xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
30 
31 struct eb_vma {
32 	struct i915_vma *vma;
33 	unsigned int flags;
34 
35 	/** This vma's place in the execbuf reservation list */
36 	struct drm_i915_gem_exec_object2 *exec;
37 	struct list_head bind_link;
38 	struct list_head reloc_link;
39 
40 	struct hlist_node node;
41 	u32 handle;
42 };
43 
44 enum {
45 	FORCE_CPU_RELOC = 1,
46 	FORCE_GTT_RELOC,
47 	FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
49 };
50 
51 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
52 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
53 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
54 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
55 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 
58 #define __EXEC_HAS_RELOC	BIT(31)
59 #define __EXEC_ENGINE_PINNED	BIT(30)
60 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
61 #define UPDATE			PIN_OFFSET_FIXED
62 
63 #define BATCH_OFFSET_BIAS (256*1024)
64 
65 #define __I915_EXEC_ILLEGAL_FLAGS \
66 	(__I915_EXEC_UNKNOWN_FLAGS | \
67 	 I915_EXEC_CONSTANTS_MASK  | \
68 	 I915_EXEC_RESOURCE_STREAMER)
69 
70 /* Catch emission of unexpected errors for CI! */
71 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
72 #undef EINVAL
73 #define EINVAL ({ \
74 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
75 	22; \
76 })
77 #endif
78 
79 /**
80  * DOC: User command execution
81  *
82  * Userspace submits commands to be executed on the GPU as an instruction
83  * stream within a GEM object we call a batchbuffer. This instructions may
84  * refer to other GEM objects containing auxiliary state such as kernels,
85  * samplers, render targets and even secondary batchbuffers. Userspace does
86  * not know where in the GPU memory these objects reside and so before the
87  * batchbuffer is passed to the GPU for execution, those addresses in the
88  * batchbuffer and auxiliary objects are updated. This is known as relocation,
89  * or patching. To try and avoid having to relocate each object on the next
90  * execution, userspace is told the location of those objects in this pass,
91  * but this remains just a hint as the kernel may choose a new location for
92  * any object in the future.
93  *
94  * At the level of talking to the hardware, submitting a batchbuffer for the
95  * GPU to execute is to add content to a buffer from which the HW
96  * command streamer is reading.
97  *
98  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
99  *    Execlists, this command is not placed on the same buffer as the
100  *    remaining items.
101  *
102  * 2. Add a command to invalidate caches to the buffer.
103  *
104  * 3. Add a batchbuffer start command to the buffer; the start command is
105  *    essentially a token together with the GPU address of the batchbuffer
106  *    to be executed.
107  *
108  * 4. Add a pipeline flush to the buffer.
109  *
110  * 5. Add a memory write command to the buffer to record when the GPU
111  *    is done executing the batchbuffer. The memory write writes the
112  *    global sequence number of the request, ``i915_request::global_seqno``;
113  *    the i915 driver uses the current value in the register to determine
114  *    if the GPU has completed the batchbuffer.
115  *
116  * 6. Add a user interrupt command to the buffer. This command instructs
117  *    the GPU to issue an interrupt when the command, pipeline flush and
118  *    memory write are completed.
119  *
120  * 7. Inform the hardware of the additional commands added to the buffer
121  *    (by updating the tail pointer).
122  *
123  * Processing an execbuf ioctl is conceptually split up into a few phases.
124  *
125  * 1. Validation - Ensure all the pointers, handles and flags are valid.
126  * 2. Reservation - Assign GPU address space for every object
127  * 3. Relocation - Update any addresses to point to the final locations
128  * 4. Serialisation - Order the request with respect to its dependencies
129  * 5. Construction - Construct a request to execute the batchbuffer
130  * 6. Submission (at some point in the future execution)
131  *
132  * Reserving resources for the execbuf is the most complicated phase. We
133  * neither want to have to migrate the object in the address space, nor do
134  * we want to have to update any relocations pointing to this object. Ideally,
135  * we want to leave the object where it is and for all the existing relocations
136  * to match. If the object is given a new address, or if userspace thinks the
137  * object is elsewhere, we have to parse all the relocation entries and update
138  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
139  * all the target addresses in all of its objects match the value in the
140  * relocation entries and that they all match the presumed offsets given by the
141  * list of execbuffer objects. Using this knowledge, we know that if we haven't
142  * moved any buffers, all the relocation entries are valid and we can skip
143  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
144  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145  *
146  *      The addresses written in the objects must match the corresponding
147  *      reloc.presumed_offset which in turn must match the corresponding
148  *      execobject.offset.
149  *
150  *      Any render targets written to in the batch must be flagged with
151  *      EXEC_OBJECT_WRITE.
152  *
153  *      To avoid stalling, execobject.offset should match the current
154  *      address of that object within the active context.
155  *
156  * The reservation is done is multiple phases. First we try and keep any
157  * object already bound in its current location - so as long as meets the
158  * constraints imposed by the new execbuffer. Any object left unbound after the
159  * first pass is then fitted into any available idle space. If an object does
160  * not fit, all objects are removed from the reservation and the process rerun
161  * after sorting the objects into a priority order (more difficult to fit
162  * objects are tried first). Failing that, the entire VM is cleared and we try
163  * to fit the execbuf once last time before concluding that it simply will not
164  * fit.
165  *
166  * A small complication to all of this is that we allow userspace not only to
167  * specify an alignment and a size for the object in the address space, but
168  * we also allow userspace to specify the exact offset. This objects are
169  * simpler to place (the location is known a priori) all we have to do is make
170  * sure the space is available.
171  *
172  * Once all the objects are in place, patching up the buried pointers to point
173  * to the final locations is a fairly simple job of walking over the relocation
174  * entry arrays, looking up the right address and rewriting the value into
175  * the object. Simple! ... The relocation entries are stored in user memory
176  * and so to access them we have to copy them into a local buffer. That copy
177  * has to avoid taking any pagefaults as they may lead back to a GEM object
178  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
179  * the relocation into multiple passes. First we try to do everything within an
180  * atomic context (avoid the pagefaults) which requires that we never wait. If
181  * we detect that we may wait, or if we need to fault, then we have to fallback
182  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
183  * bells yet?) Dropping the mutex means that we lose all the state we have
184  * built up so far for the execbuf and we must reset any global data. However,
185  * we do leave the objects pinned in their final locations - which is a
186  * potential issue for concurrent execbufs. Once we have left the mutex, we can
187  * allocate and copy all the relocation entries into a large array at our
188  * leisure, reacquire the mutex, reclaim all the objects and other state and
189  * then proceed to update any incorrect addresses with the objects.
190  *
191  * As we process the relocation entries, we maintain a record of whether the
192  * object is being written to. Using NORELOC, we expect userspace to provide
193  * this information instead. We also check whether we can skip the relocation
194  * by comparing the expected value inside the relocation entry with the target's
195  * final address. If they differ, we have to map the current object and rewrite
196  * the 4 or 8 byte pointer within.
197  *
198  * Serialising an execbuf is quite simple according to the rules of the GEM
199  * ABI. Execution within each context is ordered by the order of submission.
200  * Writes to any GEM object are in order of submission and are exclusive. Reads
201  * from a GEM object are unordered with respect to other reads, but ordered by
202  * writes. A write submitted after a read cannot occur before the read, and
203  * similarly any read submitted after a write cannot occur before the write.
204  * Writes are ordered between engines such that only one write occurs at any
205  * time (completing any reads beforehand) - using semaphores where available
206  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
207  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
208  * reads before starting, and any read (either using set-domain or pread) must
209  * flush all GPU writes before starting. (Note we only employ a barrier before,
210  * we currently rely on userspace not concurrently starting a new execution
211  * whilst reading or writing to an object. This may be an advantage or not
212  * depending on how much you trust userspace not to shoot themselves in the
213  * foot.) Serialisation may just result in the request being inserted into
214  * a DAG awaiting its turn, but most simple is to wait on the CPU until
215  * all dependencies are resolved.
216  *
217  * After all of that, is just a matter of closing the request and handing it to
218  * the hardware (well, leaving it in a queue to be executed). However, we also
219  * offer the ability for batchbuffers to be run with elevated privileges so
220  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
221  * Before any batch is given extra privileges we first must check that it
222  * contains no nefarious instructions, we check that each instruction is from
223  * our whitelist and all registers are also from an allowed list. We first
224  * copy the user's batchbuffer to a shadow (so that the user doesn't have
225  * access to it, either by the CPU or GPU as we scan it) and then parse each
226  * instruction. If everything is ok, we set a flag telling the hardware to run
227  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
228  */
229 
230 struct eb_fence {
231 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
232 	struct dma_fence *dma_fence;
233 	u64 value;
234 	struct dma_fence_chain *chain_fence;
235 };
236 
237 struct i915_execbuffer {
238 	struct drm_i915_private *i915; /** i915 backpointer */
239 	struct drm_file *file; /** per-file lookup tables and limits */
240 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
241 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
242 	struct eb_vma *vma;
243 
244 	struct intel_engine_cs *engine; /** engine to queue the request to */
245 	struct intel_context *context; /* logical state for the request */
246 	struct i915_gem_context *gem_context; /** caller's context */
247 
248 	struct i915_request *request; /** our request to build */
249 	struct eb_vma *batch; /** identity of the batch obj/vma */
250 	struct i915_vma *trampoline; /** trampoline used for chaining */
251 
252 	/** actual size of execobj[] as we may extend it for the cmdparser */
253 	unsigned int buffer_count;
254 
255 	/** list of vma not yet bound during reservation phase */
256 	struct list_head unbound;
257 
258 	/** list of vma that have execobj.relocation_count */
259 	struct list_head relocs;
260 
261 	struct i915_gem_ww_ctx ww;
262 
263 	/**
264 	 * Track the most recently used object for relocations, as we
265 	 * frequently have to perform multiple relocations within the same
266 	 * obj/page
267 	 */
268 	struct reloc_cache {
269 		struct drm_mm_node node; /** temporary GTT binding */
270 		unsigned long vaddr; /** Current kmap address */
271 		unsigned long page; /** Currently mapped page index */
272 		unsigned int gen; /** Cached value of INTEL_GEN */
273 		bool use_64bit_reloc : 1;
274 		bool has_llc : 1;
275 		bool has_fence : 1;
276 		bool needs_unfenced : 1;
277 
278 		struct i915_request *rq;
279 		u32 *rq_cmd;
280 		unsigned int rq_size;
281 		struct intel_gt_buffer_pool_node *pool;
282 	} reloc_cache;
283 
284 	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
285 	struct intel_context *reloc_context;
286 
287 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
288 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
289 
290 	u64 batch_len; /** Length of batch within object */
291 	u32 batch_start_offset; /** Location within object of batch */
292 	u32 batch_flags; /** Flags composed for emit_bb_start() */
293 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
294 
295 	/**
296 	 * Indicate either the size of the hastable used to resolve
297 	 * relocation handles, or if negative that we are using a direct
298 	 * index into the execobj[].
299 	 */
300 	int lut_size;
301 	struct hlist_head *buckets; /** ht for relocation handles */
302 
303 	struct eb_fence *fences;
304 	unsigned long num_fences;
305 };
306 
307 static int eb_parse(struct i915_execbuffer *eb);
308 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
309 					  bool throttle);
310 static void eb_unpin_engine(struct i915_execbuffer *eb);
311 
312 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
313 {
314 	return intel_engine_requires_cmd_parser(eb->engine) ||
315 		(intel_engine_using_cmd_parser(eb->engine) &&
316 		 eb->args->batch_len);
317 }
318 
319 static int eb_create(struct i915_execbuffer *eb)
320 {
321 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
322 		unsigned int size = 1 + ilog2(eb->buffer_count);
323 
324 		/*
325 		 * Without a 1:1 association between relocation handles and
326 		 * the execobject[] index, we instead create a hashtable.
327 		 * We size it dynamically based on available memory, starting
328 		 * first with 1:1 assocative hash and scaling back until
329 		 * the allocation succeeds.
330 		 *
331 		 * Later on we use a positive lut_size to indicate we are
332 		 * using this hashtable, and a negative value to indicate a
333 		 * direct lookup.
334 		 */
335 		do {
336 			gfp_t flags;
337 
338 			/* While we can still reduce the allocation size, don't
339 			 * raise a warning and allow the allocation to fail.
340 			 * On the last pass though, we want to try as hard
341 			 * as possible to perform the allocation and warn
342 			 * if it fails.
343 			 */
344 			flags = GFP_KERNEL;
345 			if (size > 1)
346 				flags |= __GFP_NORETRY | __GFP_NOWARN;
347 
348 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
349 					      flags);
350 			if (eb->buckets)
351 				break;
352 		} while (--size);
353 
354 		if (unlikely(!size))
355 			return -ENOMEM;
356 
357 		eb->lut_size = size;
358 	} else {
359 		eb->lut_size = -eb->buffer_count;
360 	}
361 
362 	return 0;
363 }
364 
365 static bool
366 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
367 		 const struct i915_vma *vma,
368 		 unsigned int flags)
369 {
370 	if (vma->node.size < entry->pad_to_size)
371 		return true;
372 
373 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
374 		return true;
375 
376 	if (flags & EXEC_OBJECT_PINNED &&
377 	    vma->node.start != entry->offset)
378 		return true;
379 
380 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
381 	    vma->node.start < BATCH_OFFSET_BIAS)
382 		return true;
383 
384 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
385 	    (vma->node.start + vma->node.size - 1) >> 32)
386 		return true;
387 
388 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
389 	    !i915_vma_is_map_and_fenceable(vma))
390 		return true;
391 
392 	return false;
393 }
394 
395 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
396 			unsigned int exec_flags)
397 {
398 	u64 pin_flags = 0;
399 
400 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
401 		pin_flags |= PIN_GLOBAL;
402 
403 	/*
404 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
405 	 * limit address to the first 4GBs for unflagged objects.
406 	 */
407 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
408 		pin_flags |= PIN_ZONE_4G;
409 
410 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
411 		pin_flags |= PIN_MAPPABLE;
412 
413 	if (exec_flags & EXEC_OBJECT_PINNED)
414 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
415 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
416 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
417 
418 	return pin_flags;
419 }
420 
421 static inline bool
422 eb_pin_vma(struct i915_execbuffer *eb,
423 	   const struct drm_i915_gem_exec_object2 *entry,
424 	   struct eb_vma *ev)
425 {
426 	struct i915_vma *vma = ev->vma;
427 	u64 pin_flags;
428 
429 	if (vma->node.size)
430 		pin_flags = vma->node.start;
431 	else
432 		pin_flags = entry->offset & PIN_OFFSET_MASK;
433 
434 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
435 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
436 		pin_flags |= PIN_GLOBAL;
437 
438 	/* Attempt to reuse the current location if available */
439 	/* TODO: Add -EDEADLK handling here */
440 	if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
441 		if (entry->flags & EXEC_OBJECT_PINNED)
442 			return false;
443 
444 		/* Failing that pick any _free_ space if suitable */
445 		if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
446 					     entry->pad_to_size,
447 					     entry->alignment,
448 					     eb_pin_flags(entry, ev->flags) |
449 					     PIN_USER | PIN_NOEVICT)))
450 			return false;
451 	}
452 
453 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
454 		if (unlikely(i915_vma_pin_fence(vma))) {
455 			i915_vma_unpin(vma);
456 			return false;
457 		}
458 
459 		if (vma->fence)
460 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
461 	}
462 
463 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
464 	return !eb_vma_misplaced(entry, vma, ev->flags);
465 }
466 
467 static inline void
468 eb_unreserve_vma(struct eb_vma *ev)
469 {
470 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
471 		return;
472 
473 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
474 		__i915_vma_unpin_fence(ev->vma);
475 
476 	__i915_vma_unpin(ev->vma);
477 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
478 }
479 
480 static int
481 eb_validate_vma(struct i915_execbuffer *eb,
482 		struct drm_i915_gem_exec_object2 *entry,
483 		struct i915_vma *vma)
484 {
485 	if (unlikely(entry->flags & eb->invalid_flags))
486 		return -EINVAL;
487 
488 	if (unlikely(entry->alignment &&
489 		     !is_power_of_2_u64(entry->alignment)))
490 		return -EINVAL;
491 
492 	/*
493 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
494 	 * any non-page-aligned or non-canonical addresses.
495 	 */
496 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
497 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
498 		return -EINVAL;
499 
500 	/* pad_to_size was once a reserved field, so sanitize it */
501 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
502 		if (unlikely(offset_in_page(entry->pad_to_size)))
503 			return -EINVAL;
504 	} else {
505 		entry->pad_to_size = 0;
506 	}
507 	/*
508 	 * From drm_mm perspective address space is continuous,
509 	 * so from this point we're always using non-canonical
510 	 * form internally.
511 	 */
512 	entry->offset = gen8_noncanonical_addr(entry->offset);
513 
514 	if (!eb->reloc_cache.has_fence) {
515 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
516 	} else {
517 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
518 		     eb->reloc_cache.needs_unfenced) &&
519 		    i915_gem_object_is_tiled(vma->obj))
520 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
521 	}
522 
523 	if (!(entry->flags & EXEC_OBJECT_PINNED))
524 		entry->flags |= eb->context_flags;
525 
526 	return 0;
527 }
528 
529 static void
530 eb_add_vma(struct i915_execbuffer *eb,
531 	   unsigned int i, unsigned batch_idx,
532 	   struct i915_vma *vma)
533 {
534 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
535 	struct eb_vma *ev = &eb->vma[i];
536 
537 	GEM_BUG_ON(i915_vma_is_closed(vma));
538 
539 	ev->vma = vma;
540 	ev->exec = entry;
541 	ev->flags = entry->flags;
542 
543 	if (eb->lut_size > 0) {
544 		ev->handle = entry->handle;
545 		hlist_add_head(&ev->node,
546 			       &eb->buckets[hash_32(entry->handle,
547 						    eb->lut_size)]);
548 	}
549 
550 	if (entry->relocation_count)
551 		list_add_tail(&ev->reloc_link, &eb->relocs);
552 
553 	/*
554 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
555 	 * to negative relocation deltas. Usually that works out ok since the
556 	 * relocate address is still positive, except when the batch is placed
557 	 * very low in the GTT. Ensure this doesn't happen.
558 	 *
559 	 * Note that actual hangs have only been observed on gen7, but for
560 	 * paranoia do it everywhere.
561 	 */
562 	if (i == batch_idx) {
563 		if (entry->relocation_count &&
564 		    !(ev->flags & EXEC_OBJECT_PINNED))
565 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
566 		if (eb->reloc_cache.has_fence)
567 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
568 
569 		eb->batch = ev;
570 	}
571 }
572 
573 static inline int use_cpu_reloc(const struct reloc_cache *cache,
574 				const struct drm_i915_gem_object *obj)
575 {
576 	if (!i915_gem_object_has_struct_page(obj))
577 		return false;
578 
579 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
580 		return true;
581 
582 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
583 		return false;
584 
585 	return (cache->has_llc ||
586 		obj->cache_dirty ||
587 		obj->cache_level != I915_CACHE_NONE);
588 }
589 
590 static int eb_reserve_vma(struct i915_execbuffer *eb,
591 			  struct eb_vma *ev,
592 			  u64 pin_flags)
593 {
594 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
595 	struct i915_vma *vma = ev->vma;
596 	int err;
597 
598 	if (drm_mm_node_allocated(&vma->node) &&
599 	    eb_vma_misplaced(entry, vma, ev->flags)) {
600 		err = i915_vma_unbind(vma);
601 		if (err)
602 			return err;
603 	}
604 
605 	err = i915_vma_pin_ww(vma, &eb->ww,
606 			   entry->pad_to_size, entry->alignment,
607 			   eb_pin_flags(entry, ev->flags) | pin_flags);
608 	if (err)
609 		return err;
610 
611 	if (entry->offset != vma->node.start) {
612 		entry->offset = vma->node.start | UPDATE;
613 		eb->args->flags |= __EXEC_HAS_RELOC;
614 	}
615 
616 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
617 		err = i915_vma_pin_fence(vma);
618 		if (unlikely(err)) {
619 			i915_vma_unpin(vma);
620 			return err;
621 		}
622 
623 		if (vma->fence)
624 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
625 	}
626 
627 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
628 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
629 
630 	return 0;
631 }
632 
633 static int eb_reserve(struct i915_execbuffer *eb)
634 {
635 	const unsigned int count = eb->buffer_count;
636 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
637 	struct list_head last;
638 	struct eb_vma *ev;
639 	unsigned int i, pass;
640 	int err = 0;
641 
642 	/*
643 	 * Attempt to pin all of the buffers into the GTT.
644 	 * This is done in 3 phases:
645 	 *
646 	 * 1a. Unbind all objects that do not match the GTT constraints for
647 	 *     the execbuffer (fenceable, mappable, alignment etc).
648 	 * 1b. Increment pin count for already bound objects.
649 	 * 2.  Bind new objects.
650 	 * 3.  Decrement pin count.
651 	 *
652 	 * This avoid unnecessary unbinding of later objects in order to make
653 	 * room for the earlier objects *unless* we need to defragment.
654 	 */
655 	pass = 0;
656 	do {
657 		list_for_each_entry(ev, &eb->unbound, bind_link) {
658 			err = eb_reserve_vma(eb, ev, pin_flags);
659 			if (err)
660 				break;
661 		}
662 		if (err != -ENOSPC)
663 			return err;
664 
665 		/* Resort *all* the objects into priority order */
666 		INIT_LIST_HEAD(&eb->unbound);
667 		INIT_LIST_HEAD(&last);
668 		for (i = 0; i < count; i++) {
669 			unsigned int flags;
670 
671 			ev = &eb->vma[i];
672 			flags = ev->flags;
673 			if (flags & EXEC_OBJECT_PINNED &&
674 			    flags & __EXEC_OBJECT_HAS_PIN)
675 				continue;
676 
677 			eb_unreserve_vma(ev);
678 
679 			if (flags & EXEC_OBJECT_PINNED)
680 				/* Pinned must have their slot */
681 				list_add(&ev->bind_link, &eb->unbound);
682 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
683 				/* Map require the lowest 256MiB (aperture) */
684 				list_add_tail(&ev->bind_link, &eb->unbound);
685 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
686 				/* Prioritise 4GiB region for restricted bo */
687 				list_add(&ev->bind_link, &last);
688 			else
689 				list_add_tail(&ev->bind_link, &last);
690 		}
691 		list_splice_tail(&last, &eb->unbound);
692 
693 		switch (pass++) {
694 		case 0:
695 			break;
696 
697 		case 1:
698 			/* Too fragmented, unbind everything and retry */
699 			mutex_lock(&eb->context->vm->mutex);
700 			err = i915_gem_evict_vm(eb->context->vm);
701 			mutex_unlock(&eb->context->vm->mutex);
702 			if (err)
703 				return err;
704 			break;
705 
706 		default:
707 			return -ENOSPC;
708 		}
709 
710 		pin_flags = PIN_USER;
711 	} while (1);
712 }
713 
714 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
715 {
716 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
717 		return 0;
718 	else
719 		return eb->buffer_count - 1;
720 }
721 
722 static int eb_select_context(struct i915_execbuffer *eb)
723 {
724 	struct i915_gem_context *ctx;
725 
726 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
727 	if (unlikely(!ctx))
728 		return -ENOENT;
729 
730 	eb->gem_context = ctx;
731 	if (rcu_access_pointer(ctx->vm))
732 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
733 
734 	eb->context_flags = 0;
735 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
737 
738 	return 0;
739 }
740 
741 static int __eb_add_lut(struct i915_execbuffer *eb,
742 			u32 handle, struct i915_vma *vma)
743 {
744 	struct i915_gem_context *ctx = eb->gem_context;
745 	struct i915_lut_handle *lut;
746 	int err;
747 
748 	lut = i915_lut_handle_alloc();
749 	if (unlikely(!lut))
750 		return -ENOMEM;
751 
752 	i915_vma_get(vma);
753 	if (!atomic_fetch_inc(&vma->open_count))
754 		i915_vma_reopen(vma);
755 	lut->handle = handle;
756 	lut->ctx = ctx;
757 
758 	/* Check that the context hasn't been closed in the meantime */
759 	err = -EINTR;
760 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
761 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
762 
763 		if (unlikely(vm && vma->vm != vm))
764 			err = -EAGAIN; /* user racing with ctx set-vm */
765 		else if (likely(!i915_gem_context_is_closed(ctx)))
766 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
767 		else
768 			err = -ENOENT;
769 		if (err == 0) { /* And nor has this handle */
770 			struct drm_i915_gem_object *obj = vma->obj;
771 
772 			spin_lock(&obj->lut_lock);
773 			if (idr_find(&eb->file->object_idr, handle) == obj) {
774 				list_add(&lut->obj_link, &obj->lut_list);
775 			} else {
776 				radix_tree_delete(&ctx->handles_vma, handle);
777 				err = -ENOENT;
778 			}
779 			spin_unlock(&obj->lut_lock);
780 		}
781 		mutex_unlock(&ctx->lut_mutex);
782 	}
783 	if (unlikely(err))
784 		goto err;
785 
786 	return 0;
787 
788 err:
789 	i915_vma_close(vma);
790 	i915_vma_put(vma);
791 	i915_lut_handle_free(lut);
792 	return err;
793 }
794 
795 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
796 {
797 	struct i915_address_space *vm = eb->context->vm;
798 
799 	do {
800 		struct drm_i915_gem_object *obj;
801 		struct i915_vma *vma;
802 		int err;
803 
804 		rcu_read_lock();
805 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
806 		if (likely(vma && vma->vm == vm))
807 			vma = i915_vma_tryget(vma);
808 		rcu_read_unlock();
809 		if (likely(vma))
810 			return vma;
811 
812 		obj = i915_gem_object_lookup(eb->file, handle);
813 		if (unlikely(!obj))
814 			return ERR_PTR(-ENOENT);
815 
816 		vma = i915_vma_instance(obj, vm, NULL);
817 		if (IS_ERR(vma)) {
818 			i915_gem_object_put(obj);
819 			return vma;
820 		}
821 
822 		err = __eb_add_lut(eb, handle, vma);
823 		if (likely(!err))
824 			return vma;
825 
826 		i915_gem_object_put(obj);
827 		if (err != -EEXIST)
828 			return ERR_PTR(err);
829 	} while (1);
830 }
831 
832 static int eb_lookup_vmas(struct i915_execbuffer *eb)
833 {
834 	struct drm_i915_private *i915 = eb->i915;
835 	unsigned int batch = eb_batch_index(eb);
836 	unsigned int i;
837 	int err = 0;
838 
839 	INIT_LIST_HEAD(&eb->relocs);
840 
841 	for (i = 0; i < eb->buffer_count; i++) {
842 		struct i915_vma *vma;
843 
844 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
845 		if (IS_ERR(vma)) {
846 			err = PTR_ERR(vma);
847 			goto err;
848 		}
849 
850 		err = eb_validate_vma(eb, &eb->exec[i], vma);
851 		if (unlikely(err)) {
852 			i915_vma_put(vma);
853 			goto err;
854 		}
855 
856 		eb_add_vma(eb, i, batch, vma);
857 	}
858 
859 	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
860 		drm_dbg(&i915->drm,
861 			"Attempting to use self-modifying batch buffer\n");
862 		return -EINVAL;
863 	}
864 
865 	if (range_overflows_t(u64,
866 			      eb->batch_start_offset, eb->batch_len,
867 			      eb->batch->vma->size)) {
868 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
869 		return -EINVAL;
870 	}
871 
872 	if (eb->batch_len == 0)
873 		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
874 	if (unlikely(eb->batch_len == 0)) { /* impossible! */
875 		drm_dbg(&i915->drm, "Invalid batch length\n");
876 		return -EINVAL;
877 	}
878 
879 	return 0;
880 
881 err:
882 	eb->vma[i].vma = NULL;
883 	return err;
884 }
885 
886 static int eb_validate_vmas(struct i915_execbuffer *eb)
887 {
888 	unsigned int i;
889 	int err;
890 
891 	INIT_LIST_HEAD(&eb->unbound);
892 
893 	for (i = 0; i < eb->buffer_count; i++) {
894 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
895 		struct eb_vma *ev = &eb->vma[i];
896 		struct i915_vma *vma = ev->vma;
897 
898 		err = i915_gem_object_lock(vma->obj, &eb->ww);
899 		if (err)
900 			return err;
901 
902 		if (eb_pin_vma(eb, entry, ev)) {
903 			if (entry->offset != vma->node.start) {
904 				entry->offset = vma->node.start | UPDATE;
905 				eb->args->flags |= __EXEC_HAS_RELOC;
906 			}
907 		} else {
908 			eb_unreserve_vma(ev);
909 
910 			list_add_tail(&ev->bind_link, &eb->unbound);
911 			if (drm_mm_node_allocated(&vma->node)) {
912 				err = i915_vma_unbind(vma);
913 				if (err)
914 					return err;
915 			}
916 		}
917 
918 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
919 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
920 	}
921 
922 	if (!list_empty(&eb->unbound))
923 		return eb_reserve(eb);
924 
925 	return 0;
926 }
927 
928 static struct eb_vma *
929 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
930 {
931 	if (eb->lut_size < 0) {
932 		if (handle >= -eb->lut_size)
933 			return NULL;
934 		return &eb->vma[handle];
935 	} else {
936 		struct hlist_head *head;
937 		struct eb_vma *ev;
938 
939 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
940 		hlist_for_each_entry(ev, head, node) {
941 			if (ev->handle == handle)
942 				return ev;
943 		}
944 		return NULL;
945 	}
946 }
947 
948 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
949 {
950 	const unsigned int count = eb->buffer_count;
951 	unsigned int i;
952 
953 	for (i = 0; i < count; i++) {
954 		struct eb_vma *ev = &eb->vma[i];
955 		struct i915_vma *vma = ev->vma;
956 
957 		if (!vma)
958 			break;
959 
960 		eb_unreserve_vma(ev);
961 
962 		if (final)
963 			i915_vma_put(vma);
964 	}
965 
966 	eb_unpin_engine(eb);
967 }
968 
969 static void eb_destroy(const struct i915_execbuffer *eb)
970 {
971 	GEM_BUG_ON(eb->reloc_cache.rq);
972 
973 	if (eb->lut_size > 0)
974 		kfree(eb->buckets);
975 }
976 
977 static inline u64
978 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
979 		  const struct i915_vma *target)
980 {
981 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
982 }
983 
984 static void reloc_cache_clear(struct reloc_cache *cache)
985 {
986 	cache->rq = NULL;
987 	cache->rq_cmd = NULL;
988 	cache->pool = NULL;
989 	cache->rq_size = 0;
990 }
991 
992 static void reloc_cache_init(struct reloc_cache *cache,
993 			     struct drm_i915_private *i915)
994 {
995 	cache->page = -1;
996 	cache->vaddr = 0;
997 	/* Must be a variable in the struct to allow GCC to unroll. */
998 	cache->gen = INTEL_GEN(i915);
999 	cache->has_llc = HAS_LLC(i915);
1000 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1001 	cache->has_fence = cache->gen < 4;
1002 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1003 	cache->node.flags = 0;
1004 	reloc_cache_clear(cache);
1005 }
1006 
1007 static inline void *unmask_page(unsigned long p)
1008 {
1009 	return (void *)(uintptr_t)(p & PAGE_MASK);
1010 }
1011 
1012 static inline unsigned int unmask_flags(unsigned long p)
1013 {
1014 	return p & ~PAGE_MASK;
1015 }
1016 
1017 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1018 
1019 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1020 {
1021 	struct drm_i915_private *i915 =
1022 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1023 	return &i915->ggtt;
1024 }
1025 
1026 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1027 {
1028 	if (!cache->pool)
1029 		return;
1030 
1031 	/*
1032 	 * This is a bit nasty, normally we keep objects locked until the end
1033 	 * of execbuffer, but we already submit this, and have to unlock before
1034 	 * dropping the reference. Fortunately we can only hold 1 pool node at
1035 	 * a time, so this should be harmless.
1036 	 */
1037 	i915_gem_ww_unlock_single(cache->pool->obj);
1038 	intel_gt_buffer_pool_put(cache->pool);
1039 	cache->pool = NULL;
1040 }
1041 
1042 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1043 {
1044 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1045 
1046 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1047 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1048 
1049 	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
1050 	i915_gem_object_unpin_map(obj);
1051 
1052 	intel_gt_chipset_flush(cache->rq->engine->gt);
1053 
1054 	i915_request_add(cache->rq);
1055 	reloc_cache_put_pool(eb, cache);
1056 	reloc_cache_clear(cache);
1057 
1058 	eb->reloc_pool = NULL;
1059 }
1060 
1061 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1062 {
1063 	void *vaddr;
1064 
1065 	if (cache->rq)
1066 		reloc_gpu_flush(eb, cache);
1067 
1068 	if (!cache->vaddr)
1069 		return;
1070 
1071 	vaddr = unmask_page(cache->vaddr);
1072 	if (cache->vaddr & KMAP) {
1073 		struct drm_i915_gem_object *obj =
1074 			(struct drm_i915_gem_object *)cache->node.mm;
1075 		if (cache->vaddr & CLFLUSH_AFTER)
1076 			mb();
1077 
1078 		kunmap_atomic(vaddr);
1079 		i915_gem_object_finish_access(obj);
1080 	} else {
1081 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1082 
1083 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1084 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1085 
1086 		if (drm_mm_node_allocated(&cache->node)) {
1087 			ggtt->vm.clear_range(&ggtt->vm,
1088 					     cache->node.start,
1089 					     cache->node.size);
1090 			mutex_lock(&ggtt->vm.mutex);
1091 			drm_mm_remove_node(&cache->node);
1092 			mutex_unlock(&ggtt->vm.mutex);
1093 		} else {
1094 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1095 		}
1096 	}
1097 
1098 	cache->vaddr = 0;
1099 	cache->page = -1;
1100 }
1101 
1102 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1103 			struct reloc_cache *cache,
1104 			unsigned long pageno)
1105 {
1106 	void *vaddr;
1107 	struct page *page;
1108 
1109 	if (cache->vaddr) {
1110 		kunmap_atomic(unmask_page(cache->vaddr));
1111 	} else {
1112 		unsigned int flushes;
1113 		int err;
1114 
1115 		err = i915_gem_object_prepare_write(obj, &flushes);
1116 		if (err)
1117 			return ERR_PTR(err);
1118 
1119 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1120 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1121 
1122 		cache->vaddr = flushes | KMAP;
1123 		cache->node.mm = (void *)obj;
1124 		if (flushes)
1125 			mb();
1126 	}
1127 
1128 	page = i915_gem_object_get_page(obj, pageno);
1129 	if (!obj->mm.dirty)
1130 		set_page_dirty(page);
1131 
1132 	vaddr = kmap_atomic(page);
1133 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1134 	cache->page = pageno;
1135 
1136 	return vaddr;
1137 }
1138 
1139 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1140 			 struct i915_execbuffer *eb,
1141 			 unsigned long page)
1142 {
1143 	struct reloc_cache *cache = &eb->reloc_cache;
1144 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1145 	unsigned long offset;
1146 	void *vaddr;
1147 
1148 	if (cache->vaddr) {
1149 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1150 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1151 	} else {
1152 		struct i915_vma *vma;
1153 		int err;
1154 
1155 		if (i915_gem_object_is_tiled(obj))
1156 			return ERR_PTR(-EINVAL);
1157 
1158 		if (use_cpu_reloc(cache, obj))
1159 			return NULL;
1160 
1161 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1162 		if (err)
1163 			return ERR_PTR(err);
1164 
1165 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1166 						  PIN_MAPPABLE |
1167 						  PIN_NONBLOCK /* NOWARN */ |
1168 						  PIN_NOEVICT);
1169 		if (vma == ERR_PTR(-EDEADLK))
1170 			return vma;
1171 
1172 		if (IS_ERR(vma)) {
1173 			memset(&cache->node, 0, sizeof(cache->node));
1174 			mutex_lock(&ggtt->vm.mutex);
1175 			err = drm_mm_insert_node_in_range
1176 				(&ggtt->vm.mm, &cache->node,
1177 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1178 				 0, ggtt->mappable_end,
1179 				 DRM_MM_INSERT_LOW);
1180 			mutex_unlock(&ggtt->vm.mutex);
1181 			if (err) /* no inactive aperture space, use cpu reloc */
1182 				return NULL;
1183 		} else {
1184 			cache->node.start = vma->node.start;
1185 			cache->node.mm = (void *)vma;
1186 		}
1187 	}
1188 
1189 	offset = cache->node.start;
1190 	if (drm_mm_node_allocated(&cache->node)) {
1191 		ggtt->vm.insert_page(&ggtt->vm,
1192 				     i915_gem_object_get_dma_address(obj, page),
1193 				     offset, I915_CACHE_NONE, 0);
1194 	} else {
1195 		offset += page << PAGE_SHIFT;
1196 	}
1197 
1198 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1199 							 offset);
1200 	cache->page = page;
1201 	cache->vaddr = (unsigned long)vaddr;
1202 
1203 	return vaddr;
1204 }
1205 
1206 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1207 			 struct i915_execbuffer *eb,
1208 			 unsigned long page)
1209 {
1210 	struct reloc_cache *cache = &eb->reloc_cache;
1211 	void *vaddr;
1212 
1213 	if (cache->page == page) {
1214 		vaddr = unmask_page(cache->vaddr);
1215 	} else {
1216 		vaddr = NULL;
1217 		if ((cache->vaddr & KMAP) == 0)
1218 			vaddr = reloc_iomap(obj, eb, page);
1219 		if (!vaddr)
1220 			vaddr = reloc_kmap(obj, cache, page);
1221 	}
1222 
1223 	return vaddr;
1224 }
1225 
1226 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1227 {
1228 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1229 		if (flushes & CLFLUSH_BEFORE) {
1230 			clflushopt(addr);
1231 			mb();
1232 		}
1233 
1234 		*addr = value;
1235 
1236 		/*
1237 		 * Writes to the same cacheline are serialised by the CPU
1238 		 * (including clflush). On the write path, we only require
1239 		 * that it hits memory in an orderly fashion and place
1240 		 * mb barriers at the start and end of the relocation phase
1241 		 * to ensure ordering of clflush wrt to the system.
1242 		 */
1243 		if (flushes & CLFLUSH_AFTER)
1244 			clflushopt(addr);
1245 	} else
1246 		*addr = value;
1247 }
1248 
1249 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1250 {
1251 	struct drm_i915_gem_object *obj = vma->obj;
1252 	int err;
1253 
1254 	assert_vma_held(vma);
1255 
1256 	if (obj->cache_dirty & ~obj->cache_coherent)
1257 		i915_gem_clflush_object(obj, 0);
1258 	obj->write_domain = 0;
1259 
1260 	err = i915_request_await_object(rq, vma->obj, true);
1261 	if (err == 0)
1262 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1263 
1264 	return err;
1265 }
1266 
1267 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1268 			     struct intel_engine_cs *engine,
1269 			     struct i915_vma *vma,
1270 			     unsigned int len)
1271 {
1272 	struct reloc_cache *cache = &eb->reloc_cache;
1273 	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1274 	struct i915_request *rq;
1275 	struct i915_vma *batch;
1276 	u32 *cmd;
1277 	int err;
1278 
1279 	if (!pool) {
1280 		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1281 		if (IS_ERR(pool))
1282 			return PTR_ERR(pool);
1283 	}
1284 	eb->reloc_pool = NULL;
1285 
1286 	err = i915_gem_object_lock(pool->obj, &eb->ww);
1287 	if (err)
1288 		goto err_pool;
1289 
1290 	cmd = i915_gem_object_pin_map(pool->obj,
1291 				      cache->has_llc ?
1292 				      I915_MAP_FORCE_WB :
1293 				      I915_MAP_FORCE_WC);
1294 	if (IS_ERR(cmd)) {
1295 		err = PTR_ERR(cmd);
1296 		goto err_pool;
1297 	}
1298 
1299 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1300 	if (IS_ERR(batch)) {
1301 		err = PTR_ERR(batch);
1302 		goto err_unmap;
1303 	}
1304 
1305 	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1306 	if (err)
1307 		goto err_unmap;
1308 
1309 	if (engine == eb->context->engine) {
1310 		rq = i915_request_create(eb->context);
1311 	} else {
1312 		struct intel_context *ce = eb->reloc_context;
1313 
1314 		if (!ce) {
1315 			ce = intel_context_create(engine);
1316 			if (IS_ERR(ce)) {
1317 				err = PTR_ERR(ce);
1318 				goto err_unpin;
1319 			}
1320 
1321 			i915_vm_put(ce->vm);
1322 			ce->vm = i915_vm_get(eb->context->vm);
1323 			eb->reloc_context = ce;
1324 		}
1325 
1326 		err = intel_context_pin_ww(ce, &eb->ww);
1327 		if (err)
1328 			goto err_unpin;
1329 
1330 		rq = i915_request_create(ce);
1331 		intel_context_unpin(ce);
1332 	}
1333 	if (IS_ERR(rq)) {
1334 		err = PTR_ERR(rq);
1335 		goto err_unpin;
1336 	}
1337 
1338 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1339 	if (err)
1340 		goto err_request;
1341 
1342 	err = reloc_move_to_gpu(rq, vma);
1343 	if (err)
1344 		goto err_request;
1345 
1346 	err = eb->engine->emit_bb_start(rq,
1347 					batch->node.start, PAGE_SIZE,
1348 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1349 	if (err)
1350 		goto skip_request;
1351 
1352 	assert_vma_held(batch);
1353 	err = i915_request_await_object(rq, batch->obj, false);
1354 	if (err == 0)
1355 		err = i915_vma_move_to_active(batch, rq, 0);
1356 	if (err)
1357 		goto skip_request;
1358 
1359 	rq->batch = batch;
1360 	i915_vma_unpin(batch);
1361 
1362 	cache->rq = rq;
1363 	cache->rq_cmd = cmd;
1364 	cache->rq_size = 0;
1365 	cache->pool = pool;
1366 
1367 	/* Return with batch mapping (cmd) still pinned */
1368 	return 0;
1369 
1370 skip_request:
1371 	i915_request_set_error_once(rq, err);
1372 err_request:
1373 	i915_request_add(rq);
1374 err_unpin:
1375 	i915_vma_unpin(batch);
1376 err_unmap:
1377 	i915_gem_object_unpin_map(pool->obj);
1378 err_pool:
1379 	eb->reloc_pool = pool;
1380 	return err;
1381 }
1382 
1383 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1384 {
1385 	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1386 }
1387 
1388 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1389 		      struct i915_vma *vma,
1390 		      unsigned int len)
1391 {
1392 	struct reloc_cache *cache = &eb->reloc_cache;
1393 	u32 *cmd;
1394 
1395 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1396 		reloc_gpu_flush(eb, cache);
1397 
1398 	if (unlikely(!cache->rq)) {
1399 		int err;
1400 		struct intel_engine_cs *engine = eb->engine;
1401 
1402 		if (!reloc_can_use_engine(engine)) {
1403 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1404 			if (!engine)
1405 				return ERR_PTR(-ENODEV);
1406 		}
1407 
1408 		err = __reloc_gpu_alloc(eb, engine, vma, len);
1409 		if (unlikely(err))
1410 			return ERR_PTR(err);
1411 	}
1412 
1413 	cmd = cache->rq_cmd + cache->rq_size;
1414 	cache->rq_size += len;
1415 
1416 	return cmd;
1417 }
1418 
1419 static inline bool use_reloc_gpu(struct i915_vma *vma)
1420 {
1421 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1422 		return true;
1423 
1424 	if (DBG_FORCE_RELOC)
1425 		return false;
1426 
1427 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1428 }
1429 
1430 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1431 {
1432 	struct page *page;
1433 	unsigned long addr;
1434 
1435 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1436 
1437 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1438 	addr = PFN_PHYS(page_to_pfn(page));
1439 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1440 
1441 	return addr + offset_in_page(offset);
1442 }
1443 
1444 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1445 			      struct i915_vma *vma,
1446 			      u64 offset,
1447 			      u64 target_addr)
1448 {
1449 	const unsigned int gen = eb->reloc_cache.gen;
1450 	unsigned int len;
1451 	u32 *batch;
1452 	u64 addr;
1453 
1454 	if (gen >= 8)
1455 		len = offset & 7 ? 8 : 5;
1456 	else if (gen >= 4)
1457 		len = 4;
1458 	else
1459 		len = 3;
1460 
1461 	batch = reloc_gpu(eb, vma, len);
1462 	if (batch == ERR_PTR(-EDEADLK))
1463 		return -EDEADLK;
1464 	else if (IS_ERR(batch))
1465 		return false;
1466 
1467 	addr = gen8_canonical_addr(vma->node.start + offset);
1468 	if (gen >= 8) {
1469 		if (offset & 7) {
1470 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1471 			*batch++ = lower_32_bits(addr);
1472 			*batch++ = upper_32_bits(addr);
1473 			*batch++ = lower_32_bits(target_addr);
1474 
1475 			addr = gen8_canonical_addr(addr + 4);
1476 
1477 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1478 			*batch++ = lower_32_bits(addr);
1479 			*batch++ = upper_32_bits(addr);
1480 			*batch++ = upper_32_bits(target_addr);
1481 		} else {
1482 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1483 			*batch++ = lower_32_bits(addr);
1484 			*batch++ = upper_32_bits(addr);
1485 			*batch++ = lower_32_bits(target_addr);
1486 			*batch++ = upper_32_bits(target_addr);
1487 		}
1488 	} else if (gen >= 6) {
1489 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1490 		*batch++ = 0;
1491 		*batch++ = addr;
1492 		*batch++ = target_addr;
1493 	} else if (IS_I965G(eb->i915)) {
1494 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1495 		*batch++ = 0;
1496 		*batch++ = vma_phys_addr(vma, offset);
1497 		*batch++ = target_addr;
1498 	} else if (gen >= 4) {
1499 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1500 		*batch++ = 0;
1501 		*batch++ = addr;
1502 		*batch++ = target_addr;
1503 	} else if (gen >= 3 &&
1504 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1505 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1506 		*batch++ = addr;
1507 		*batch++ = target_addr;
1508 	} else {
1509 		*batch++ = MI_STORE_DWORD_IMM;
1510 		*batch++ = vma_phys_addr(vma, offset);
1511 		*batch++ = target_addr;
1512 	}
1513 
1514 	return true;
1515 }
1516 
1517 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1518 			    struct i915_vma *vma,
1519 			    u64 offset,
1520 			    u64 target_addr)
1521 {
1522 	if (eb->reloc_cache.vaddr)
1523 		return false;
1524 
1525 	if (!use_reloc_gpu(vma))
1526 		return false;
1527 
1528 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1529 }
1530 
1531 static u64
1532 relocate_entry(struct i915_vma *vma,
1533 	       const struct drm_i915_gem_relocation_entry *reloc,
1534 	       struct i915_execbuffer *eb,
1535 	       const struct i915_vma *target)
1536 {
1537 	u64 target_addr = relocation_target(reloc, target);
1538 	u64 offset = reloc->offset;
1539 	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1540 
1541 	if (reloc_gpu < 0)
1542 		return reloc_gpu;
1543 
1544 	if (!reloc_gpu) {
1545 		bool wide = eb->reloc_cache.use_64bit_reloc;
1546 		void *vaddr;
1547 
1548 repeat:
1549 		vaddr = reloc_vaddr(vma->obj, eb,
1550 				    offset >> PAGE_SHIFT);
1551 		if (IS_ERR(vaddr))
1552 			return PTR_ERR(vaddr);
1553 
1554 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1555 		clflush_write32(vaddr + offset_in_page(offset),
1556 				lower_32_bits(target_addr),
1557 				eb->reloc_cache.vaddr);
1558 
1559 		if (wide) {
1560 			offset += sizeof(u32);
1561 			target_addr >>= 32;
1562 			wide = false;
1563 			goto repeat;
1564 		}
1565 	}
1566 
1567 	return target->node.start | UPDATE;
1568 }
1569 
1570 static u64
1571 eb_relocate_entry(struct i915_execbuffer *eb,
1572 		  struct eb_vma *ev,
1573 		  const struct drm_i915_gem_relocation_entry *reloc)
1574 {
1575 	struct drm_i915_private *i915 = eb->i915;
1576 	struct eb_vma *target;
1577 	int err;
1578 
1579 	/* we've already hold a reference to all valid objects */
1580 	target = eb_get_vma(eb, reloc->target_handle);
1581 	if (unlikely(!target))
1582 		return -ENOENT;
1583 
1584 	/* Validate that the target is in a valid r/w GPU domain */
1585 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1586 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1587 			  "target %d offset %d "
1588 			  "read %08x write %08x",
1589 			  reloc->target_handle,
1590 			  (int) reloc->offset,
1591 			  reloc->read_domains,
1592 			  reloc->write_domain);
1593 		return -EINVAL;
1594 	}
1595 	if (unlikely((reloc->write_domain | reloc->read_domains)
1596 		     & ~I915_GEM_GPU_DOMAINS)) {
1597 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1598 			  "target %d offset %d "
1599 			  "read %08x write %08x",
1600 			  reloc->target_handle,
1601 			  (int) reloc->offset,
1602 			  reloc->read_domains,
1603 			  reloc->write_domain);
1604 		return -EINVAL;
1605 	}
1606 
1607 	if (reloc->write_domain) {
1608 		target->flags |= EXEC_OBJECT_WRITE;
1609 
1610 		/*
1611 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1612 		 * for MI and pipe_control writes because the gpu doesn't
1613 		 * properly redirect them through the ppgtt for non_secure
1614 		 * batchbuffers.
1615 		 */
1616 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1617 		    IS_GEN(eb->i915, 6)) {
1618 			err = i915_vma_bind(target->vma,
1619 					    target->vma->obj->cache_level,
1620 					    PIN_GLOBAL, NULL);
1621 			if (err)
1622 				return err;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * If the relocation already has the right value in it, no
1628 	 * more work needs to be done.
1629 	 */
1630 	if (!DBG_FORCE_RELOC &&
1631 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1632 		return 0;
1633 
1634 	/* Check that the relocation address is valid... */
1635 	if (unlikely(reloc->offset >
1636 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1637 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1638 			  "target %d offset %d size %d.\n",
1639 			  reloc->target_handle,
1640 			  (int)reloc->offset,
1641 			  (int)ev->vma->size);
1642 		return -EINVAL;
1643 	}
1644 	if (unlikely(reloc->offset & 3)) {
1645 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1646 			  "target %d offset %d.\n",
1647 			  reloc->target_handle,
1648 			  (int)reloc->offset);
1649 		return -EINVAL;
1650 	}
1651 
1652 	/*
1653 	 * If we write into the object, we need to force the synchronisation
1654 	 * barrier, either with an asynchronous clflush or if we executed the
1655 	 * patching using the GPU (though that should be serialised by the
1656 	 * timeline). To be completely sure, and since we are required to
1657 	 * do relocations we are already stalling, disable the user's opt
1658 	 * out of our synchronisation.
1659 	 */
1660 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1661 
1662 	/* and update the user's relocation entry */
1663 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1664 }
1665 
1666 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1667 {
1668 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1669 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1670 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1671 	struct drm_i915_gem_relocation_entry __user *urelocs =
1672 		u64_to_user_ptr(entry->relocs_ptr);
1673 	unsigned long remain = entry->relocation_count;
1674 
1675 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1676 		return -EINVAL;
1677 
1678 	/*
1679 	 * We must check that the entire relocation array is safe
1680 	 * to read. However, if the array is not writable the user loses
1681 	 * the updated relocation values.
1682 	 */
1683 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1684 		return -EFAULT;
1685 
1686 	do {
1687 		struct drm_i915_gem_relocation_entry *r = stack;
1688 		unsigned int count =
1689 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1690 		unsigned int copied;
1691 
1692 		/*
1693 		 * This is the fast path and we cannot handle a pagefault
1694 		 * whilst holding the struct mutex lest the user pass in the
1695 		 * relocations contained within a mmaped bo. For in such a case
1696 		 * we, the page fault handler would call i915_gem_fault() and
1697 		 * we would try to acquire the struct mutex again. Obviously
1698 		 * this is bad and so lockdep complains vehemently.
1699 		 */
1700 		pagefault_disable();
1701 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1702 		pagefault_enable();
1703 		if (unlikely(copied)) {
1704 			remain = -EFAULT;
1705 			goto out;
1706 		}
1707 
1708 		remain -= count;
1709 		do {
1710 			u64 offset = eb_relocate_entry(eb, ev, r);
1711 
1712 			if (likely(offset == 0)) {
1713 			} else if ((s64)offset < 0) {
1714 				remain = (int)offset;
1715 				goto out;
1716 			} else {
1717 				/*
1718 				 * Note that reporting an error now
1719 				 * leaves everything in an inconsistent
1720 				 * state as we have *already* changed
1721 				 * the relocation value inside the
1722 				 * object. As we have not changed the
1723 				 * reloc.presumed_offset or will not
1724 				 * change the execobject.offset, on the
1725 				 * call we may not rewrite the value
1726 				 * inside the object, leaving it
1727 				 * dangling and causing a GPU hang. Unless
1728 				 * userspace dynamically rebuilds the
1729 				 * relocations on each execbuf rather than
1730 				 * presume a static tree.
1731 				 *
1732 				 * We did previously check if the relocations
1733 				 * were writable (access_ok), an error now
1734 				 * would be a strange race with mprotect,
1735 				 * having already demonstrated that we
1736 				 * can read from this userspace address.
1737 				 */
1738 				offset = gen8_canonical_addr(offset & ~UPDATE);
1739 				__put_user(offset,
1740 					   &urelocs[r - stack].presumed_offset);
1741 			}
1742 		} while (r++, --count);
1743 		urelocs += ARRAY_SIZE(stack);
1744 	} while (remain);
1745 out:
1746 	reloc_cache_reset(&eb->reloc_cache, eb);
1747 	return remain;
1748 }
1749 
1750 static int
1751 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1752 {
1753 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1754 	struct drm_i915_gem_relocation_entry *relocs =
1755 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1756 	unsigned int i;
1757 	int err;
1758 
1759 	for (i = 0; i < entry->relocation_count; i++) {
1760 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1761 
1762 		if ((s64)offset < 0) {
1763 			err = (int)offset;
1764 			goto err;
1765 		}
1766 	}
1767 	err = 0;
1768 err:
1769 	reloc_cache_reset(&eb->reloc_cache, eb);
1770 	return err;
1771 }
1772 
1773 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1774 {
1775 	const char __user *addr, *end;
1776 	unsigned long size;
1777 	char __maybe_unused c;
1778 
1779 	size = entry->relocation_count;
1780 	if (size == 0)
1781 		return 0;
1782 
1783 	if (size > N_RELOC(ULONG_MAX))
1784 		return -EINVAL;
1785 
1786 	addr = u64_to_user_ptr(entry->relocs_ptr);
1787 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1788 	if (!access_ok(addr, size))
1789 		return -EFAULT;
1790 
1791 	end = addr + size;
1792 	for (; addr < end; addr += PAGE_SIZE) {
1793 		int err = __get_user(c, addr);
1794 		if (err)
1795 			return err;
1796 	}
1797 	return __get_user(c, end - 1);
1798 }
1799 
1800 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1801 {
1802 	struct drm_i915_gem_relocation_entry *relocs;
1803 	const unsigned int count = eb->buffer_count;
1804 	unsigned int i;
1805 	int err;
1806 
1807 	for (i = 0; i < count; i++) {
1808 		const unsigned int nreloc = eb->exec[i].relocation_count;
1809 		struct drm_i915_gem_relocation_entry __user *urelocs;
1810 		unsigned long size;
1811 		unsigned long copied;
1812 
1813 		if (nreloc == 0)
1814 			continue;
1815 
1816 		err = check_relocations(&eb->exec[i]);
1817 		if (err)
1818 			goto err;
1819 
1820 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1821 		size = nreloc * sizeof(*relocs);
1822 
1823 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1824 		if (!relocs) {
1825 			err = -ENOMEM;
1826 			goto err;
1827 		}
1828 
1829 		/* copy_from_user is limited to < 4GiB */
1830 		copied = 0;
1831 		do {
1832 			unsigned int len =
1833 				min_t(u64, BIT_ULL(31), size - copied);
1834 
1835 			if (__copy_from_user((char *)relocs + copied,
1836 					     (char __user *)urelocs + copied,
1837 					     len))
1838 				goto end;
1839 
1840 			copied += len;
1841 		} while (copied < size);
1842 
1843 		/*
1844 		 * As we do not update the known relocation offsets after
1845 		 * relocating (due to the complexities in lock handling),
1846 		 * we need to mark them as invalid now so that we force the
1847 		 * relocation processing next time. Just in case the target
1848 		 * object is evicted and then rebound into its old
1849 		 * presumed_offset before the next execbuffer - if that
1850 		 * happened we would make the mistake of assuming that the
1851 		 * relocations were valid.
1852 		 */
1853 		if (!user_access_begin(urelocs, size))
1854 			goto end;
1855 
1856 		for (copied = 0; copied < nreloc; copied++)
1857 			unsafe_put_user(-1,
1858 					&urelocs[copied].presumed_offset,
1859 					end_user);
1860 		user_access_end();
1861 
1862 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1863 	}
1864 
1865 	return 0;
1866 
1867 end_user:
1868 	user_access_end();
1869 end:
1870 	kvfree(relocs);
1871 	err = -EFAULT;
1872 err:
1873 	while (i--) {
1874 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1875 		if (eb->exec[i].relocation_count)
1876 			kvfree(relocs);
1877 	}
1878 	return err;
1879 }
1880 
1881 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1882 {
1883 	const unsigned int count = eb->buffer_count;
1884 	unsigned int i;
1885 
1886 	for (i = 0; i < count; i++) {
1887 		int err;
1888 
1889 		err = check_relocations(&eb->exec[i]);
1890 		if (err)
1891 			return err;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1898 					   struct i915_request *rq)
1899 {
1900 	bool have_copy = false;
1901 	struct eb_vma *ev;
1902 	int err = 0;
1903 
1904 repeat:
1905 	if (signal_pending(current)) {
1906 		err = -ERESTARTSYS;
1907 		goto out;
1908 	}
1909 
1910 	/* We may process another execbuffer during the unlock... */
1911 	eb_release_vmas(eb, false);
1912 	i915_gem_ww_ctx_fini(&eb->ww);
1913 
1914 	if (rq) {
1915 		/* nonblocking is always false */
1916 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1917 				      MAX_SCHEDULE_TIMEOUT) < 0) {
1918 			i915_request_put(rq);
1919 			rq = NULL;
1920 
1921 			err = -EINTR;
1922 			goto err_relock;
1923 		}
1924 
1925 		i915_request_put(rq);
1926 		rq = NULL;
1927 	}
1928 
1929 	/*
1930 	 * We take 3 passes through the slowpatch.
1931 	 *
1932 	 * 1 - we try to just prefault all the user relocation entries and
1933 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1934 	 *
1935 	 * 2 - we copy the user entries to a local buffer here outside of the
1936 	 * local and allow ourselves to wait upon any rendering before
1937 	 * relocations
1938 	 *
1939 	 * 3 - we already have a local copy of the relocation entries, but
1940 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1941 	 */
1942 	if (!err) {
1943 		err = eb_prefault_relocations(eb);
1944 	} else if (!have_copy) {
1945 		err = eb_copy_relocations(eb);
1946 		have_copy = err == 0;
1947 	} else {
1948 		cond_resched();
1949 		err = 0;
1950 	}
1951 
1952 	if (!err)
1953 		flush_workqueue(eb->i915->mm.userptr_wq);
1954 
1955 err_relock:
1956 	i915_gem_ww_ctx_init(&eb->ww, true);
1957 	if (err)
1958 		goto out;
1959 
1960 	/* reacquire the objects */
1961 repeat_validate:
1962 	rq = eb_pin_engine(eb, false);
1963 	if (IS_ERR(rq)) {
1964 		err = PTR_ERR(rq);
1965 		rq = NULL;
1966 		goto err;
1967 	}
1968 
1969 	/* We didn't throttle, should be NULL */
1970 	GEM_WARN_ON(rq);
1971 
1972 	err = eb_validate_vmas(eb);
1973 	if (err)
1974 		goto err;
1975 
1976 	GEM_BUG_ON(!eb->batch);
1977 
1978 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1979 		if (!have_copy) {
1980 			pagefault_disable();
1981 			err = eb_relocate_vma(eb, ev);
1982 			pagefault_enable();
1983 			if (err)
1984 				break;
1985 		} else {
1986 			err = eb_relocate_vma_slow(eb, ev);
1987 			if (err)
1988 				break;
1989 		}
1990 	}
1991 
1992 	if (err == -EDEADLK)
1993 		goto err;
1994 
1995 	if (err && !have_copy)
1996 		goto repeat;
1997 
1998 	if (err)
1999 		goto err;
2000 
2001 	/* as last step, parse the command buffer */
2002 	err = eb_parse(eb);
2003 	if (err)
2004 		goto err;
2005 
2006 	/*
2007 	 * Leave the user relocations as are, this is the painfully slow path,
2008 	 * and we want to avoid the complication of dropping the lock whilst
2009 	 * having buffers reserved in the aperture and so causing spurious
2010 	 * ENOSPC for random operations.
2011 	 */
2012 
2013 err:
2014 	if (err == -EDEADLK) {
2015 		eb_release_vmas(eb, false);
2016 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2017 		if (!err)
2018 			goto repeat_validate;
2019 	}
2020 
2021 	if (err == -EAGAIN)
2022 		goto repeat;
2023 
2024 out:
2025 	if (have_copy) {
2026 		const unsigned int count = eb->buffer_count;
2027 		unsigned int i;
2028 
2029 		for (i = 0; i < count; i++) {
2030 			const struct drm_i915_gem_exec_object2 *entry =
2031 				&eb->exec[i];
2032 			struct drm_i915_gem_relocation_entry *relocs;
2033 
2034 			if (!entry->relocation_count)
2035 				continue;
2036 
2037 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2038 			kvfree(relocs);
2039 		}
2040 	}
2041 
2042 	if (rq)
2043 		i915_request_put(rq);
2044 
2045 	return err;
2046 }
2047 
2048 static int eb_relocate_parse(struct i915_execbuffer *eb)
2049 {
2050 	int err;
2051 	struct i915_request *rq = NULL;
2052 	bool throttle = true;
2053 
2054 retry:
2055 	rq = eb_pin_engine(eb, throttle);
2056 	if (IS_ERR(rq)) {
2057 		err = PTR_ERR(rq);
2058 		rq = NULL;
2059 		if (err != -EDEADLK)
2060 			return err;
2061 
2062 		goto err;
2063 	}
2064 
2065 	if (rq) {
2066 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2067 
2068 		/* Need to drop all locks now for throttling, take slowpath */
2069 		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2070 		if (err == -ETIME) {
2071 			if (nonblock) {
2072 				err = -EWOULDBLOCK;
2073 				i915_request_put(rq);
2074 				goto err;
2075 			}
2076 			goto slow;
2077 		}
2078 		i915_request_put(rq);
2079 		rq = NULL;
2080 	}
2081 
2082 	/* only throttle once, even if we didn't need to throttle */
2083 	throttle = false;
2084 
2085 	err = eb_validate_vmas(eb);
2086 	if (err == -EAGAIN)
2087 		goto slow;
2088 	else if (err)
2089 		goto err;
2090 
2091 	/* The objects are in their final locations, apply the relocations. */
2092 	if (eb->args->flags & __EXEC_HAS_RELOC) {
2093 		struct eb_vma *ev;
2094 
2095 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2096 			err = eb_relocate_vma(eb, ev);
2097 			if (err)
2098 				break;
2099 		}
2100 
2101 		if (err == -EDEADLK)
2102 			goto err;
2103 		else if (err)
2104 			goto slow;
2105 	}
2106 
2107 	if (!err)
2108 		err = eb_parse(eb);
2109 
2110 err:
2111 	if (err == -EDEADLK) {
2112 		eb_release_vmas(eb, false);
2113 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2114 		if (!err)
2115 			goto retry;
2116 	}
2117 
2118 	return err;
2119 
2120 slow:
2121 	err = eb_relocate_parse_slow(eb, rq);
2122 	if (err)
2123 		/*
2124 		 * If the user expects the execobject.offset and
2125 		 * reloc.presumed_offset to be an exact match,
2126 		 * as for using NO_RELOC, then we cannot update
2127 		 * the execobject.offset until we have completed
2128 		 * relocation.
2129 		 */
2130 		eb->args->flags &= ~__EXEC_HAS_RELOC;
2131 
2132 	return err;
2133 }
2134 
2135 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2136 {
2137 	const unsigned int count = eb->buffer_count;
2138 	unsigned int i = count;
2139 	int err = 0;
2140 
2141 	while (i--) {
2142 		struct eb_vma *ev = &eb->vma[i];
2143 		struct i915_vma *vma = ev->vma;
2144 		unsigned int flags = ev->flags;
2145 		struct drm_i915_gem_object *obj = vma->obj;
2146 
2147 		assert_vma_held(vma);
2148 
2149 		if (flags & EXEC_OBJECT_CAPTURE) {
2150 			struct i915_capture_list *capture;
2151 
2152 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2153 			if (capture) {
2154 				capture->next = eb->request->capture_list;
2155 				capture->vma = vma;
2156 				eb->request->capture_list = capture;
2157 			}
2158 		}
2159 
2160 		/*
2161 		 * If the GPU is not _reading_ through the CPU cache, we need
2162 		 * to make sure that any writes (both previous GPU writes from
2163 		 * before a change in snooping levels and normal CPU writes)
2164 		 * caught in that cache are flushed to main memory.
2165 		 *
2166 		 * We want to say
2167 		 *   obj->cache_dirty &&
2168 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2169 		 * but gcc's optimiser doesn't handle that as well and emits
2170 		 * two jumps instead of one. Maybe one day...
2171 		 */
2172 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2173 			if (i915_gem_clflush_object(obj, 0))
2174 				flags &= ~EXEC_OBJECT_ASYNC;
2175 		}
2176 
2177 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2178 			err = i915_request_await_object
2179 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
2180 		}
2181 
2182 		if (err == 0)
2183 			err = i915_vma_move_to_active(vma, eb->request, flags);
2184 	}
2185 
2186 	if (unlikely(err))
2187 		goto err_skip;
2188 
2189 	/* Unconditionally flush any chipset caches (for streaming writes). */
2190 	intel_gt_chipset_flush(eb->engine->gt);
2191 	return 0;
2192 
2193 err_skip:
2194 	i915_request_set_error_once(eb->request, err);
2195 	return err;
2196 }
2197 
2198 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2199 {
2200 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2201 		return -EINVAL;
2202 
2203 	/* Kernel clipping was a DRI1 misfeature */
2204 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2205 			     I915_EXEC_USE_EXTENSIONS))) {
2206 		if (exec->num_cliprects || exec->cliprects_ptr)
2207 			return -EINVAL;
2208 	}
2209 
2210 	if (exec->DR4 == 0xffffffff) {
2211 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2212 		exec->DR4 = 0;
2213 	}
2214 	if (exec->DR1 || exec->DR4)
2215 		return -EINVAL;
2216 
2217 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2218 		return -EINVAL;
2219 
2220 	return 0;
2221 }
2222 
2223 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2224 {
2225 	u32 *cs;
2226 	int i;
2227 
2228 	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2229 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2230 		return -EINVAL;
2231 	}
2232 
2233 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2234 	if (IS_ERR(cs))
2235 		return PTR_ERR(cs);
2236 
2237 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2238 	for (i = 0; i < 4; i++) {
2239 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2240 		*cs++ = 0;
2241 	}
2242 	*cs++ = MI_NOOP;
2243 	intel_ring_advance(rq, cs);
2244 
2245 	return 0;
2246 }
2247 
2248 static struct i915_vma *
2249 shadow_batch_pin(struct i915_execbuffer *eb,
2250 		 struct drm_i915_gem_object *obj,
2251 		 struct i915_address_space *vm,
2252 		 unsigned int flags)
2253 {
2254 	struct i915_vma *vma;
2255 	int err;
2256 
2257 	vma = i915_vma_instance(obj, vm, NULL);
2258 	if (IS_ERR(vma))
2259 		return vma;
2260 
2261 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2262 	if (err)
2263 		return ERR_PTR(err);
2264 
2265 	return vma;
2266 }
2267 
2268 struct eb_parse_work {
2269 	struct dma_fence_work base;
2270 	struct intel_engine_cs *engine;
2271 	struct i915_vma *batch;
2272 	struct i915_vma *shadow;
2273 	struct i915_vma *trampoline;
2274 	unsigned long batch_offset;
2275 	unsigned long batch_length;
2276 };
2277 
2278 static int __eb_parse(struct dma_fence_work *work)
2279 {
2280 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2281 
2282 	return intel_engine_cmd_parser(pw->engine,
2283 				       pw->batch,
2284 				       pw->batch_offset,
2285 				       pw->batch_length,
2286 				       pw->shadow,
2287 				       pw->trampoline);
2288 }
2289 
2290 static void __eb_parse_release(struct dma_fence_work *work)
2291 {
2292 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2293 
2294 	if (pw->trampoline)
2295 		i915_active_release(&pw->trampoline->active);
2296 	i915_active_release(&pw->shadow->active);
2297 	i915_active_release(&pw->batch->active);
2298 }
2299 
2300 static const struct dma_fence_work_ops eb_parse_ops = {
2301 	.name = "eb_parse",
2302 	.work = __eb_parse,
2303 	.release = __eb_parse_release,
2304 };
2305 
2306 static inline int
2307 __parser_mark_active(struct i915_vma *vma,
2308 		     struct intel_timeline *tl,
2309 		     struct dma_fence *fence)
2310 {
2311 	struct intel_gt_buffer_pool_node *node = vma->private;
2312 
2313 	return i915_active_ref(&node->active, tl->fence_context, fence);
2314 }
2315 
2316 static int
2317 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2318 {
2319 	int err;
2320 
2321 	mutex_lock(&tl->mutex);
2322 
2323 	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2324 	if (err)
2325 		goto unlock;
2326 
2327 	if (pw->trampoline) {
2328 		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2329 		if (err)
2330 			goto unlock;
2331 	}
2332 
2333 unlock:
2334 	mutex_unlock(&tl->mutex);
2335 	return err;
2336 }
2337 
2338 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2339 			     struct i915_vma *shadow,
2340 			     struct i915_vma *trampoline)
2341 {
2342 	struct eb_parse_work *pw;
2343 	int err;
2344 
2345 	GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2346 	GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2347 
2348 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2349 	if (!pw)
2350 		return -ENOMEM;
2351 
2352 	err = i915_active_acquire(&eb->batch->vma->active);
2353 	if (err)
2354 		goto err_free;
2355 
2356 	err = i915_active_acquire(&shadow->active);
2357 	if (err)
2358 		goto err_batch;
2359 
2360 	if (trampoline) {
2361 		err = i915_active_acquire(&trampoline->active);
2362 		if (err)
2363 			goto err_shadow;
2364 	}
2365 
2366 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2367 
2368 	pw->engine = eb->engine;
2369 	pw->batch = eb->batch->vma;
2370 	pw->batch_offset = eb->batch_start_offset;
2371 	pw->batch_length = eb->batch_len;
2372 	pw->shadow = shadow;
2373 	pw->trampoline = trampoline;
2374 
2375 	/* Mark active refs early for this worker, in case we get interrupted */
2376 	err = parser_mark_active(pw, eb->context->timeline);
2377 	if (err)
2378 		goto err_commit;
2379 
2380 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2381 	if (err)
2382 		goto err_commit;
2383 
2384 	/* Wait for all writes (and relocs) into the batch to complete */
2385 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2386 					      pw->batch->resv, NULL, false,
2387 					      0, I915_FENCE_GFP);
2388 	if (err < 0)
2389 		goto err_commit;
2390 
2391 	/* Keep the batch alive and unwritten as we parse */
2392 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2393 
2394 	/* Force execution to wait for completion of the parser */
2395 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2396 
2397 	dma_fence_work_commit_imm(&pw->base);
2398 	return 0;
2399 
2400 err_commit:
2401 	i915_sw_fence_set_error_once(&pw->base.chain, err);
2402 	dma_fence_work_commit_imm(&pw->base);
2403 	return err;
2404 
2405 err_shadow:
2406 	i915_active_release(&shadow->active);
2407 err_batch:
2408 	i915_active_release(&eb->batch->vma->active);
2409 err_free:
2410 	kfree(pw);
2411 	return err;
2412 }
2413 
2414 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2415 {
2416 	/*
2417 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2418 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2419 	 * hsw should have this fixed, but bdw mucks it up again. */
2420 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2421 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2422 
2423 	return NULL;
2424 }
2425 
2426 static int eb_parse(struct i915_execbuffer *eb)
2427 {
2428 	struct drm_i915_private *i915 = eb->i915;
2429 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2430 	struct i915_vma *shadow, *trampoline, *batch;
2431 	unsigned long len;
2432 	int err;
2433 
2434 	if (!eb_use_cmdparser(eb)) {
2435 		batch = eb_dispatch_secure(eb, eb->batch->vma);
2436 		if (IS_ERR(batch))
2437 			return PTR_ERR(batch);
2438 
2439 		goto secure_batch;
2440 	}
2441 
2442 	len = eb->batch_len;
2443 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2444 		/*
2445 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2446 		 * post-scan tampering
2447 		 */
2448 		if (!eb->context->vm->has_read_only) {
2449 			drm_dbg(&i915->drm,
2450 				"Cannot prevent post-scan tampering without RO capable vm\n");
2451 			return -EINVAL;
2452 		}
2453 	} else {
2454 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2455 	}
2456 	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2457 		return -EINVAL;
2458 
2459 	if (!pool) {
2460 		pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2461 		if (IS_ERR(pool))
2462 			return PTR_ERR(pool);
2463 		eb->batch_pool = pool;
2464 	}
2465 
2466 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2467 	if (err)
2468 		goto err;
2469 
2470 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2471 	if (IS_ERR(shadow)) {
2472 		err = PTR_ERR(shadow);
2473 		goto err;
2474 	}
2475 	i915_gem_object_set_readonly(shadow->obj);
2476 	shadow->private = pool;
2477 
2478 	trampoline = NULL;
2479 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2480 		trampoline = shadow;
2481 
2482 		shadow = shadow_batch_pin(eb, pool->obj,
2483 					  &eb->engine->gt->ggtt->vm,
2484 					  PIN_GLOBAL);
2485 		if (IS_ERR(shadow)) {
2486 			err = PTR_ERR(shadow);
2487 			shadow = trampoline;
2488 			goto err_shadow;
2489 		}
2490 		shadow->private = pool;
2491 
2492 		eb->batch_flags |= I915_DISPATCH_SECURE;
2493 	}
2494 
2495 	batch = eb_dispatch_secure(eb, shadow);
2496 	if (IS_ERR(batch)) {
2497 		err = PTR_ERR(batch);
2498 		goto err_trampoline;
2499 	}
2500 
2501 	err = eb_parse_pipeline(eb, shadow, trampoline);
2502 	if (err)
2503 		goto err_unpin_batch;
2504 
2505 	eb->batch = &eb->vma[eb->buffer_count++];
2506 	eb->batch->vma = i915_vma_get(shadow);
2507 	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2508 
2509 	eb->trampoline = trampoline;
2510 	eb->batch_start_offset = 0;
2511 
2512 secure_batch:
2513 	if (batch) {
2514 		eb->batch = &eb->vma[eb->buffer_count++];
2515 		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2516 		eb->batch->vma = i915_vma_get(batch);
2517 	}
2518 	return 0;
2519 
2520 err_unpin_batch:
2521 	if (batch)
2522 		i915_vma_unpin(batch);
2523 err_trampoline:
2524 	if (trampoline)
2525 		i915_vma_unpin(trampoline);
2526 err_shadow:
2527 	i915_vma_unpin(shadow);
2528 err:
2529 	return err;
2530 }
2531 
2532 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2533 {
2534 	int err;
2535 
2536 	err = eb_move_to_gpu(eb);
2537 	if (err)
2538 		return err;
2539 
2540 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2541 		err = i915_reset_gen7_sol_offsets(eb->request);
2542 		if (err)
2543 			return err;
2544 	}
2545 
2546 	/*
2547 	 * After we completed waiting for other engines (using HW semaphores)
2548 	 * then we can signal that this request/batch is ready to run. This
2549 	 * allows us to determine if the batch is still waiting on the GPU
2550 	 * or actually running by checking the breadcrumb.
2551 	 */
2552 	if (eb->engine->emit_init_breadcrumb) {
2553 		err = eb->engine->emit_init_breadcrumb(eb->request);
2554 		if (err)
2555 			return err;
2556 	}
2557 
2558 	err = eb->engine->emit_bb_start(eb->request,
2559 					batch->node.start +
2560 					eb->batch_start_offset,
2561 					eb->batch_len,
2562 					eb->batch_flags);
2563 	if (err)
2564 		return err;
2565 
2566 	if (eb->trampoline) {
2567 		GEM_BUG_ON(eb->batch_start_offset);
2568 		err = eb->engine->emit_bb_start(eb->request,
2569 						eb->trampoline->node.start +
2570 						eb->batch_len,
2571 						0, 0);
2572 		if (err)
2573 			return err;
2574 	}
2575 
2576 	if (intel_context_nopreempt(eb->context))
2577 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2578 
2579 	return 0;
2580 }
2581 
2582 static int num_vcs_engines(const struct drm_i915_private *i915)
2583 {
2584 	return hweight64(VDBOX_MASK(&i915->gt));
2585 }
2586 
2587 /*
2588  * Find one BSD ring to dispatch the corresponding BSD command.
2589  * The engine index is returned.
2590  */
2591 static unsigned int
2592 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2593 			 struct drm_file *file)
2594 {
2595 	struct drm_i915_file_private *file_priv = file->driver_priv;
2596 
2597 	/* Check whether the file_priv has already selected one ring. */
2598 	if ((int)file_priv->bsd_engine < 0)
2599 		file_priv->bsd_engine =
2600 			get_random_int() % num_vcs_engines(dev_priv);
2601 
2602 	return file_priv->bsd_engine;
2603 }
2604 
2605 static const enum intel_engine_id user_ring_map[] = {
2606 	[I915_EXEC_DEFAULT]	= RCS0,
2607 	[I915_EXEC_RENDER]	= RCS0,
2608 	[I915_EXEC_BLT]		= BCS0,
2609 	[I915_EXEC_BSD]		= VCS0,
2610 	[I915_EXEC_VEBOX]	= VECS0
2611 };
2612 
2613 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2614 {
2615 	struct intel_ring *ring = ce->ring;
2616 	struct intel_timeline *tl = ce->timeline;
2617 	struct i915_request *rq;
2618 
2619 	/*
2620 	 * Completely unscientific finger-in-the-air estimates for suitable
2621 	 * maximum user request size (to avoid blocking) and then backoff.
2622 	 */
2623 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2624 		return NULL;
2625 
2626 	/*
2627 	 * Find a request that after waiting upon, there will be at least half
2628 	 * the ring available. The hysteresis allows us to compete for the
2629 	 * shared ring and should mean that we sleep less often prior to
2630 	 * claiming our resources, but not so long that the ring completely
2631 	 * drains before we can submit our next request.
2632 	 */
2633 	list_for_each_entry(rq, &tl->requests, link) {
2634 		if (rq->ring != ring)
2635 			continue;
2636 
2637 		if (__intel_ring_space(rq->postfix,
2638 				       ring->emit, ring->size) > ring->size / 2)
2639 			break;
2640 	}
2641 	if (&rq->link == &tl->requests)
2642 		return NULL; /* weird, we will check again later for real */
2643 
2644 	return i915_request_get(rq);
2645 }
2646 
2647 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2648 {
2649 	struct intel_context *ce = eb->context;
2650 	struct intel_timeline *tl;
2651 	struct i915_request *rq = NULL;
2652 	int err;
2653 
2654 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2655 
2656 	if (unlikely(intel_context_is_banned(ce)))
2657 		return ERR_PTR(-EIO);
2658 
2659 	/*
2660 	 * Pinning the contexts may generate requests in order to acquire
2661 	 * GGTT space, so do this first before we reserve a seqno for
2662 	 * ourselves.
2663 	 */
2664 	err = intel_context_pin_ww(ce, &eb->ww);
2665 	if (err)
2666 		return ERR_PTR(err);
2667 
2668 	/*
2669 	 * Take a local wakeref for preparing to dispatch the execbuf as
2670 	 * we expect to access the hardware fairly frequently in the
2671 	 * process, and require the engine to be kept awake between accesses.
2672 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2673 	 * until the timeline is idle, which in turn releases the wakeref
2674 	 * taken on the engine, and the parent device.
2675 	 */
2676 	tl = intel_context_timeline_lock(ce);
2677 	if (IS_ERR(tl)) {
2678 		intel_context_unpin(ce);
2679 		return ERR_CAST(tl);
2680 	}
2681 
2682 	intel_context_enter(ce);
2683 	if (throttle)
2684 		rq = eb_throttle(eb, ce);
2685 	intel_context_timeline_unlock(tl);
2686 
2687 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2688 	return rq;
2689 }
2690 
2691 static void eb_unpin_engine(struct i915_execbuffer *eb)
2692 {
2693 	struct intel_context *ce = eb->context;
2694 	struct intel_timeline *tl = ce->timeline;
2695 
2696 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2697 		return;
2698 
2699 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2700 
2701 	mutex_lock(&tl->mutex);
2702 	intel_context_exit(ce);
2703 	mutex_unlock(&tl->mutex);
2704 
2705 	intel_context_unpin(ce);
2706 }
2707 
2708 static unsigned int
2709 eb_select_legacy_ring(struct i915_execbuffer *eb)
2710 {
2711 	struct drm_i915_private *i915 = eb->i915;
2712 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2713 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2714 
2715 	if (user_ring_id != I915_EXEC_BSD &&
2716 	    (args->flags & I915_EXEC_BSD_MASK)) {
2717 		drm_dbg(&i915->drm,
2718 			"execbuf with non bsd ring but with invalid "
2719 			"bsd dispatch flags: %d\n", (int)(args->flags));
2720 		return -1;
2721 	}
2722 
2723 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2724 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2725 
2726 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2727 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2728 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2729 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2730 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2731 			bsd_idx--;
2732 		} else {
2733 			drm_dbg(&i915->drm,
2734 				"execbuf with unknown bsd ring: %u\n",
2735 				bsd_idx);
2736 			return -1;
2737 		}
2738 
2739 		return _VCS(bsd_idx);
2740 	}
2741 
2742 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2743 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2744 			user_ring_id);
2745 		return -1;
2746 	}
2747 
2748 	return user_ring_map[user_ring_id];
2749 }
2750 
2751 static int
2752 eb_select_engine(struct i915_execbuffer *eb)
2753 {
2754 	struct intel_context *ce;
2755 	unsigned int idx;
2756 	int err;
2757 
2758 	if (i915_gem_context_user_engines(eb->gem_context))
2759 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2760 	else
2761 		idx = eb_select_legacy_ring(eb);
2762 
2763 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2764 	if (IS_ERR(ce))
2765 		return PTR_ERR(ce);
2766 
2767 	intel_gt_pm_get(ce->engine->gt);
2768 
2769 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2770 		err = intel_context_alloc_state(ce);
2771 		if (err)
2772 			goto err;
2773 	}
2774 
2775 	/*
2776 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2777 	 * EIO if the GPU is already wedged.
2778 	 */
2779 	err = intel_gt_terminally_wedged(ce->engine->gt);
2780 	if (err)
2781 		goto err;
2782 
2783 	eb->context = ce;
2784 	eb->engine = ce->engine;
2785 
2786 	/*
2787 	 * Make sure engine pool stays alive even if we call intel_context_put
2788 	 * during ww handling. The pool is destroyed when last pm reference
2789 	 * is dropped, which breaks our -EDEADLK handling.
2790 	 */
2791 	return err;
2792 
2793 err:
2794 	intel_gt_pm_put(ce->engine->gt);
2795 	intel_context_put(ce);
2796 	return err;
2797 }
2798 
2799 static void
2800 eb_put_engine(struct i915_execbuffer *eb)
2801 {
2802 	intel_gt_pm_put(eb->engine->gt);
2803 	intel_context_put(eb->context);
2804 }
2805 
2806 static void
2807 __free_fence_array(struct eb_fence *fences, unsigned int n)
2808 {
2809 	while (n--) {
2810 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2811 		dma_fence_put(fences[n].dma_fence);
2812 		kfree(fences[n].chain_fence);
2813 	}
2814 	kvfree(fences);
2815 }
2816 
2817 static int
2818 add_timeline_fence_array(struct i915_execbuffer *eb,
2819 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2820 {
2821 	struct drm_i915_gem_exec_fence __user *user_fences;
2822 	u64 __user *user_values;
2823 	struct eb_fence *f;
2824 	u64 nfences;
2825 	int err = 0;
2826 
2827 	nfences = timeline_fences->fence_count;
2828 	if (!nfences)
2829 		return 0;
2830 
2831 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2832 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2833 	if (nfences > min_t(unsigned long,
2834 			    ULONG_MAX / sizeof(*user_fences),
2835 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2836 		return -EINVAL;
2837 
2838 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2839 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2840 		return -EFAULT;
2841 
2842 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2843 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2844 		return -EFAULT;
2845 
2846 	f = krealloc(eb->fences,
2847 		     (eb->num_fences + nfences) * sizeof(*f),
2848 		     __GFP_NOWARN | GFP_KERNEL);
2849 	if (!f)
2850 		return -ENOMEM;
2851 
2852 	eb->fences = f;
2853 	f += eb->num_fences;
2854 
2855 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2856 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2857 
2858 	while (nfences--) {
2859 		struct drm_i915_gem_exec_fence user_fence;
2860 		struct drm_syncobj *syncobj;
2861 		struct dma_fence *fence = NULL;
2862 		u64 point;
2863 
2864 		if (__copy_from_user(&user_fence,
2865 				     user_fences++,
2866 				     sizeof(user_fence)))
2867 			return -EFAULT;
2868 
2869 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2870 			return -EINVAL;
2871 
2872 		if (__get_user(point, user_values++))
2873 			return -EFAULT;
2874 
2875 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2876 		if (!syncobj) {
2877 			DRM_DEBUG("Invalid syncobj handle provided\n");
2878 			return -ENOENT;
2879 		}
2880 
2881 		fence = drm_syncobj_fence_get(syncobj);
2882 
2883 		if (!fence && user_fence.flags &&
2884 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2885 			DRM_DEBUG("Syncobj handle has no fence\n");
2886 			drm_syncobj_put(syncobj);
2887 			return -EINVAL;
2888 		}
2889 
2890 		if (fence)
2891 			err = dma_fence_chain_find_seqno(&fence, point);
2892 
2893 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2894 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2895 			dma_fence_put(fence);
2896 			drm_syncobj_put(syncobj);
2897 			return err;
2898 		}
2899 
2900 		/*
2901 		 * A point might have been signaled already and
2902 		 * garbage collected from the timeline. In this case
2903 		 * just ignore the point and carry on.
2904 		 */
2905 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2906 			drm_syncobj_put(syncobj);
2907 			continue;
2908 		}
2909 
2910 		/*
2911 		 * For timeline syncobjs we need to preallocate chains for
2912 		 * later signaling.
2913 		 */
2914 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2915 			/*
2916 			 * Waiting and signaling the same point (when point !=
2917 			 * 0) would break the timeline.
2918 			 */
2919 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2920 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2921 				dma_fence_put(fence);
2922 				drm_syncobj_put(syncobj);
2923 				return -EINVAL;
2924 			}
2925 
2926 			f->chain_fence =
2927 				kmalloc(sizeof(*f->chain_fence),
2928 					GFP_KERNEL);
2929 			if (!f->chain_fence) {
2930 				drm_syncobj_put(syncobj);
2931 				dma_fence_put(fence);
2932 				return -ENOMEM;
2933 			}
2934 		} else {
2935 			f->chain_fence = NULL;
2936 		}
2937 
2938 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2939 		f->dma_fence = fence;
2940 		f->value = point;
2941 		f++;
2942 		eb->num_fences++;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 static int add_fence_array(struct i915_execbuffer *eb)
2949 {
2950 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2951 	struct drm_i915_gem_exec_fence __user *user;
2952 	unsigned long num_fences = args->num_cliprects;
2953 	struct eb_fence *f;
2954 
2955 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2956 		return 0;
2957 
2958 	if (!num_fences)
2959 		return 0;
2960 
2961 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2962 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2963 	if (num_fences > min_t(unsigned long,
2964 			       ULONG_MAX / sizeof(*user),
2965 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2966 		return -EINVAL;
2967 
2968 	user = u64_to_user_ptr(args->cliprects_ptr);
2969 	if (!access_ok(user, num_fences * sizeof(*user)))
2970 		return -EFAULT;
2971 
2972 	f = krealloc(eb->fences,
2973 		     (eb->num_fences + num_fences) * sizeof(*f),
2974 		     __GFP_NOWARN | GFP_KERNEL);
2975 	if (!f)
2976 		return -ENOMEM;
2977 
2978 	eb->fences = f;
2979 	f += eb->num_fences;
2980 	while (num_fences--) {
2981 		struct drm_i915_gem_exec_fence user_fence;
2982 		struct drm_syncobj *syncobj;
2983 		struct dma_fence *fence = NULL;
2984 
2985 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2986 			return -EFAULT;
2987 
2988 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2989 			return -EINVAL;
2990 
2991 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2992 		if (!syncobj) {
2993 			DRM_DEBUG("Invalid syncobj handle provided\n");
2994 			return -ENOENT;
2995 		}
2996 
2997 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2998 			fence = drm_syncobj_fence_get(syncobj);
2999 			if (!fence) {
3000 				DRM_DEBUG("Syncobj handle has no fence\n");
3001 				drm_syncobj_put(syncobj);
3002 				return -EINVAL;
3003 			}
3004 		}
3005 
3006 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3007 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3008 
3009 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3010 		f->dma_fence = fence;
3011 		f->value = 0;
3012 		f->chain_fence = NULL;
3013 		f++;
3014 		eb->num_fences++;
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 static void put_fence_array(struct eb_fence *fences, int num_fences)
3021 {
3022 	if (fences)
3023 		__free_fence_array(fences, num_fences);
3024 }
3025 
3026 static int
3027 await_fence_array(struct i915_execbuffer *eb)
3028 {
3029 	unsigned int n;
3030 	int err;
3031 
3032 	for (n = 0; n < eb->num_fences; n++) {
3033 		struct drm_syncobj *syncobj;
3034 		unsigned int flags;
3035 
3036 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3037 
3038 		if (!eb->fences[n].dma_fence)
3039 			continue;
3040 
3041 		err = i915_request_await_dma_fence(eb->request,
3042 						   eb->fences[n].dma_fence);
3043 		if (err < 0)
3044 			return err;
3045 	}
3046 
3047 	return 0;
3048 }
3049 
3050 static void signal_fence_array(const struct i915_execbuffer *eb)
3051 {
3052 	struct dma_fence * const fence = &eb->request->fence;
3053 	unsigned int n;
3054 
3055 	for (n = 0; n < eb->num_fences; n++) {
3056 		struct drm_syncobj *syncobj;
3057 		unsigned int flags;
3058 
3059 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3060 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3061 			continue;
3062 
3063 		if (eb->fences[n].chain_fence) {
3064 			drm_syncobj_add_point(syncobj,
3065 					      eb->fences[n].chain_fence,
3066 					      fence,
3067 					      eb->fences[n].value);
3068 			/*
3069 			 * The chain's ownership is transferred to the
3070 			 * timeline.
3071 			 */
3072 			eb->fences[n].chain_fence = NULL;
3073 		} else {
3074 			drm_syncobj_replace_fence(syncobj, fence);
3075 		}
3076 	}
3077 }
3078 
3079 static int
3080 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3081 {
3082 	struct i915_execbuffer *eb = data;
3083 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3084 
3085 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3086 		return -EFAULT;
3087 
3088 	return add_timeline_fence_array(eb, &timeline_fences);
3089 }
3090 
3091 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3092 {
3093 	struct i915_request *rq, *rn;
3094 
3095 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3096 		if (rq == end || !i915_request_retire(rq))
3097 			break;
3098 }
3099 
3100 static void eb_request_add(struct i915_execbuffer *eb)
3101 {
3102 	struct i915_request *rq = eb->request;
3103 	struct intel_timeline * const tl = i915_request_timeline(rq);
3104 	struct i915_sched_attr attr = {};
3105 	struct i915_request *prev;
3106 
3107 	lockdep_assert_held(&tl->mutex);
3108 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3109 
3110 	trace_i915_request_add(rq);
3111 
3112 	prev = __i915_request_commit(rq);
3113 
3114 	/* Check that the context wasn't destroyed before submission */
3115 	if (likely(!intel_context_is_closed(eb->context))) {
3116 		attr = eb->gem_context->sched;
3117 	} else {
3118 		/* Serialise with context_close via the add_to_timeline */
3119 		i915_request_set_error_once(rq, -ENOENT);
3120 		__i915_request_skip(rq);
3121 	}
3122 
3123 	__i915_request_queue(rq, &attr);
3124 
3125 	/* Try to clean up the client's timeline after submitting the request */
3126 	if (prev)
3127 		retire_requests(tl, prev);
3128 
3129 	mutex_unlock(&tl->mutex);
3130 }
3131 
3132 static const i915_user_extension_fn execbuf_extensions[] = {
3133 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3134 };
3135 
3136 static int
3137 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3138 			  struct i915_execbuffer *eb)
3139 {
3140 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3141 		return 0;
3142 
3143 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3144 	 * have another flag also using it at the same time.
3145 	 */
3146 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3147 		return -EINVAL;
3148 
3149 	if (args->num_cliprects != 0)
3150 		return -EINVAL;
3151 
3152 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3153 				    execbuf_extensions,
3154 				    ARRAY_SIZE(execbuf_extensions),
3155 				    eb);
3156 }
3157 
3158 static int
3159 i915_gem_do_execbuffer(struct drm_device *dev,
3160 		       struct drm_file *file,
3161 		       struct drm_i915_gem_execbuffer2 *args,
3162 		       struct drm_i915_gem_exec_object2 *exec)
3163 {
3164 	struct drm_i915_private *i915 = to_i915(dev);
3165 	struct i915_execbuffer eb;
3166 	struct dma_fence *in_fence = NULL;
3167 	struct sync_file *out_fence = NULL;
3168 	struct i915_vma *batch;
3169 	int out_fence_fd = -1;
3170 	int err;
3171 
3172 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3173 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3174 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3175 
3176 	eb.i915 = i915;
3177 	eb.file = file;
3178 	eb.args = args;
3179 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3180 		args->flags |= __EXEC_HAS_RELOC;
3181 
3182 	eb.exec = exec;
3183 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3184 	eb.vma[0].vma = NULL;
3185 	eb.reloc_pool = eb.batch_pool = NULL;
3186 	eb.reloc_context = NULL;
3187 
3188 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3189 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3190 
3191 	eb.buffer_count = args->buffer_count;
3192 	eb.batch_start_offset = args->batch_start_offset;
3193 	eb.batch_len = args->batch_len;
3194 	eb.trampoline = NULL;
3195 
3196 	eb.fences = NULL;
3197 	eb.num_fences = 0;
3198 
3199 	eb.batch_flags = 0;
3200 	if (args->flags & I915_EXEC_SECURE) {
3201 		if (INTEL_GEN(i915) >= 11)
3202 			return -ENODEV;
3203 
3204 		/* Return -EPERM to trigger fallback code on old binaries. */
3205 		if (!HAS_SECURE_BATCHES(i915))
3206 			return -EPERM;
3207 
3208 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3209 			return -EPERM;
3210 
3211 		eb.batch_flags |= I915_DISPATCH_SECURE;
3212 	}
3213 	if (args->flags & I915_EXEC_IS_PINNED)
3214 		eb.batch_flags |= I915_DISPATCH_PINNED;
3215 
3216 	err = parse_execbuf2_extensions(args, &eb);
3217 	if (err)
3218 		goto err_ext;
3219 
3220 	err = add_fence_array(&eb);
3221 	if (err)
3222 		goto err_ext;
3223 
3224 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3225 	if (args->flags & IN_FENCES) {
3226 		if ((args->flags & IN_FENCES) == IN_FENCES)
3227 			return -EINVAL;
3228 
3229 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3230 		if (!in_fence) {
3231 			err = -EINVAL;
3232 			goto err_ext;
3233 		}
3234 	}
3235 #undef IN_FENCES
3236 
3237 	if (args->flags & I915_EXEC_FENCE_OUT) {
3238 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3239 		if (out_fence_fd < 0) {
3240 			err = out_fence_fd;
3241 			goto err_in_fence;
3242 		}
3243 	}
3244 
3245 	err = eb_create(&eb);
3246 	if (err)
3247 		goto err_out_fence;
3248 
3249 	GEM_BUG_ON(!eb.lut_size);
3250 
3251 	err = eb_select_context(&eb);
3252 	if (unlikely(err))
3253 		goto err_destroy;
3254 
3255 	err = eb_select_engine(&eb);
3256 	if (unlikely(err))
3257 		goto err_context;
3258 
3259 	err = eb_lookup_vmas(&eb);
3260 	if (err) {
3261 		eb_release_vmas(&eb, true);
3262 		goto err_engine;
3263 	}
3264 
3265 	i915_gem_ww_ctx_init(&eb.ww, true);
3266 
3267 	err = eb_relocate_parse(&eb);
3268 	if (err) {
3269 		/*
3270 		 * If the user expects the execobject.offset and
3271 		 * reloc.presumed_offset to be an exact match,
3272 		 * as for using NO_RELOC, then we cannot update
3273 		 * the execobject.offset until we have completed
3274 		 * relocation.
3275 		 */
3276 		args->flags &= ~__EXEC_HAS_RELOC;
3277 		goto err_vma;
3278 	}
3279 
3280 	ww_acquire_done(&eb.ww.ctx);
3281 
3282 	batch = eb.batch->vma;
3283 
3284 	/* All GPU relocation batches must be submitted prior to the user rq */
3285 	GEM_BUG_ON(eb.reloc_cache.rq);
3286 
3287 	/* Allocate a request for this batch buffer nice and early. */
3288 	eb.request = i915_request_create(eb.context);
3289 	if (IS_ERR(eb.request)) {
3290 		err = PTR_ERR(eb.request);
3291 		goto err_vma;
3292 	}
3293 
3294 	if (in_fence) {
3295 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
3296 			err = i915_request_await_execution(eb.request,
3297 							   in_fence,
3298 							   eb.engine->bond_execute);
3299 		else
3300 			err = i915_request_await_dma_fence(eb.request,
3301 							   in_fence);
3302 		if (err < 0)
3303 			goto err_request;
3304 	}
3305 
3306 	if (eb.fences) {
3307 		err = await_fence_array(&eb);
3308 		if (err)
3309 			goto err_request;
3310 	}
3311 
3312 	if (out_fence_fd != -1) {
3313 		out_fence = sync_file_create(&eb.request->fence);
3314 		if (!out_fence) {
3315 			err = -ENOMEM;
3316 			goto err_request;
3317 		}
3318 	}
3319 
3320 	/*
3321 	 * Whilst this request exists, batch_obj will be on the
3322 	 * active_list, and so will hold the active reference. Only when this
3323 	 * request is retired will the the batch_obj be moved onto the
3324 	 * inactive_list and lose its active reference. Hence we do not need
3325 	 * to explicitly hold another reference here.
3326 	 */
3327 	eb.request->batch = batch;
3328 	if (eb.batch_pool)
3329 		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3330 
3331 	trace_i915_request_queue(eb.request, eb.batch_flags);
3332 	err = eb_submit(&eb, batch);
3333 err_request:
3334 	i915_request_get(eb.request);
3335 	eb_request_add(&eb);
3336 
3337 	if (eb.fences)
3338 		signal_fence_array(&eb);
3339 
3340 	if (out_fence) {
3341 		if (err == 0) {
3342 			fd_install(out_fence_fd, out_fence->file);
3343 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3344 			args->rsvd2 |= (u64)out_fence_fd << 32;
3345 			out_fence_fd = -1;
3346 		} else {
3347 			fput(out_fence->file);
3348 		}
3349 	}
3350 	i915_request_put(eb.request);
3351 
3352 err_vma:
3353 	eb_release_vmas(&eb, true);
3354 	if (eb.trampoline)
3355 		i915_vma_unpin(eb.trampoline);
3356 	WARN_ON(err == -EDEADLK);
3357 	i915_gem_ww_ctx_fini(&eb.ww);
3358 
3359 	if (eb.batch_pool)
3360 		intel_gt_buffer_pool_put(eb.batch_pool);
3361 	if (eb.reloc_pool)
3362 		intel_gt_buffer_pool_put(eb.reloc_pool);
3363 	if (eb.reloc_context)
3364 		intel_context_put(eb.reloc_context);
3365 err_engine:
3366 	eb_put_engine(&eb);
3367 err_context:
3368 	i915_gem_context_put(eb.gem_context);
3369 err_destroy:
3370 	eb_destroy(&eb);
3371 err_out_fence:
3372 	if (out_fence_fd != -1)
3373 		put_unused_fd(out_fence_fd);
3374 err_in_fence:
3375 	dma_fence_put(in_fence);
3376 err_ext:
3377 	put_fence_array(eb.fences, eb.num_fences);
3378 	return err;
3379 }
3380 
3381 static size_t eb_element_size(void)
3382 {
3383 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3384 }
3385 
3386 static bool check_buffer_count(size_t count)
3387 {
3388 	const size_t sz = eb_element_size();
3389 
3390 	/*
3391 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3392 	 * array size (see eb_create()). Otherwise, we can accept an array as
3393 	 * large as can be addressed (though use large arrays at your peril)!
3394 	 */
3395 
3396 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3397 }
3398 
3399 /*
3400  * Legacy execbuffer just creates an exec2 list from the original exec object
3401  * list array and passes it to the real function.
3402  */
3403 int
3404 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3405 			  struct drm_file *file)
3406 {
3407 	struct drm_i915_private *i915 = to_i915(dev);
3408 	struct drm_i915_gem_execbuffer *args = data;
3409 	struct drm_i915_gem_execbuffer2 exec2;
3410 	struct drm_i915_gem_exec_object *exec_list = NULL;
3411 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3412 	const size_t count = args->buffer_count;
3413 	unsigned int i;
3414 	int err;
3415 
3416 	if (!check_buffer_count(count)) {
3417 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3418 		return -EINVAL;
3419 	}
3420 
3421 	exec2.buffers_ptr = args->buffers_ptr;
3422 	exec2.buffer_count = args->buffer_count;
3423 	exec2.batch_start_offset = args->batch_start_offset;
3424 	exec2.batch_len = args->batch_len;
3425 	exec2.DR1 = args->DR1;
3426 	exec2.DR4 = args->DR4;
3427 	exec2.num_cliprects = args->num_cliprects;
3428 	exec2.cliprects_ptr = args->cliprects_ptr;
3429 	exec2.flags = I915_EXEC_RENDER;
3430 	i915_execbuffer2_set_context_id(exec2, 0);
3431 
3432 	err = i915_gem_check_execbuffer(&exec2);
3433 	if (err)
3434 		return err;
3435 
3436 	/* Copy in the exec list from userland */
3437 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3438 				   __GFP_NOWARN | GFP_KERNEL);
3439 
3440 	/* Allocate extra slots for use by the command parser */
3441 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3442 				    __GFP_NOWARN | GFP_KERNEL);
3443 	if (exec_list == NULL || exec2_list == NULL) {
3444 		drm_dbg(&i915->drm,
3445 			"Failed to allocate exec list for %d buffers\n",
3446 			args->buffer_count);
3447 		kvfree(exec_list);
3448 		kvfree(exec2_list);
3449 		return -ENOMEM;
3450 	}
3451 	err = copy_from_user(exec_list,
3452 			     u64_to_user_ptr(args->buffers_ptr),
3453 			     sizeof(*exec_list) * count);
3454 	if (err) {
3455 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
3456 			args->buffer_count, err);
3457 		kvfree(exec_list);
3458 		kvfree(exec2_list);
3459 		return -EFAULT;
3460 	}
3461 
3462 	for (i = 0; i < args->buffer_count; i++) {
3463 		exec2_list[i].handle = exec_list[i].handle;
3464 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
3465 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3466 		exec2_list[i].alignment = exec_list[i].alignment;
3467 		exec2_list[i].offset = exec_list[i].offset;
3468 		if (INTEL_GEN(to_i915(dev)) < 4)
3469 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3470 		else
3471 			exec2_list[i].flags = 0;
3472 	}
3473 
3474 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3475 	if (exec2.flags & __EXEC_HAS_RELOC) {
3476 		struct drm_i915_gem_exec_object __user *user_exec_list =
3477 			u64_to_user_ptr(args->buffers_ptr);
3478 
3479 		/* Copy the new buffer offsets back to the user's exec list. */
3480 		for (i = 0; i < args->buffer_count; i++) {
3481 			if (!(exec2_list[i].offset & UPDATE))
3482 				continue;
3483 
3484 			exec2_list[i].offset =
3485 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3486 			exec2_list[i].offset &= PIN_OFFSET_MASK;
3487 			if (__copy_to_user(&user_exec_list[i].offset,
3488 					   &exec2_list[i].offset,
3489 					   sizeof(user_exec_list[i].offset)))
3490 				break;
3491 		}
3492 	}
3493 
3494 	kvfree(exec_list);
3495 	kvfree(exec2_list);
3496 	return err;
3497 }
3498 
3499 int
3500 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3501 			   struct drm_file *file)
3502 {
3503 	struct drm_i915_private *i915 = to_i915(dev);
3504 	struct drm_i915_gem_execbuffer2 *args = data;
3505 	struct drm_i915_gem_exec_object2 *exec2_list;
3506 	const size_t count = args->buffer_count;
3507 	int err;
3508 
3509 	if (!check_buffer_count(count)) {
3510 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3511 		return -EINVAL;
3512 	}
3513 
3514 	err = i915_gem_check_execbuffer(args);
3515 	if (err)
3516 		return err;
3517 
3518 	/* Allocate extra slots for use by the command parser */
3519 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3520 				    __GFP_NOWARN | GFP_KERNEL);
3521 	if (exec2_list == NULL) {
3522 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3523 			count);
3524 		return -ENOMEM;
3525 	}
3526 	if (copy_from_user(exec2_list,
3527 			   u64_to_user_ptr(args->buffers_ptr),
3528 			   sizeof(*exec2_list) * count)) {
3529 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3530 		kvfree(exec2_list);
3531 		return -EFAULT;
3532 	}
3533 
3534 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3535 
3536 	/*
3537 	 * Now that we have begun execution of the batchbuffer, we ignore
3538 	 * any new error after this point. Also given that we have already
3539 	 * updated the associated relocations, we try to write out the current
3540 	 * object locations irrespective of any error.
3541 	 */
3542 	if (args->flags & __EXEC_HAS_RELOC) {
3543 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3544 			u64_to_user_ptr(args->buffers_ptr);
3545 		unsigned int i;
3546 
3547 		/* Copy the new buffer offsets back to the user's exec list. */
3548 		/*
3549 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3550 		 * because we checked 'count' in check_buffer_count().
3551 		 *
3552 		 * And this range already got effectively checked earlier
3553 		 * when we did the "copy_from_user()" above.
3554 		 */
3555 		if (!user_write_access_begin(user_exec_list,
3556 					     count * sizeof(*user_exec_list)))
3557 			goto end;
3558 
3559 		for (i = 0; i < args->buffer_count; i++) {
3560 			if (!(exec2_list[i].offset & UPDATE))
3561 				continue;
3562 
3563 			exec2_list[i].offset =
3564 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3565 			unsafe_put_user(exec2_list[i].offset,
3566 					&user_exec_list[i].offset,
3567 					end_user);
3568 		}
3569 end_user:
3570 		user_write_access_end();
3571 end:;
3572 	}
3573 
3574 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3575 	kvfree(exec2_list);
3576 	return err;
3577 }
3578 
3579 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3580 #include "selftests/i915_gem_execbuffer.c"
3581 #endif
3582