 offset = reloc->offset; 1557 1558 if (!reloc_entry_gpu(eb, vma, offset, target_addr)) { 1559 bool wide = eb->reloc_cache.use_64bit_reloc; 1560 void *vaddr; 1561 1562 repeat: 1563 vaddr = reloc_vaddr(vma->obj, 1564 &eb->reloc_cache, 1565 offset >> PAGE_SHIFT); 1566 if (IS_ERR(vaddr)) 1567 return PTR_ERR(vaddr); 1568 1569 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1570 clflush_write32(vaddr + offset_in_page(offset), 1571 lower_32_bits(target_addr), 1572 eb->reloc_cache.vaddr); 1573 1574 if (wide) { 1575 offset += sizeof(u32); 1576 target_addr >>= 32; 1577 wide = false; 1578 goto repeat; 1579 } 1580 } 1581 1582 return target->node.start | UPDATE; 1583 } 1584 1585 static u64 1586 eb_relocate_entry(struct i915_execbuffer *eb, 1587 struct eb_vma *ev, 1588 const struct drm_i915_gem_relocation_entry *reloc) 1589 { 1590 struct drm_i915_private *i915 = eb->i915; 1591 struct eb_vma *target; 1592 int err; 1593 1594 /* we've already hold a reference to all valid objects */ 1595 target = eb_get_vma(eb, reloc->target_handle); 1596 if (unlikely(!target)) 1597 return -ENOENT; 1598 1599 /* Validate that the target is in a valid r/w GPU domain */ 1600 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1601 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1602 "target %d offset %d " 1603 "read %08x write %08x", 1604 reloc->target_handle, 1605 (int) reloc->offset, 1606 reloc->read_domains, 1607 reloc->write_domain); 1608 return -EINVAL; 1609 } 1610 if (unlikely((reloc->write_domain | reloc->read_domains) 1611 & ~I915_GEM_GPU_DOMAINS)) { 1612 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1613 "target %d offset %d " 1614 "read %08x write %08x", 1615 reloc->target_handle, 1616 (int) reloc->offset, 1617 reloc->read_domains, 1618 reloc->write_domain); 1619 return -EINVAL; 1620 } 1621 1622 if (reloc->write_domain) { 1623 target->flags |= EXEC_OBJECT_WRITE; 1624 1625 /* 1626 * Sandybridge PPGTT errata: We need a global gtt mapping 1627 * for MI and pipe_control writes because the gpu doesn't 1628 * properly redirect them through the ppgtt for non_secure 1629 * batchbuffers. 1630 */ 1631 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1632 IS_GEN(eb->i915, 6)) { 1633 err = i915_vma_bind(target->vma, 1634 target->vma->obj->cache_level, 1635 PIN_GLOBAL, NULL); 1636 if (err) 1637 return err; 1638 } 1639 } 1640 1641 /* 1642 * If the relocation already has the right value in it, no 1643 * more work needs to be done. 1644 */ 1645 if (!DBG_FORCE_RELOC && 1646 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1647 return 0; 1648 1649 /* Check that the relocation address is valid... */ 1650 if (unlikely(reloc->offset > 1651 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1652 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1653 "target %d offset %d size %d.\n", 1654 reloc->target_handle, 1655 (int)reloc->offset, 1656 (int)ev->vma->size); 1657 return -EINVAL; 1658 } 1659 if (unlikely(reloc->offset & 3)) { 1660 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1661 "target %d offset %d.\n", 1662 reloc->target_handle, 1663 (int)reloc->offset); 1664 return -EINVAL; 1665 } 1666 1667 /* 1668 * If we write into the object, we need to force the synchronisation 1669 * barrier, either with an asynchronous clflush or if we executed the 1670 * patching using the GPU (though that should be serialised by the 1671 * timeline). To be completely sure, and since we are required to 1672 * do relocations we are already stalling, disable the user's opt 1673 * out of our synchronisation. 1674 */ 1675 ev->flags &= ~EXEC_OBJECT_ASYNC; 1676 1677 /* and update the user's relocation entry */ 1678 return relocate_entry(ev->vma, reloc, eb, target->vma); 1679 } 1680 1681 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1682 { 1683 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1684 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1685 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1686 struct drm_i915_gem_relocation_entry __user *urelocs = 1687 u64_to_user_ptr(entry->relocs_ptr); 1688 unsigned long remain = entry->relocation_count; 1689 1690 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1691 return -EINVAL; 1692 1693 /* 1694 * We must check that the entire relocation array is safe 1695 * to read. However, if the array is not writable the user loses 1696 * the updated relocation values. 1697 */ 1698 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1699 return -EFAULT; 1700 1701 do { 1702 struct drm_i915_gem_relocation_entry *r = stack; 1703 unsigned int count = 1704 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1705 unsigned int copied; 1706 1707 /* 1708 * This is the fast path and we cannot handle a pagefault 1709 * whilst holding the struct mutex lest the user pass in the 1710 * relocations contained within a mmaped bo. For in such a case 1711 * we, the page fault handler would call i915_gem_fault() and 1712 * we would try to acquire the struct mutex again. Obviously 1713 * this is bad and so lockdep complains vehemently. 1714 */ 1715 copied = __copy_from_user(r, urelocs, count * sizeof(r[0])); 1716 if (unlikely(copied)) { 1717 remain = -EFAULT; 1718 goto out; 1719 } 1720 1721 remain -= count; 1722 do { 1723 u64 offset = eb_relocate_entry(eb, ev, r); 1724 1725 if (likely(offset == 0)) { 1726 } else if ((s64)offset < 0) { 1727 remain = (int)offset; 1728 goto out; 1729 } else { 1730 /* 1731 * Note that reporting an error now 1732 * leaves everything in an inconsistent 1733 * state as we have *already* changed 1734 * the relocation value inside the 1735 * object. As we have not changed the 1736 * reloc.presumed_offset or will not 1737 * change the execobject.offset, on the 1738 * call we may not rewrite the value 1739 * inside the object, leaving it 1740 * dangling and causing a GPU hang. Unless 1741 * userspace dynamically rebuilds the 1742 * relocations on each execbuf rather than 1743 * presume a static tree. 1744 * 1745 * We did previously check if the relocations 1746 * were writable (access_ok), an error now 1747 * would be a strange race with mprotect, 1748 * having already demonstrated that we 1749 * can read from this userspace address. 1750 */ 1751 offset = gen8_canonical_addr(offset & ~UPDATE); 1752 __put_user(offset, 1753 &urelocs[r - stack].presumed_offset); 1754 } 1755 } while (r++, --count); 1756 urelocs += ARRAY_SIZE(stack); 1757 } while (remain); 1758 out: 1759 reloc_cache_reset(&eb->reloc_cache); 1760 return remain; 1761 } 1762 1763 static int eb_relocate(struct i915_execbuffer *eb) 1764 { 1765 int err; 1766 1767 err = eb_lookup_vmas(eb); 1768 if (err) 1769 return err; 1770 1771 if (!list_empty(&eb->unbound)) { 1772 err = eb_reserve(eb); 1773 if (err) 1774 return err; 1775 } 1776 1777 /* The objects are in their final locations, apply the relocations. */ 1778 if (eb->args->flags & __EXEC_HAS_RELOC) { 1779 struct eb_vma *ev; 1780 int flush; 1781 1782 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1783 err = eb_relocate_vma(eb, ev); 1784 if (err) 1785 break; 1786 } 1787 1788 flush = reloc_gpu_flush(&eb->reloc_cache); 1789 if (!err) 1790 err = flush; 1791 } 1792 1793 return err; 1794 } 1795 1796 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1797 { 1798 const unsigned int count = eb->buffer_count; 1799 struct ww_acquire_ctx acquire; 1800 unsigned int i; 1801 int err = 0; 1802 1803 ww_acquire_init(&acquire, &reservation_ww_class); 1804 1805 for (i = 0; i < count; i++) { 1806 struct eb_vma *ev = &eb->vma[i]; 1807 struct i915_vma *vma = ev->vma; 1808 1809 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1810 if (err == -EDEADLK) { 1811 GEM_BUG_ON(i == 0); 1812 do { 1813 int j = i - 1; 1814 1815 ww_mutex_unlock(&eb->vma[j].vma->resv->lock); 1816 1817 swap(eb->vma[i], eb->vma[j]); 1818 } while (--i); 1819 1820 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1821 &acquire); 1822 } 1823 if (err) 1824 break; 1825 } 1826 ww_acquire_done(&acquire); 1827 1828 while (i--) { 1829 struct eb_vma *ev = &eb->vma[i]; 1830 struct i915_vma *vma = ev->vma; 1831 unsigned int flags = ev->flags; 1832 struct drm_i915_gem_object *obj = vma->obj; 1833 1834 assert_vma_held(vma); 1835 1836 if (flags & EXEC_OBJECT_CAPTURE) { 1837 struct i915_capture_list *capture; 1838 1839 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1840 if (capture) { 1841 capture->next = eb->request->capture_list; 1842 capture->vma = vma; 1843 eb->request->capture_list = capture; 1844 } 1845 } 1846 1847 /* 1848 * If the GPU is not _reading_ through the CPU cache, we need 1849 * to make sure that any writes (both previous GPU writes from 1850 * before a change in snooping levels and normal CPU writes) 1851 * caught in that cache are flushed to main memory. 1852 * 1853 * We want to say 1854 * obj->cache_dirty && 1855 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1856 * but gcc's optimiser doesn't handle that as well and emits 1857 * two jumps instead of one. Maybe one day... 1858 */ 1859 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1860 if (i915_gem_clflush_object(obj, 0)) 1861 flags &= ~EXEC_OBJECT_ASYNC; 1862 } 1863 1864 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1865 err = i915_request_await_object 1866 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1867 } 1868 1869 if (err == 0) 1870 err = i915_vma_move_to_active(vma, eb->request, flags); 1871 1872 i915_vma_unlock(vma); 1873 eb_unreserve_vma(ev); 1874 } 1875 ww_acquire_fini(&acquire); 1876 1877 eb_vma_array_put(fetch_and_zero(&eb->array)); 1878 1879 if (unlikely(err)) 1880 goto err_skip; 1881 1882 /* Unconditionally flush any chipset caches (for streaming writes). */ 1883 intel_gt_chipset_flush(eb->engine->gt); 1884 return 0; 1885 1886 err_skip: 1887 i915_request_set_error_once(eb->request, err); 1888 return err; 1889 } 1890 1891 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1892 { 1893 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1894 return -EINVAL; 1895 1896 /* Kernel clipping was a DRI1 misfeature */ 1897 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1898 if (exec->num_cliprects || exec->cliprects_ptr) 1899 return -EINVAL; 1900 } 1901 1902 if (exec->DR4 == 0xffffffff) { 1903 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1904 exec->DR4 = 0; 1905 } 1906 if (exec->DR1 || exec->DR4) 1907 return -EINVAL; 1908 1909 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1910 return -EINVAL; 1911 1912 return 0; 1913 } 1914 1915 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1916 { 1917 u32 *cs; 1918 int i; 1919 1920 if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) { 1921 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 1922 return -EINVAL; 1923 } 1924 1925 cs = intel_ring_begin(rq, 4 * 2 + 2); 1926 if (IS_ERR(cs)) 1927 return PTR_ERR(cs); 1928 1929 *cs++ = MI_LOAD_REGISTER_IMM(4); 1930 for (i = 0; i < 4; i++) { 1931 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1932 *cs++ = 0; 1933 } 1934 *cs++ = MI_NOOP; 1935 intel_ring_advance(rq, cs); 1936 1937 return 0; 1938 } 1939 1940 static struct i915_vma * 1941 shadow_batch_pin(struct drm_i915_gem_object *obj, 1942 struct i915_address_space *vm, 1943 unsigned int flags) 1944 { 1945 struct i915_vma *vma; 1946 int err; 1947 1948 vma = i915_vma_instance(obj, vm, NULL); 1949 if (IS_ERR(vma)) 1950 return vma; 1951 1952 err = i915_vma_pin(vma, 0, 0, flags); 1953 if (err) 1954 return ERR_PTR(err); 1955 1956 return vma; 1957 } 1958 1959 struct eb_parse_work { 1960 struct dma_fence_work base; 1961 struct intel_engine_cs *engine; 1962 struct i915_vma *batch; 1963 struct i915_vma *shadow; 1964 struct i915_vma *trampoline; 1965 unsigned int batch_offset; 1966 unsigned int batch_length; 1967 }; 1968 1969 static int __eb_parse(struct dma_fence_work *work) 1970 { 1971 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 1972 1973 return intel_engine_cmd_parser(pw->engine, 1974 pw->batch, 1975 pw->batch_offset, 1976 pw->batch_length, 1977 pw->shadow, 1978 pw->trampoline); 1979 } 1980 1981 static void __eb_parse_release(struct dma_fence_work *work) 1982 { 1983 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 1984 1985 if (pw->trampoline) 1986 i915_active_release(&pw->trampoline->active); 1987 i915_active_release(&pw->shadow->active); 1988 i915_active_release(&pw->batch->active); 1989 } 1990 1991 static const struct dma_fence_work_ops eb_parse_ops = { 1992 .name = "eb_parse", 1993 .work = __eb_parse, 1994 .release = __eb_parse_release, 1995 }; 1996 1997 static inline int 1998 __parser_mark_active(struct i915_vma *vma, 1999 struct intel_timeline *tl, 2000 struct dma_fence *fence) 2001 { 2002 struct intel_gt_buffer_pool_node *node = vma->private; 2003 2004 return i915_active_ref(&node->active, tl, fence); 2005 } 2006 2007 static int 2008 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl) 2009 { 2010 int err; 2011 2012 mutex_lock(&tl->mutex); 2013 2014 err = __parser_mark_active(pw->shadow, tl, &pw->base.dma); 2015 if (err) 2016 goto unlock; 2017 2018 if (pw->trampoline) { 2019 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma); 2020 if (err) 2021 goto unlock; 2022 } 2023 2024 unlock: 2025 mutex_unlock(&tl->mutex); 2026 return err; 2027 } 2028 2029 static int eb_parse_pipeline(struct i915_execbuffer *eb, 2030 struct i915_vma *shadow, 2031 struct i915_vma *trampoline) 2032 { 2033 struct eb_parse_work *pw; 2034 int err; 2035 2036 pw = kzalloc(sizeof(*pw), GFP_KERNEL); 2037 if (!pw) 2038 return -ENOMEM; 2039 2040 err = i915_active_acquire(&eb->batch->vma->active); 2041 if (err) 2042 goto err_free; 2043 2044 err = i915_active_acquire(&shadow->active); 2045 if (err) 2046 goto err_batch; 2047 2048 if (trampoline) { 2049 err = i915_active_acquire(&trampoline->active); 2050 if (err) 2051 goto err_shadow; 2052 } 2053 2054 dma_fence_work_init(&pw->base, &eb_parse_ops); 2055 2056 pw->engine = eb->engine; 2057 pw->batch = eb->batch->vma; 2058 pw->batch_offset = eb->batch_start_offset; 2059 pw->batch_length = eb->batch_len; 2060 pw->shadow = shadow; 2061 pw->trampoline = trampoline; 2062 2063 /* Mark active refs early for this worker, in case we get interrupted */ 2064 err = parser_mark_active(pw, eb->context->timeline); 2065 if (err) 2066 goto err_commit; 2067 2068 err = dma_resv_lock_interruptible(pw->batch->resv, NULL); 2069 if (err) 2070 goto err_commit; 2071 2072 err = dma_resv_reserve_shared(pw->batch->resv, 1); 2073 if (err) 2074 goto err_commit_unlock; 2075 2076 /* Wait for all writes (and relocs) into the batch to complete */ 2077 err = i915_sw_fence_await_reservation(&pw->base.chain, 2078 pw->batch->resv, NULL, false, 2079 0, I915_FENCE_GFP); 2080 if (err < 0) 2081 goto err_commit_unlock; 2082 2083 /* Keep the batch alive and unwritten as we parse */ 2084 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma); 2085 2086 dma_resv_unlock(pw->batch->resv); 2087 2088 /* Force execution to wait for completion of the parser */ 2089 dma_resv_lock(shadow->resv, NULL); 2090 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma); 2091 dma_resv_unlock(shadow->resv); 2092 2093 dma_fence_work_commit_imm(&pw->base); 2094 return 0; 2095 2096 err_commit_unlock: 2097 dma_resv_unlock(pw->batch->resv); 2098 err_commit: 2099 i915_sw_fence_set_error_once(&pw->base.chain, err); 2100 dma_fence_work_commit_imm(&pw->base); 2101 return err; 2102 2103 err_shadow: 2104 i915_active_release(&shadow->active); 2105 err_batch: 2106 i915_active_release(&eb->batch->vma->active); 2107 err_free: 2108 kfree(pw); 2109 return err; 2110 } 2111 2112 static int eb_parse(struct i915_execbuffer *eb) 2113 { 2114 struct drm_i915_private *i915 = eb->i915; 2115 struct intel_gt_buffer_pool_node *pool; 2116 struct i915_vma *shadow, *trampoline; 2117 unsigned int len; 2118 int err; 2119 2120 if (!eb_use_cmdparser(eb)) 2121 return 0; 2122 2123 len = eb->batch_len; 2124 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2125 /* 2126 * ppGTT backed shadow buffers must be mapped RO, to prevent 2127 * post-scan tampering 2128 */ 2129 if (!eb->context->vm->has_read_only) { 2130 drm_dbg(&i915->drm, 2131 "Cannot prevent post-scan tampering without RO capable vm\n"); 2132 return -EINVAL; 2133 } 2134 } else { 2135 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2136 } 2137 2138 pool = intel_gt_get_buffer_pool(eb->engine->gt, len); 2139 if (IS_ERR(pool)) 2140 return PTR_ERR(pool); 2141 2142 shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER); 2143 if (IS_ERR(shadow)) { 2144 err = PTR_ERR(shadow); 2145 goto err; 2146 } 2147 i915_gem_object_set_readonly(shadow->obj); 2148 shadow->private = pool; 2149 2150 trampoline = NULL; 2151 if (CMDPARSER_USES_GGTT(eb->i915)) { 2152 trampoline = shadow; 2153 2154 shadow = shadow_batch_pin(pool->obj, 2155 &eb->engine->gt->ggtt->vm, 2156 PIN_GLOBAL); 2157 if (IS_ERR(shadow)) { 2158 err = PTR_ERR(shadow); 2159 shadow = trampoline; 2160 goto err_shadow; 2161 } 2162 shadow->private = pool; 2163 2164 eb->batch_flags |= I915_DISPATCH_SECURE; 2165 } 2166 2167 err = eb_parse_pipeline(eb, shadow, trampoline); 2168 if (err) 2169 goto err_trampoline; 2170 2171 eb->vma[eb->buffer_count].vma = i915_vma_get(shadow); 2172 eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN; 2173 eb->batch = &eb->vma[eb->buffer_count++]; 2174 eb->vma[eb->buffer_count].vma = NULL; 2175 2176 eb->trampoline = trampoline; 2177 eb->batch_start_offset = 0; 2178 2179 return 0; 2180 2181 err_trampoline: 2182 if (trampoline) 2183 i915_vma_unpin(trampoline); 2184 err_shadow: 2185 i915_vma_unpin(shadow); 2186 err: 2187 intel_gt_buffer_pool_put(pool); 2188 return err; 2189 } 2190 2191 static void 2192 add_to_client(struct i915_request *rq, struct drm_file *file) 2193 { 2194 struct drm_i915_file_private *file_priv = file->driver_priv; 2195 2196 rq->file_priv = file_priv; 2197 2198 spin_lock(&file_priv->mm.lock); 2199 list_add_tail(&rq->client_link, &file_priv->mm.request_list); 2200 spin_unlock(&file_priv->mm.lock); 2201 } 2202 2203 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 2204 { 2205 int err; 2206 2207 err = eb_move_to_gpu(eb); 2208 if (err) 2209 return err; 2210 2211 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2212 err = i915_reset_gen7_sol_offsets(eb->request); 2213 if (err) 2214 return err; 2215 } 2216 2217 /* 2218 * After we completed waiting for other engines (using HW semaphores) 2219 * then we can signal that this request/batch is ready to run. This 2220 * allows us to determine if the batch is still waiting on the GPU 2221 * or actually running by checking the breadcrumb. 2222 */ 2223 if (eb->engine->emit_init_breadcrumb) { 2224 err = eb->engine->emit_init_breadcrumb(eb->request); 2225 if (err) 2226 return err; 2227 } 2228 2229 err = eb->engine->emit_bb_start(eb->request, 2230 batch->node.start + 2231 eb->batch_start_offset, 2232 eb->batch_len, 2233 eb->batch_flags); 2234 if (err) 2235 return err; 2236 2237 if (eb->trampoline) { 2238 GEM_BUG_ON(eb->batch_start_offset); 2239 err = eb->engine->emit_bb_start(eb->request, 2240 eb->trampoline->node.start + 2241 eb->batch_len, 2242 0, 0); 2243 if (err) 2244 return err; 2245 } 2246 2247 if (intel_context_nopreempt(eb->context)) 2248 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 2249 2250 return 0; 2251 } 2252 2253 static int num_vcs_engines(const struct drm_i915_private *i915) 2254 { 2255 return hweight64(VDBOX_MASK(&i915->gt)); 2256 } 2257 2258 /* 2259 * Find one BSD ring to dispatch the corresponding BSD command. 2260 * The engine index is returned. 2261 */ 2262 static unsigned int 2263 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2264 struct drm_file *file) 2265 { 2266 struct drm_i915_file_private *file_priv = file->driver_priv; 2267 2268 /* Check whether the file_priv has already selected one ring. */ 2269 if ((int)file_priv->bsd_engine < 0) 2270 file_priv->bsd_engine = 2271 get_random_int() % num_vcs_engines(dev_priv); 2272 2273 return file_priv->bsd_engine; 2274 } 2275 2276 static const enum intel_engine_id user_ring_map[] = { 2277 [I915_EXEC_DEFAULT] = RCS0, 2278 [I915_EXEC_RENDER] = RCS0, 2279 [I915_EXEC_BLT] = BCS0, 2280 [I915_EXEC_BSD] = VCS0, 2281 [I915_EXEC_VEBOX] = VECS0 2282 }; 2283 2284 static struct i915_request *eb_throttle(struct intel_context *ce) 2285 { 2286 struct intel_ring *ring = ce->ring; 2287 struct intel_timeline *tl = ce->timeline; 2288 struct i915_request *rq; 2289 2290 /* 2291 * Completely unscientific finger-in-the-air estimates for suitable 2292 * maximum user request size (to avoid blocking) and then backoff. 2293 */ 2294 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2295 return NULL; 2296 2297 /* 2298 * Find a request that after waiting upon, there will be at least half 2299 * the ring available. The hysteresis allows us to compete for the 2300 * shared ring and should mean that we sleep less often prior to 2301 * claiming our resources, but not so long that the ring completely 2302 * drains before we can submit our next request. 2303 */ 2304 list_for_each_entry(rq, &tl->requests, link) { 2305 if (rq->ring != ring) 2306 continue; 2307 2308 if (__intel_ring_space(rq->postfix, 2309 ring->emit, ring->size) > ring->size / 2) 2310 break; 2311 } 2312 if (&rq->link == &tl->requests) 2313 return NULL; /* weird, we will check again later for real */ 2314 2315 return i915_request_get(rq); 2316 } 2317 2318 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) 2319 { 2320 struct intel_timeline *tl; 2321 struct i915_request *rq; 2322 int err; 2323 2324 /* 2325 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2326 * EIO if the GPU is already wedged. 2327 */ 2328 err = intel_gt_terminally_wedged(ce->engine->gt); 2329 if (err) 2330 return err; 2331 2332 if (unlikely(intel_context_is_banned(ce))) 2333 return -EIO; 2334 2335 /* 2336 * Pinning the contexts may generate requests in order to acquire 2337 * GGTT space, so do this first before we reserve a seqno for 2338 * ourselves. 2339 */ 2340 err = intel_context_pin(ce); 2341 if (err) 2342 return err; 2343 2344 /* 2345 * Take a local wakeref for preparing to dispatch the execbuf as 2346 * we expect to access the hardware fairly frequently in the 2347 * process, and require the engine to be kept awake between accesses. 2348 * Upon dispatch, we acquire another prolonged wakeref that we hold 2349 * until the timeline is idle, which in turn releases the wakeref 2350 * taken on the engine, and the parent device. 2351 */ 2352 tl = intel_context_timeline_lock(ce); 2353 if (IS_ERR(tl)) { 2354 err = PTR_ERR(tl); 2355 goto err_unpin; 2356 } 2357 2358 intel_context_enter(ce); 2359 rq = eb_throttle(ce); 2360 2361 intel_context_timeline_unlock(tl); 2362 2363 if (rq) { 2364 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2365 long timeout; 2366 2367 timeout = MAX_SCHEDULE_TIMEOUT; 2368 if (nonblock) 2369 timeout = 0; 2370 2371 timeout = i915_request_wait(rq, 2372 I915_WAIT_INTERRUPTIBLE, 2373 timeout); 2374 i915_request_put(rq); 2375 2376 if (timeout < 0) { 2377 err = nonblock ? -EWOULDBLOCK : timeout; 2378 goto err_exit; 2379 } 2380 } 2381 2382 eb->engine = ce->engine; 2383 eb->context = ce; 2384 return 0; 2385 2386 err_exit: 2387 mutex_lock(&tl->mutex); 2388 intel_context_exit(ce); 2389 intel_context_timeline_unlock(tl); 2390 err_unpin: 2391 intel_context_unpin(ce); 2392 return err; 2393 } 2394 2395 static void eb_unpin_engine(struct i915_execbuffer *eb) 2396 { 2397 struct intel_context *ce = eb->context; 2398 struct intel_timeline *tl = ce->timeline; 2399 2400 mutex_lock(&tl->mutex); 2401 intel_context_exit(ce); 2402 mutex_unlock(&tl->mutex); 2403 2404 intel_context_unpin(ce); 2405 } 2406 2407 static unsigned int 2408 eb_select_legacy_ring(struct i915_execbuffer *eb, 2409 struct drm_file *file, 2410 struct drm_i915_gem_execbuffer2 *args) 2411 { 2412 struct drm_i915_private *i915 = eb->i915; 2413 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2414 2415 if (user_ring_id != I915_EXEC_BSD && 2416 (args->flags & I915_EXEC_BSD_MASK)) { 2417 drm_dbg(&i915->drm, 2418 "execbuf with non bsd ring but with invalid " 2419 "bsd dispatch flags: %d\n", (int)(args->flags)); 2420 return -1; 2421 } 2422 2423 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2424 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2425 2426 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2427 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2428 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2429 bsd_idx <= I915_EXEC_BSD_RING2) { 2430 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2431 bsd_idx--; 2432 } else { 2433 drm_dbg(&i915->drm, 2434 "execbuf with unknown bsd ring: %u\n", 2435 bsd_idx); 2436 return -1; 2437 } 2438 2439 return _VCS(bsd_idx); 2440 } 2441 2442 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2443 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2444 user_ring_id); 2445 return -1; 2446 } 2447 2448 return user_ring_map[user_ring_id]; 2449 } 2450 2451 static int 2452 eb_pin_engine(struct i915_execbuffer *eb, 2453 struct drm_file *file, 2454 struct drm_i915_gem_execbuffer2 *args) 2455 { 2456 struct intel_context *ce; 2457 unsigned int idx; 2458 int err; 2459 2460 if (i915_gem_context_user_engines(eb->gem_context)) 2461 idx = args->flags & I915_EXEC_RING_MASK; 2462 else 2463 idx = eb_select_legacy_ring(eb, file, args); 2464 2465 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2466 if (IS_ERR(ce)) 2467 return PTR_ERR(ce); 2468 2469 err = __eb_pin_engine(eb, ce); 2470 intel_context_put(ce); 2471 2472 return err; 2473 } 2474 2475 static void 2476 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2477 { 2478 while (n--) 2479 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2480 kvfree(fences); 2481 } 2482 2483 static struct drm_syncobj ** 2484 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2485 struct drm_file *file) 2486 { 2487 const unsigned long nfences = args->num_cliprects; 2488 struct drm_i915_gem_exec_fence __user *user; 2489 struct drm_syncobj **fences; 2490 unsigned long n; 2491 int err; 2492 2493 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2494 return NULL; 2495 2496 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2497 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2498 if (nfences > min_t(unsigned long, 2499 ULONG_MAX / sizeof(*user), 2500 SIZE_MAX / sizeof(*fences))) 2501 return ERR_PTR(-EINVAL); 2502 2503 user = u64_to_user_ptr(args->cliprects_ptr); 2504 if (!access_ok(user, nfences * sizeof(*user))) 2505 return ERR_PTR(-EFAULT); 2506 2507 fences = kvmalloc_array(nfences, sizeof(*fences), 2508 __GFP_NOWARN | GFP_KERNEL); 2509 if (!fences) 2510 return ERR_PTR(-ENOMEM); 2511 2512 for (n = 0; n < nfences; n++) { 2513 struct drm_i915_gem_exec_fence fence; 2514 struct drm_syncobj *syncobj; 2515 2516 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2517 err = -EFAULT; 2518 goto err; 2519 } 2520 2521 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2522 err = -EINVAL; 2523 goto err; 2524 } 2525 2526 syncobj = drm_syncobj_find(file, fence.handle); 2527 if (!syncobj) { 2528 DRM_DEBUG("Invalid syncobj handle provided\n"); 2529 err = -ENOENT; 2530 goto err; 2531 } 2532 2533 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2534 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2535 2536 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2537 } 2538 2539 return fences; 2540 2541 err: 2542 __free_fence_array(fences, n); 2543 return ERR_PTR(err); 2544 } 2545 2546 static void 2547 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2548 struct drm_syncobj **fences) 2549 { 2550 if (fences) 2551 __free_fence_array(fences, args->num_cliprects); 2552 } 2553 2554 static int 2555 await_fence_array(struct i915_execbuffer *eb, 2556 struct drm_syncobj **fences) 2557 { 2558 const unsigned int nfences = eb->args->num_cliprects; 2559 unsigned int n; 2560 int err; 2561 2562 for (n = 0; n < nfences; n++) { 2563 struct drm_syncobj *syncobj; 2564 struct dma_fence *fence; 2565 unsigned int flags; 2566 2567 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2568 if (!(flags & I915_EXEC_FENCE_WAIT)) 2569 continue; 2570 2571 fence = drm_syncobj_fence_get(syncobj); 2572 if (!fence) 2573 return -EINVAL; 2574 2575 err = i915_request_await_dma_fence(eb->request, fence); 2576 dma_fence_put(fence); 2577 if (err < 0) 2578 return err; 2579 } 2580 2581 return 0; 2582 } 2583 2584 static void 2585 signal_fence_array(struct i915_execbuffer *eb, 2586 struct drm_syncobj **fences) 2587 { 2588 const unsigned int nfences = eb->args->num_cliprects; 2589 struct dma_fence * const fence = &eb->request->fence; 2590 unsigned int n; 2591 2592 for (n = 0; n < nfences; n++) { 2593 struct drm_syncobj *syncobj; 2594 unsigned int flags; 2595 2596 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2597 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2598 continue; 2599 2600 drm_syncobj_replace_fence(syncobj, fence); 2601 } 2602 } 2603 2604 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 2605 { 2606 struct i915_request *rq, *rn; 2607 2608 list_for_each_entry_safe(rq, rn, &tl->requests, link) 2609 if (rq == end || !i915_request_retire(rq)) 2610 break; 2611 } 2612 2613 static void eb_request_add(struct i915_execbuffer *eb) 2614 { 2615 struct i915_request *rq = eb->request; 2616 struct intel_timeline * const tl = i915_request_timeline(rq); 2617 struct i915_sched_attr attr = {}; 2618 struct i915_request *prev; 2619 2620 lockdep_assert_held(&tl->mutex); 2621 lockdep_unpin_lock(&tl->mutex, rq->cookie); 2622 2623 trace_i915_request_add(rq); 2624 2625 prev = __i915_request_commit(rq); 2626 2627 /* Check that the context wasn't destroyed before submission */ 2628 if (likely(!intel_context_is_closed(eb->context))) { 2629 attr = eb->gem_context->sched; 2630 } else { 2631 /* Serialise with context_close via the add_to_timeline */ 2632 i915_request_set_error_once(rq, -ENOENT); 2633 __i915_request_skip(rq); 2634 } 2635 2636 __i915_request_queue(rq, &attr); 2637 2638 /* Try to clean up the client's timeline after submitting the request */ 2639 if (prev) 2640 retire_requests(tl, prev); 2641 2642 mutex_unlock(&tl->mutex); 2643 } 2644 2645 static int 2646 i915_gem_do_execbuffer(struct drm_device *dev, 2647 struct drm_file *file, 2648 struct drm_i915_gem_execbuffer2 *args, 2649 struct drm_i915_gem_exec_object2 *exec, 2650 struct drm_syncobj **fences) 2651 { 2652 struct drm_i915_private *i915 = to_i915(dev); 2653 struct i915_execbuffer eb; 2654 struct dma_fence *in_fence = NULL; 2655 struct sync_file *out_fence = NULL; 2656 struct i915_vma *batch; 2657 int out_fence_fd = -1; 2658 int err; 2659 2660 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2661 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2662 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2663 2664 eb.i915 = i915; 2665 eb.file = file; 2666 eb.args = args; 2667 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2668 args->flags |= __EXEC_HAS_RELOC; 2669 2670 eb.exec = exec; 2671 2672 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2673 reloc_cache_init(&eb.reloc_cache, eb.i915); 2674 2675 eb.buffer_count = args->buffer_count; 2676 eb.batch_start_offset = args->batch_start_offset; 2677 eb.batch_len = args->batch_len; 2678 eb.trampoline = NULL; 2679 2680 eb.batch_flags = 0; 2681 if (args->flags & I915_EXEC_SECURE) { 2682 if (INTEL_GEN(i915) >= 11) 2683 return -ENODEV; 2684 2685 /* Return -EPERM to trigger fallback code on old binaries. */ 2686 if (!HAS_SECURE_BATCHES(i915)) 2687 return -EPERM; 2688 2689 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2690 return -EPERM; 2691 2692 eb.batch_flags |= I915_DISPATCH_SECURE; 2693 } 2694 if (args->flags & I915_EXEC_IS_PINNED) 2695 eb.batch_flags |= I915_DISPATCH_PINNED; 2696 2697 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 2698 if (args->flags & IN_FENCES) { 2699 if ((args->flags & IN_FENCES) == IN_FENCES) 2700 return -EINVAL; 2701 2702 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2703 if (!in_fence) 2704 return -EINVAL; 2705 } 2706 #undef IN_FENCES 2707 2708 if (args->flags & I915_EXEC_FENCE_OUT) { 2709 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2710 if (out_fence_fd < 0) { 2711 err = out_fence_fd; 2712 goto err_in_fence; 2713 } 2714 } 2715 2716 err = eb_create(&eb); 2717 if (err) 2718 goto err_out_fence; 2719 2720 GEM_BUG_ON(!eb.lut_size); 2721 2722 err = eb_select_context(&eb); 2723 if (unlikely(err)) 2724 goto err_destroy; 2725 2726 err = eb_pin_engine(&eb, file, args); 2727 if (unlikely(err)) 2728 goto err_context; 2729 2730 err = eb_relocate(&eb); 2731 if (err) { 2732 /* 2733 * If the user expects the execobject.offset and 2734 * reloc.presumed_offset to be an exact match, 2735 * as for using NO_RELOC, then we cannot update 2736 * the execobject.offset until we have completed 2737 * relocation. 2738 */ 2739 args->flags &= ~__EXEC_HAS_RELOC; 2740 goto err_vma; 2741 } 2742 2743 if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) { 2744 drm_dbg(&i915->drm, 2745 "Attempting to use self-modifying batch buffer\n"); 2746 err = -EINVAL; 2747 goto err_vma; 2748 } 2749 2750 if (range_overflows_t(u64, 2751 eb.batch_start_offset, eb.batch_len, 2752 eb.batch->vma->size)) { 2753 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 2754 err = -EINVAL; 2755 goto err_vma; 2756 } 2757 2758 if (eb.batch_len == 0) 2759 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset; 2760 2761 err = eb_parse(&eb); 2762 if (err) 2763 goto err_vma; 2764 2765 /* 2766 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2767 * batch" bit. Hence we need to pin secure batches into the global gtt. 2768 * hsw should have this fixed, but bdw mucks it up again. */ 2769 batch = eb.batch->vma; 2770 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2771 struct i915_vma *vma; 2772 2773 /* 2774 * So on first glance it looks freaky that we pin the batch here 2775 * outside of the reservation loop. But: 2776 * - The batch is already pinned into the relevant ppgtt, so we 2777 * already have the backing storage fully allocated. 2778 * - No other BO uses the global gtt (well contexts, but meh), 2779 * so we don't really have issues with multiple objects not 2780 * fitting due to fragmentation. 2781 * So this is actually safe. 2782 */ 2783 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0); 2784 if (IS_ERR(vma)) { 2785 err = PTR_ERR(vma); 2786 goto err_parse; 2787 } 2788 2789 batch = vma; 2790 } 2791 2792 /* All GPU relocation batches must be submitted prior to the user rq */ 2793 GEM_BUG_ON(eb.reloc_cache.rq); 2794 2795 /* Allocate a request for this batch buffer nice and early. */ 2796 eb.request = i915_request_create(eb.context); 2797 if (IS_ERR(eb.request)) { 2798 err = PTR_ERR(eb.request); 2799 goto err_batch_unpin; 2800 } 2801 2802 if (in_fence) { 2803 if (args->flags & I915_EXEC_FENCE_SUBMIT) 2804 err = i915_request_await_execution(eb.request, 2805 in_fence, 2806 eb.engine->bond_execute); 2807 else 2808 err = i915_request_await_dma_fence(eb.request, 2809 in_fence); 2810 if (err < 0) 2811 goto err_request; 2812 } 2813 2814 if (fences) { 2815 err = await_fence_array(&eb, fences); 2816 if (err) 2817 goto err_request; 2818 } 2819 2820 if (out_fence_fd != -1) { 2821 out_fence = sync_file_create(&eb.request->fence); 2822 if (!out_fence) { 2823 err = -ENOMEM; 2824 goto err_request; 2825 } 2826 } 2827 2828 /* 2829 * Whilst this request exists, batch_obj will be on the 2830 * active_list, and so will hold the active reference. Only when this 2831 * request is retired will the the batch_obj be moved onto the 2832 * inactive_list and lose its active reference. Hence we do not need 2833 * to explicitly hold another reference here. 2834 */ 2835 eb.request->batch = batch; 2836 if (batch->private) 2837 intel_gt_buffer_pool_mark_active(batch->private, eb.request); 2838 2839 trace_i915_request_queue(eb.request, eb.batch_flags); 2840 err = eb_submit(&eb, batch); 2841 err_request: 2842 add_to_client(eb.request, file); 2843 i915_request_get(eb.request); 2844 eb_request_add(&eb); 2845 2846 if (fences) 2847 signal_fence_array(&eb, fences); 2848 2849 if (out_fence) { 2850 if (err == 0) { 2851 fd_install(out_fence_fd, out_fence->file); 2852 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2853 args->rsvd2 |= (u64)out_fence_fd << 32; 2854 out_fence_fd = -1; 2855 } else { 2856 fput(out_fence->file); 2857 } 2858 } 2859 i915_request_put(eb.request); 2860 2861 err_batch_unpin: 2862 if (eb.batch_flags & I915_DISPATCH_SECURE) 2863 i915_vma_unpin(batch); 2864 err_parse: 2865 if (batch->private) 2866 intel_gt_buffer_pool_put(batch->private); 2867 err_vma: 2868 if (eb.trampoline) 2869 i915_vma_unpin(eb.trampoline); 2870 eb_unpin_engine(&eb); 2871 err_context: 2872 i915_gem_context_put(eb.gem_context); 2873 err_destroy: 2874 eb_destroy(&eb); 2875 err_out_fence: 2876 if (out_fence_fd != -1) 2877 put_unused_fd(out_fence_fd); 2878 err_in_fence: 2879 dma_fence_put(in_fence); 2880 return err; 2881 } 2882 2883 static size_t eb_element_size(void) 2884 { 2885 return sizeof(struct drm_i915_gem_exec_object2); 2886 } 2887 2888 static bool check_buffer_count(size_t count) 2889 { 2890 const size_t sz = eb_element_size(); 2891 2892 /* 2893 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2894 * array size (see eb_create()). Otherwise, we can accept an array as 2895 * large as can be addressed (though use large arrays at your peril)! 2896 */ 2897 2898 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2899 } 2900 2901 /* 2902 * Legacy execbuffer just creates an exec2 list from the original exec object 2903 * list array and passes it to the real function. 2904 */ 2905 int 2906 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2907 struct drm_file *file) 2908 { 2909 struct drm_i915_private *i915 = to_i915(dev); 2910 struct drm_i915_gem_execbuffer *args = data; 2911 struct drm_i915_gem_execbuffer2 exec2; 2912 struct drm_i915_gem_exec_object *exec_list = NULL; 2913 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2914 const size_t count = args->buffer_count; 2915 unsigned int i; 2916 int err; 2917 2918 if (!check_buffer_count(count)) { 2919 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 2920 return -EINVAL; 2921 } 2922 2923 exec2.buffers_ptr = args->buffers_ptr; 2924 exec2.buffer_count = args->buffer_count; 2925 exec2.batch_start_offset = args->batch_start_offset; 2926 exec2.batch_len = args->batch_len; 2927 exec2.DR1 = args->DR1; 2928 exec2.DR4 = args->DR4; 2929 exec2.num_cliprects = args->num_cliprects; 2930 exec2.cliprects_ptr = args->cliprects_ptr; 2931 exec2.flags = I915_EXEC_RENDER; 2932 i915_execbuffer2_set_context_id(exec2, 0); 2933 2934 err = i915_gem_check_execbuffer(&exec2); 2935 if (err) 2936 return err; 2937 2938 /* Copy in the exec list from userland */ 2939 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2940 __GFP_NOWARN | GFP_KERNEL); 2941 exec2_list = kvmalloc_array(count, eb_element_size(), 2942 __GFP_NOWARN | GFP_KERNEL); 2943 if (exec_list == NULL || exec2_list == NULL) { 2944 drm_dbg(&i915->drm, 2945 "Failed to allocate exec list for %d buffers\n", 2946 args->buffer_count); 2947 kvfree(exec_list); 2948 kvfree(exec2_list); 2949 return -ENOMEM; 2950 } 2951 err = copy_from_user(exec_list, 2952 u64_to_user_ptr(args->buffers_ptr), 2953 sizeof(*exec_list) * count); 2954 if (err) { 2955 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", 2956 args->buffer_count, err); 2957 kvfree(exec_list); 2958 kvfree(exec2_list); 2959 return -EFAULT; 2960 } 2961 2962 for (i = 0; i < args->buffer_count; i++) { 2963 exec2_list[i].handle = exec_list[i].handle; 2964 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2965 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2966 exec2_list[i].alignment = exec_list[i].alignment; 2967 exec2_list[i].offset = exec_list[i].offset; 2968 if (INTEL_GEN(to_i915(dev)) < 4) 2969 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2970 else 2971 exec2_list[i].flags = 0; 2972 } 2973 2974 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2975 if (exec2.flags & __EXEC_HAS_RELOC) { 2976 struct drm_i915_gem_exec_object __user *user_exec_list = 2977 u64_to_user_ptr(args->buffers_ptr); 2978 2979 /* Copy the new buffer offsets back to the user's exec list. */ 2980 for (i = 0; i < args->buffer_count; i++) { 2981 if (!(exec2_list[i].offset & UPDATE)) 2982 continue; 2983 2984 exec2_list[i].offset = 2985 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2986 exec2_list[i].offset &= PIN_OFFSET_MASK; 2987 if (__copy_to_user(&user_exec_list[i].offset, 2988 &exec2_list[i].offset, 2989 sizeof(user_exec_list[i].offset))) 2990 break; 2991 } 2992 } 2993 2994 kvfree(exec_list); 2995 kvfree(exec2_list); 2996 return err; 2997 } 2998 2999 int 3000 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3001 struct drm_file *file) 3002 { 3003 struct drm_i915_private *i915 = to_i915(dev); 3004 struct drm_i915_gem_execbuffer2 *args = data; 3005 struct drm_i915_gem_exec_object2 *exec2_list; 3006 struct drm_syncobj **fences = NULL; 3007 const size_t count = args->buffer_count; 3008 int err; 3009 3010 if (!check_buffer_count(count)) { 3011 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3012 return -EINVAL; 3013 } 3014 3015 err = i915_gem_check_execbuffer(args); 3016 if (err) 3017 return err; 3018 3019 exec2_list = kvmalloc_array(count, eb_element_size(), 3020 __GFP_NOWARN | GFP_KERNEL); 3021 if (exec2_list == NULL) { 3022 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3023 count); 3024 return -ENOMEM; 3025 } 3026 if (copy_from_user(exec2_list, 3027 u64_to_user_ptr(args->buffers_ptr), 3028 sizeof(*exec2_list) * count)) { 3029 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3030 kvfree(exec2_list); 3031 return -EFAULT; 3032 } 3033 3034 if (args->flags & I915_EXEC_FENCE_ARRAY) { 3035 fences = get_fence_array(args, file); 3036 if (IS_ERR(fences)) { 3037 kvfree(exec2_list); 3038 return PTR_ERR(fences); 3039 } 3040 } 3041 3042 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 3043 3044 /* 3045 * Now that we have begun execution of the batchbuffer, we ignore 3046 * any new error after this point. Also given that we have already 3047 * updated the associated relocations, we try to write out the current 3048 * object locations irrespective of any error. 3049 */ 3050 if (args->flags & __EXEC_HAS_RELOC) { 3051 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3052 u64_to_user_ptr(args->buffers_ptr); 3053 unsigned int i; 3054 3055 /* Copy the new buffer offsets back to the user's exec list. */ 3056 /* 3057 * Note: count * sizeof(*user_exec_list) does not overflow, 3058 * because we checked 'count' in check_buffer_count(). 3059 * 3060 * And this range already got effectively checked earlier 3061 * when we did the "copy_from_user()" above. 3062 */ 3063 if (!user_write_access_begin(user_exec_list, 3064 count * sizeof(*user_exec_list))) 3065 goto end; 3066 3067 for (i = 0; i < args->buffer_count; i++) { 3068 if (!(exec2_list[i].offset & UPDATE)) 3069 continue; 3070 3071 exec2_list[i].offset = 3072 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3073 unsafe_put_user(exec2_list[i].offset, 3074 &user_exec_list[i].offset, 3075 end_user); 3076 } 3077 end_user: 3078 user_write_access_end(); 3079 end:; 3080 } 3081 3082 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3083 put_fence_array(args, fences); 3084 kvfree(exec2_list); 3085 return err; 3086 } 3087 3088 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3089 #include "selftests/i915_gem_execbuffer.c" 3090 #endif 3091