1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gt.h" 19 #include "gt/intel_gt_buffer_pool.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_ring.h" 22 23 #include "i915_drv.h" 24 #include "i915_gem_clflush.h" 25 #include "i915_gem_context.h" 26 #include "i915_gem_ioctls.h" 27 #include "i915_sw_fence_work.h" 28 #include "i915_trace.h" 29 #include "i915_user_extensions.h" 30 31 struct eb_vma { 32 struct i915_vma *vma; 33 unsigned int flags; 34 35 /** This vma's place in the execbuf reservation list */ 36 struct drm_i915_gem_exec_object2 *exec; 37 struct list_head bind_link; 38 struct list_head reloc_link; 39 40 struct hlist_node node; 41 u32 handle; 42 }; 43 44 enum { 45 FORCE_CPU_RELOC = 1, 46 FORCE_GTT_RELOC, 47 FORCE_GPU_RELOC, 48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 49 }; 50 51 #define __EXEC_OBJECT_HAS_PIN BIT(31) 52 #define __EXEC_OBJECT_HAS_FENCE BIT(30) 53 #define __EXEC_OBJECT_NEEDS_MAP BIT(29) 54 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) 55 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ 56 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 57 58 #define __EXEC_HAS_RELOC BIT(31) 59 #define __EXEC_ENGINE_PINNED BIT(30) 60 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 61 #define UPDATE PIN_OFFSET_FIXED 62 63 #define BATCH_OFFSET_BIAS (256*1024) 64 65 #define __I915_EXEC_ILLEGAL_FLAGS \ 66 (__I915_EXEC_UNKNOWN_FLAGS | \ 67 I915_EXEC_CONSTANTS_MASK | \ 68 I915_EXEC_RESOURCE_STREAMER) 69 70 /* Catch emission of unexpected errors for CI! */ 71 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 72 #undef EINVAL 73 #define EINVAL ({ \ 74 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 75 22; \ 76 }) 77 #endif 78 79 /** 80 * DOC: User command execution 81 * 82 * Userspace submits commands to be executed on the GPU as an instruction 83 * stream within a GEM object we call a batchbuffer. This instructions may 84 * refer to other GEM objects containing auxiliary state such as kernels, 85 * samplers, render targets and even secondary batchbuffers. Userspace does 86 * not know where in the GPU memory these objects reside and so before the 87 * batchbuffer is passed to the GPU for execution, those addresses in the 88 * batchbuffer and auxiliary objects are updated. This is known as relocation, 89 * or patching. To try and avoid having to relocate each object on the next 90 * execution, userspace is told the location of those objects in this pass, 91 * but this remains just a hint as the kernel may choose a new location for 92 * any object in the future. 93 * 94 * At the level of talking to the hardware, submitting a batchbuffer for the 95 * GPU to execute is to add content to a buffer from which the HW 96 * command streamer is reading. 97 * 98 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 99 * Execlists, this command is not placed on the same buffer as the 100 * remaining items. 101 * 102 * 2. Add a command to invalidate caches to the buffer. 103 * 104 * 3. Add a batchbuffer start command to the buffer; the start command is 105 * essentially a token together with the GPU address of the batchbuffer 106 * to be executed. 107 * 108 * 4. Add a pipeline flush to the buffer. 109 * 110 * 5. Add a memory write command to the buffer to record when the GPU 111 * is done executing the batchbuffer. The memory write writes the 112 * global sequence number of the request, ``i915_request::global_seqno``; 113 * the i915 driver uses the current value in the register to determine 114 * if the GPU has completed the batchbuffer. 115 * 116 * 6. Add a user interrupt command to the buffer. This command instructs 117 * the GPU to issue an interrupt when the command, pipeline flush and 118 * memory write are completed. 119 * 120 * 7. Inform the hardware of the additional commands added to the buffer 121 * (by updating the tail pointer). 122 * 123 * Processing an execbuf ioctl is conceptually split up into a few phases. 124 * 125 * 1. Validation - Ensure all the pointers, handles and flags are valid. 126 * 2. Reservation - Assign GPU address space for every object 127 * 3. Relocation - Update any addresses to point to the final locations 128 * 4. Serialisation - Order the request with respect to its dependencies 129 * 5. Construction - Construct a request to execute the batchbuffer 130 * 6. Submission (at some point in the future execution) 131 * 132 * Reserving resources for the execbuf is the most complicated phase. We 133 * neither want to have to migrate the object in the address space, nor do 134 * we want to have to update any relocations pointing to this object. Ideally, 135 * we want to leave the object where it is and for all the existing relocations 136 * to match. If the object is given a new address, or if userspace thinks the 137 * object is elsewhere, we have to parse all the relocation entries and update 138 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 139 * all the target addresses in all of its objects match the value in the 140 * relocation entries and that they all match the presumed offsets given by the 141 * list of execbuffer objects. Using this knowledge, we know that if we haven't 142 * moved any buffers, all the relocation entries are valid and we can skip 143 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 144 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 145 * 146 * The addresses written in the objects must match the corresponding 147 * reloc.presumed_offset which in turn must match the corresponding 148 * execobject.offset. 149 * 150 * Any render targets written to in the batch must be flagged with 151 * EXEC_OBJECT_WRITE. 152 * 153 * To avoid stalling, execobject.offset should match the current 154 * address of that object within the active context. 155 * 156 * The reservation is done is multiple phases. First we try and keep any 157 * object already bound in its current location - so as long as meets the 158 * constraints imposed by the new execbuffer. Any object left unbound after the 159 * first pass is then fitted into any available idle space. If an object does 160 * not fit, all objects are removed from the reservation and the process rerun 161 * after sorting the objects into a priority order (more difficult to fit 162 * objects are tried first). Failing that, the entire VM is cleared and we try 163 * to fit the execbuf once last time before concluding that it simply will not 164 * fit. 165 * 166 * A small complication to all of this is that we allow userspace not only to 167 * specify an alignment and a size for the object in the address space, but 168 * we also allow userspace to specify the exact offset. This objects are 169 * simpler to place (the location is known a priori) all we have to do is make 170 * sure the space is available. 171 * 172 * Once all the objects are in place, patching up the buried pointers to point 173 * to the final locations is a fairly simple job of walking over the relocation 174 * entry arrays, looking up the right address and rewriting the value into 175 * the object. Simple! ... The relocation entries are stored in user memory 176 * and so to access them we have to copy them into a local buffer. That copy 177 * has to avoid taking any pagefaults as they may lead back to a GEM object 178 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 179 * the relocation into multiple passes. First we try to do everything within an 180 * atomic context (avoid the pagefaults) which requires that we never wait. If 181 * we detect that we may wait, or if we need to fault, then we have to fallback 182 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 183 * bells yet?) Dropping the mutex means that we lose all the state we have 184 * built up so far for the execbuf and we must reset any global data. However, 185 * we do leave the objects pinned in their final locations - which is a 186 * potential issue for concurrent execbufs. Once we have left the mutex, we can 187 * allocate and copy all the relocation entries into a large array at our 188 * leisure, reacquire the mutex, reclaim all the objects and other state and 189 * then proceed to update any incorrect addresses with the objects. 190 * 191 * As we process the relocation entries, we maintain a record of whether the 192 * object is being written to. Using NORELOC, we expect userspace to provide 193 * this information instead. We also check whether we can skip the relocation 194 * by comparing the expected value inside the relocation entry with the target's 195 * final address. If they differ, we have to map the current object and rewrite 196 * the 4 or 8 byte pointer within. 197 * 198 * Serialising an execbuf is quite simple according to the rules of the GEM 199 * ABI. Execution within each context is ordered by the order of submission. 200 * Writes to any GEM object are in order of submission and are exclusive. Reads 201 * from a GEM object are unordered with respect to other reads, but ordered by 202 * writes. A write submitted after a read cannot occur before the read, and 203 * similarly any read submitted after a write cannot occur before the write. 204 * Writes are ordered between engines such that only one write occurs at any 205 * time (completing any reads beforehand) - using semaphores where available 206 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 207 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 208 * reads before starting, and any read (either using set-domain or pread) must 209 * flush all GPU writes before starting. (Note we only employ a barrier before, 210 * we currently rely on userspace not concurrently starting a new execution 211 * whilst reading or writing to an object. This may be an advantage or not 212 * depending on how much you trust userspace not to shoot themselves in the 213 * foot.) Serialisation may just result in the request being inserted into 214 * a DAG awaiting its turn, but most simple is to wait on the CPU until 215 * all dependencies are resolved. 216 * 217 * After all of that, is just a matter of closing the request and handing it to 218 * the hardware (well, leaving it in a queue to be executed). However, we also 219 * offer the ability for batchbuffers to be run with elevated privileges so 220 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 221 * Before any batch is given extra privileges we first must check that it 222 * contains no nefarious instructions, we check that each instruction is from 223 * our whitelist and all registers are also from an allowed list. We first 224 * copy the user's batchbuffer to a shadow (so that the user doesn't have 225 * access to it, either by the CPU or GPU as we scan it) and then parse each 226 * instruction. If everything is ok, we set a flag telling the hardware to run 227 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 228 */ 229 230 struct eb_fence { 231 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 232 struct dma_fence *dma_fence; 233 u64 value; 234 struct dma_fence_chain *chain_fence; 235 }; 236 237 struct i915_execbuffer { 238 struct drm_i915_private *i915; /** i915 backpointer */ 239 struct drm_file *file; /** per-file lookup tables and limits */ 240 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 241 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 242 struct eb_vma *vma; 243 244 struct intel_engine_cs *engine; /** engine to queue the request to */ 245 struct intel_context *context; /* logical state for the request */ 246 struct i915_gem_context *gem_context; /** caller's context */ 247 248 struct i915_request *request; /** our request to build */ 249 struct eb_vma *batch; /** identity of the batch obj/vma */ 250 struct i915_vma *trampoline; /** trampoline used for chaining */ 251 252 /** actual size of execobj[] as we may extend it for the cmdparser */ 253 unsigned int buffer_count; 254 255 /** list of vma not yet bound during reservation phase */ 256 struct list_head unbound; 257 258 /** list of vma that have execobj.relocation_count */ 259 struct list_head relocs; 260 261 struct i915_gem_ww_ctx ww; 262 263 /** 264 * Track the most recently used object for relocations, as we 265 * frequently have to perform multiple relocations within the same 266 * obj/page 267 */ 268 struct reloc_cache { 269 struct drm_mm_node node; /** temporary GTT binding */ 270 unsigned long vaddr; /** Current kmap address */ 271 unsigned long page; /** Currently mapped page index */ 272 unsigned int gen; /** Cached value of INTEL_GEN */ 273 bool use_64bit_reloc : 1; 274 bool has_llc : 1; 275 bool has_fence : 1; 276 bool needs_unfenced : 1; 277 278 struct i915_request *rq; 279 u32 *rq_cmd; 280 unsigned int rq_size; 281 struct intel_gt_buffer_pool_node *pool; 282 } reloc_cache; 283 284 struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */ 285 struct intel_context *reloc_context; 286 287 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 288 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 289 290 u64 batch_len; /** Length of batch within object */ 291 u32 batch_start_offset; /** Location within object of batch */ 292 u32 batch_flags; /** Flags composed for emit_bb_start() */ 293 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 294 295 /** 296 * Indicate either the size of the hastable used to resolve 297 * relocation handles, or if negative that we are using a direct 298 * index into the execobj[]. 299 */ 300 int lut_size; 301 struct hlist_head *buckets; /** ht for relocation handles */ 302 303 struct eb_fence *fences; 304 unsigned long num_fences; 305 }; 306 307 static int eb_parse(struct i915_execbuffer *eb); 308 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, 309 bool throttle); 310 static void eb_unpin_engine(struct i915_execbuffer *eb); 311 312 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 313 { 314 return intel_engine_requires_cmd_parser(eb->engine) || 315 (intel_engine_using_cmd_parser(eb->engine) && 316 eb->args->batch_len); 317 } 318 319 static int eb_create(struct i915_execbuffer *eb) 320 { 321 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 322 unsigned int size = 1 + ilog2(eb->buffer_count); 323 324 /* 325 * Without a 1:1 association between relocation handles and 326 * the execobject[] index, we instead create a hashtable. 327 * We size it dynamically based on available memory, starting 328 * first with 1:1 assocative hash and scaling back until 329 * the allocation succeeds. 330 * 331 * Later on we use a positive lut_size to indicate we are 332 * using this hashtable, and a negative value to indicate a 333 * direct lookup. 334 */ 335 do { 336 gfp_t flags; 337 338 /* While we can still reduce the allocation size, don't 339 * raise a warning and allow the allocation to fail. 340 * On the last pass though, we want to try as hard 341 * as possible to perform the allocation and warn 342 * if it fails. 343 */ 344 flags = GFP_KERNEL; 345 if (size > 1) 346 flags |= __GFP_NORETRY | __GFP_NOWARN; 347 348 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 349 flags); 350 if (eb->buckets) 351 break; 352 } while (--size); 353 354 if (unlikely(!size)) 355 return -ENOMEM; 356 357 eb->lut_size = size; 358 } else { 359 eb->lut_size = -eb->buffer_count; 360 } 361 362 return 0; 363 } 364 365 static bool 366 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 367 const struct i915_vma *vma, 368 unsigned int flags) 369 { 370 if (vma->node.size < entry->pad_to_size) 371 return true; 372 373 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 374 return true; 375 376 if (flags & EXEC_OBJECT_PINNED && 377 vma->node.start != entry->offset) 378 return true; 379 380 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 381 vma->node.start < BATCH_OFFSET_BIAS) 382 return true; 383 384 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 385 (vma->node.start + vma->node.size + 4095) >> 32) 386 return true; 387 388 if (flags & __EXEC_OBJECT_NEEDS_MAP && 389 !i915_vma_is_map_and_fenceable(vma)) 390 return true; 391 392 return false; 393 } 394 395 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 396 unsigned int exec_flags) 397 { 398 u64 pin_flags = 0; 399 400 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 401 pin_flags |= PIN_GLOBAL; 402 403 /* 404 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 405 * limit address to the first 4GBs for unflagged objects. 406 */ 407 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 408 pin_flags |= PIN_ZONE_4G; 409 410 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 411 pin_flags |= PIN_MAPPABLE; 412 413 if (exec_flags & EXEC_OBJECT_PINNED) 414 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 415 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 416 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 417 418 return pin_flags; 419 } 420 421 static inline bool 422 eb_pin_vma(struct i915_execbuffer *eb, 423 const struct drm_i915_gem_exec_object2 *entry, 424 struct eb_vma *ev) 425 { 426 struct i915_vma *vma = ev->vma; 427 u64 pin_flags; 428 429 if (vma->node.size) 430 pin_flags = vma->node.start; 431 else 432 pin_flags = entry->offset & PIN_OFFSET_MASK; 433 434 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 435 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 436 pin_flags |= PIN_GLOBAL; 437 438 /* Attempt to reuse the current location if available */ 439 /* TODO: Add -EDEADLK handling here */ 440 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) { 441 if (entry->flags & EXEC_OBJECT_PINNED) 442 return false; 443 444 /* Failing that pick any _free_ space if suitable */ 445 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 446 entry->pad_to_size, 447 entry->alignment, 448 eb_pin_flags(entry, ev->flags) | 449 PIN_USER | PIN_NOEVICT))) 450 return false; 451 } 452 453 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 454 if (unlikely(i915_vma_pin_fence(vma))) { 455 i915_vma_unpin(vma); 456 return false; 457 } 458 459 if (vma->fence) 460 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 461 } 462 463 ev->flags |= __EXEC_OBJECT_HAS_PIN; 464 return !eb_vma_misplaced(entry, vma, ev->flags); 465 } 466 467 static inline void 468 eb_unreserve_vma(struct eb_vma *ev) 469 { 470 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 471 return; 472 473 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 474 __i915_vma_unpin_fence(ev->vma); 475 476 __i915_vma_unpin(ev->vma); 477 ev->flags &= ~__EXEC_OBJECT_RESERVED; 478 } 479 480 static int 481 eb_validate_vma(struct i915_execbuffer *eb, 482 struct drm_i915_gem_exec_object2 *entry, 483 struct i915_vma *vma) 484 { 485 if (unlikely(entry->flags & eb->invalid_flags)) 486 return -EINVAL; 487 488 if (unlikely(entry->alignment && 489 !is_power_of_2_u64(entry->alignment))) 490 return -EINVAL; 491 492 /* 493 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 494 * any non-page-aligned or non-canonical addresses. 495 */ 496 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 497 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 498 return -EINVAL; 499 500 /* pad_to_size was once a reserved field, so sanitize it */ 501 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 502 if (unlikely(offset_in_page(entry->pad_to_size))) 503 return -EINVAL; 504 } else { 505 entry->pad_to_size = 0; 506 } 507 /* 508 * From drm_mm perspective address space is continuous, 509 * so from this point we're always using non-canonical 510 * form internally. 511 */ 512 entry->offset = gen8_noncanonical_addr(entry->offset); 513 514 if (!eb->reloc_cache.has_fence) { 515 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 516 } else { 517 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 518 eb->reloc_cache.needs_unfenced) && 519 i915_gem_object_is_tiled(vma->obj)) 520 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 521 } 522 523 if (!(entry->flags & EXEC_OBJECT_PINNED)) 524 entry->flags |= eb->context_flags; 525 526 return 0; 527 } 528 529 static void 530 eb_add_vma(struct i915_execbuffer *eb, 531 unsigned int i, unsigned batch_idx, 532 struct i915_vma *vma) 533 { 534 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 535 struct eb_vma *ev = &eb->vma[i]; 536 537 GEM_BUG_ON(i915_vma_is_closed(vma)); 538 539 ev->vma = vma; 540 ev->exec = entry; 541 ev->flags = entry->flags; 542 543 if (eb->lut_size > 0) { 544 ev->handle = entry->handle; 545 hlist_add_head(&ev->node, 546 &eb->buckets[hash_32(entry->handle, 547 eb->lut_size)]); 548 } 549 550 if (entry->relocation_count) 551 list_add_tail(&ev->reloc_link, &eb->relocs); 552 553 /* 554 * SNA is doing fancy tricks with compressing batch buffers, which leads 555 * to negative relocation deltas. Usually that works out ok since the 556 * relocate address is still positive, except when the batch is placed 557 * very low in the GTT. Ensure this doesn't happen. 558 * 559 * Note that actual hangs have only been observed on gen7, but for 560 * paranoia do it everywhere. 561 */ 562 if (i == batch_idx) { 563 if (entry->relocation_count && 564 !(ev->flags & EXEC_OBJECT_PINNED)) 565 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 566 if (eb->reloc_cache.has_fence) 567 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 568 569 eb->batch = ev; 570 } 571 } 572 573 static inline int use_cpu_reloc(const struct reloc_cache *cache, 574 const struct drm_i915_gem_object *obj) 575 { 576 if (!i915_gem_object_has_struct_page(obj)) 577 return false; 578 579 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 580 return true; 581 582 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 583 return false; 584 585 return (cache->has_llc || 586 obj->cache_dirty || 587 obj->cache_level != I915_CACHE_NONE); 588 } 589 590 static int eb_reserve_vma(struct i915_execbuffer *eb, 591 struct eb_vma *ev, 592 u64 pin_flags) 593 { 594 struct drm_i915_gem_exec_object2 *entry = ev->exec; 595 struct i915_vma *vma = ev->vma; 596 int err; 597 598 if (drm_mm_node_allocated(&vma->node) && 599 eb_vma_misplaced(entry, vma, ev->flags)) { 600 err = i915_vma_unbind(vma); 601 if (err) 602 return err; 603 } 604 605 err = i915_vma_pin_ww(vma, &eb->ww, 606 entry->pad_to_size, entry->alignment, 607 eb_pin_flags(entry, ev->flags) | pin_flags); 608 if (err) 609 return err; 610 611 if (entry->offset != vma->node.start) { 612 entry->offset = vma->node.start | UPDATE; 613 eb->args->flags |= __EXEC_HAS_RELOC; 614 } 615 616 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 617 err = i915_vma_pin_fence(vma); 618 if (unlikely(err)) { 619 i915_vma_unpin(vma); 620 return err; 621 } 622 623 if (vma->fence) 624 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 625 } 626 627 ev->flags |= __EXEC_OBJECT_HAS_PIN; 628 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 629 630 return 0; 631 } 632 633 static int eb_reserve(struct i915_execbuffer *eb) 634 { 635 const unsigned int count = eb->buffer_count; 636 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 637 struct list_head last; 638 struct eb_vma *ev; 639 unsigned int i, pass; 640 int err = 0; 641 642 /* 643 * Attempt to pin all of the buffers into the GTT. 644 * This is done in 3 phases: 645 * 646 * 1a. Unbind all objects that do not match the GTT constraints for 647 * the execbuffer (fenceable, mappable, alignment etc). 648 * 1b. Increment pin count for already bound objects. 649 * 2. Bind new objects. 650 * 3. Decrement pin count. 651 * 652 * This avoid unnecessary unbinding of later objects in order to make 653 * room for the earlier objects *unless* we need to defragment. 654 */ 655 pass = 0; 656 do { 657 list_for_each_entry(ev, &eb->unbound, bind_link) { 658 err = eb_reserve_vma(eb, ev, pin_flags); 659 if (err) 660 break; 661 } 662 if (err != -ENOSPC) 663 return err; 664 665 /* Resort *all* the objects into priority order */ 666 INIT_LIST_HEAD(&eb->unbound); 667 INIT_LIST_HEAD(&last); 668 for (i = 0; i < count; i++) { 669 unsigned int flags; 670 671 ev = &eb->vma[i]; 672 flags = ev->flags; 673 if (flags & EXEC_OBJECT_PINNED && 674 flags & __EXEC_OBJECT_HAS_PIN) 675 continue; 676 677 eb_unreserve_vma(ev); 678 679 if (flags & EXEC_OBJECT_PINNED) 680 /* Pinned must have their slot */ 681 list_add(&ev->bind_link, &eb->unbound); 682 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 683 /* Map require the lowest 256MiB (aperture) */ 684 list_add_tail(&ev->bind_link, &eb->unbound); 685 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 686 /* Prioritise 4GiB region for restricted bo */ 687 list_add(&ev->bind_link, &last); 688 else 689 list_add_tail(&ev->bind_link, &last); 690 } 691 list_splice_tail(&last, &eb->unbound); 692 693 switch (pass++) { 694 case 0: 695 break; 696 697 case 1: 698 /* Too fragmented, unbind everything and retry */ 699 mutex_lock(&eb->context->vm->mutex); 700 err = i915_gem_evict_vm(eb->context->vm); 701 mutex_unlock(&eb->context->vm->mutex); 702 if (err) 703 return err; 704 break; 705 706 default: 707 return -ENOSPC; 708 } 709 710 pin_flags = PIN_USER; 711 } while (1); 712 } 713 714 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 715 { 716 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 717 return 0; 718 else 719 return eb->buffer_count - 1; 720 } 721 722 static int eb_select_context(struct i915_execbuffer *eb) 723 { 724 struct i915_gem_context *ctx; 725 726 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 727 if (unlikely(!ctx)) 728 return -ENOENT; 729 730 eb->gem_context = ctx; 731 if (rcu_access_pointer(ctx->vm)) 732 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 733 734 eb->context_flags = 0; 735 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 736 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 737 738 return 0; 739 } 740 741 static int __eb_add_lut(struct i915_execbuffer *eb, 742 u32 handle, struct i915_vma *vma) 743 { 744 struct i915_gem_context *ctx = eb->gem_context; 745 struct i915_lut_handle *lut; 746 int err; 747 748 lut = i915_lut_handle_alloc(); 749 if (unlikely(!lut)) 750 return -ENOMEM; 751 752 i915_vma_get(vma); 753 if (!atomic_fetch_inc(&vma->open_count)) 754 i915_vma_reopen(vma); 755 lut->handle = handle; 756 lut->ctx = ctx; 757 758 /* Check that the context hasn't been closed in the meantime */ 759 err = -EINTR; 760 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 761 struct i915_address_space *vm = rcu_access_pointer(ctx->vm); 762 763 if (unlikely(vm && vma->vm != vm)) 764 err = -EAGAIN; /* user racing with ctx set-vm */ 765 else if (likely(!i915_gem_context_is_closed(ctx))) 766 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 767 else 768 err = -ENOENT; 769 if (err == 0) { /* And nor has this handle */ 770 struct drm_i915_gem_object *obj = vma->obj; 771 772 spin_lock(&obj->lut_lock); 773 if (idr_find(&eb->file->object_idr, handle) == obj) { 774 list_add(&lut->obj_link, &obj->lut_list); 775 } else { 776 radix_tree_delete(&ctx->handles_vma, handle); 777 err = -ENOENT; 778 } 779 spin_unlock(&obj->lut_lock); 780 } 781 mutex_unlock(&ctx->lut_mutex); 782 } 783 if (unlikely(err)) 784 goto err; 785 786 return 0; 787 788 err: 789 i915_vma_close(vma); 790 i915_vma_put(vma); 791 i915_lut_handle_free(lut); 792 return err; 793 } 794 795 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 796 { 797 struct i915_address_space *vm = eb->context->vm; 798 799 do { 800 struct drm_i915_gem_object *obj; 801 struct i915_vma *vma; 802 int err; 803 804 rcu_read_lock(); 805 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 806 if (likely(vma && vma->vm == vm)) 807 vma = i915_vma_tryget(vma); 808 rcu_read_unlock(); 809 if (likely(vma)) 810 return vma; 811 812 obj = i915_gem_object_lookup(eb->file, handle); 813 if (unlikely(!obj)) 814 return ERR_PTR(-ENOENT); 815 816 vma = i915_vma_instance(obj, vm, NULL); 817 if (IS_ERR(vma)) { 818 i915_gem_object_put(obj); 819 return vma; 820 } 821 822 err = __eb_add_lut(eb, handle, vma); 823 if (likely(!err)) 824 return vma; 825 826 i915_gem_object_put(obj); 827 if (err != -EEXIST) 828 return ERR_PTR(err); 829 } while (1); 830 } 831 832 static int eb_lookup_vmas(struct i915_execbuffer *eb) 833 { 834 struct drm_i915_private *i915 = eb->i915; 835 unsigned int batch = eb_batch_index(eb); 836 unsigned int i; 837 int err = 0; 838 839 INIT_LIST_HEAD(&eb->relocs); 840 841 for (i = 0; i < eb->buffer_count; i++) { 842 struct i915_vma *vma; 843 844 vma = eb_lookup_vma(eb, eb->exec[i].handle); 845 if (IS_ERR(vma)) { 846 err = PTR_ERR(vma); 847 goto err; 848 } 849 850 err = eb_validate_vma(eb, &eb->exec[i], vma); 851 if (unlikely(err)) { 852 i915_vma_put(vma); 853 goto err; 854 } 855 856 eb_add_vma(eb, i, batch, vma); 857 } 858 859 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) { 860 drm_dbg(&i915->drm, 861 "Attempting to use self-modifying batch buffer\n"); 862 return -EINVAL; 863 } 864 865 if (range_overflows_t(u64, 866 eb->batch_start_offset, eb->batch_len, 867 eb->batch->vma->size)) { 868 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 869 return -EINVAL; 870 } 871 872 if (eb->batch_len == 0) 873 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset; 874 if (unlikely(eb->batch_len == 0)) { /* impossible! */ 875 drm_dbg(&i915->drm, "Invalid batch length\n"); 876 return -EINVAL; 877 } 878 879 return 0; 880 881 err: 882 eb->vma[i].vma = NULL; 883 return err; 884 } 885 886 static int eb_validate_vmas(struct i915_execbuffer *eb) 887 { 888 unsigned int i; 889 int err; 890 891 INIT_LIST_HEAD(&eb->unbound); 892 893 for (i = 0; i < eb->buffer_count; i++) { 894 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 895 struct eb_vma *ev = &eb->vma[i]; 896 struct i915_vma *vma = ev->vma; 897 898 err = i915_gem_object_lock(vma->obj, &eb->ww); 899 if (err) 900 return err; 901 902 if (eb_pin_vma(eb, entry, ev)) { 903 if (entry->offset != vma->node.start) { 904 entry->offset = vma->node.start | UPDATE; 905 eb->args->flags |= __EXEC_HAS_RELOC; 906 } 907 } else { 908 eb_unreserve_vma(ev); 909 910 list_add_tail(&ev->bind_link, &eb->unbound); 911 if (drm_mm_node_allocated(&vma->node)) { 912 err = i915_vma_unbind(vma); 913 if (err) 914 return err; 915 } 916 } 917 918 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 919 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 920 } 921 922 if (!list_empty(&eb->unbound)) 923 return eb_reserve(eb); 924 925 return 0; 926 } 927 928 static struct eb_vma * 929 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 930 { 931 if (eb->lut_size < 0) { 932 if (handle >= -eb->lut_size) 933 return NULL; 934 return &eb->vma[handle]; 935 } else { 936 struct hlist_head *head; 937 struct eb_vma *ev; 938 939 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 940 hlist_for_each_entry(ev, head, node) { 941 if (ev->handle == handle) 942 return ev; 943 } 944 return NULL; 945 } 946 } 947 948 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 949 { 950 const unsigned int count = eb->buffer_count; 951 unsigned int i; 952 953 for (i = 0; i < count; i++) { 954 struct eb_vma *ev = &eb->vma[i]; 955 struct i915_vma *vma = ev->vma; 956 957 if (!vma) 958 break; 959 960 eb_unreserve_vma(ev); 961 962 if (final) 963 i915_vma_put(vma); 964 } 965 966 eb_unpin_engine(eb); 967 } 968 969 static void eb_destroy(const struct i915_execbuffer *eb) 970 { 971 GEM_BUG_ON(eb->reloc_cache.rq); 972 973 if (eb->lut_size > 0) 974 kfree(eb->buckets); 975 } 976 977 static inline u64 978 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 979 const struct i915_vma *target) 980 { 981 return gen8_canonical_addr((int)reloc->delta + target->node.start); 982 } 983 984 static void reloc_cache_clear(struct reloc_cache *cache) 985 { 986 cache->rq = NULL; 987 cache->rq_cmd = NULL; 988 cache->pool = NULL; 989 cache->rq_size = 0; 990 } 991 992 static void reloc_cache_init(struct reloc_cache *cache, 993 struct drm_i915_private *i915) 994 { 995 cache->page = -1; 996 cache->vaddr = 0; 997 /* Must be a variable in the struct to allow GCC to unroll. */ 998 cache->gen = INTEL_GEN(i915); 999 cache->has_llc = HAS_LLC(i915); 1000 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1001 cache->has_fence = cache->gen < 4; 1002 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1003 cache->node.flags = 0; 1004 reloc_cache_clear(cache); 1005 } 1006 1007 static inline void *unmask_page(unsigned long p) 1008 { 1009 return (void *)(uintptr_t)(p & PAGE_MASK); 1010 } 1011 1012 static inline unsigned int unmask_flags(unsigned long p) 1013 { 1014 return p & ~PAGE_MASK; 1015 } 1016 1017 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1018 1019 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1020 { 1021 struct drm_i915_private *i915 = 1022 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1023 return &i915->ggtt; 1024 } 1025 1026 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache) 1027 { 1028 if (!cache->pool) 1029 return; 1030 1031 /* 1032 * This is a bit nasty, normally we keep objects locked until the end 1033 * of execbuffer, but we already submit this, and have to unlock before 1034 * dropping the reference. Fortunately we can only hold 1 pool node at 1035 * a time, so this should be harmless. 1036 */ 1037 i915_gem_ww_unlock_single(cache->pool->obj); 1038 intel_gt_buffer_pool_put(cache->pool); 1039 cache->pool = NULL; 1040 } 1041 1042 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache) 1043 { 1044 struct drm_i915_gem_object *obj = cache->rq->batch->obj; 1045 1046 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); 1047 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 1048 1049 __i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1)); 1050 i915_gem_object_unpin_map(obj); 1051 1052 intel_gt_chipset_flush(cache->rq->engine->gt); 1053 1054 i915_request_add(cache->rq); 1055 reloc_cache_put_pool(eb, cache); 1056 reloc_cache_clear(cache); 1057 1058 eb->reloc_pool = NULL; 1059 } 1060 1061 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1062 { 1063 void *vaddr; 1064 1065 if (cache->rq) 1066 reloc_gpu_flush(eb, cache); 1067 1068 if (!cache->vaddr) 1069 return; 1070 1071 vaddr = unmask_page(cache->vaddr); 1072 if (cache->vaddr & KMAP) { 1073 struct drm_i915_gem_object *obj = 1074 (struct drm_i915_gem_object *)cache->node.mm; 1075 if (cache->vaddr & CLFLUSH_AFTER) 1076 mb(); 1077 1078 kunmap_atomic(vaddr); 1079 i915_gem_object_finish_access(obj); 1080 } else { 1081 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1082 1083 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1084 io_mapping_unmap_atomic((void __iomem *)vaddr); 1085 1086 if (drm_mm_node_allocated(&cache->node)) { 1087 ggtt->vm.clear_range(&ggtt->vm, 1088 cache->node.start, 1089 cache->node.size); 1090 mutex_lock(&ggtt->vm.mutex); 1091 drm_mm_remove_node(&cache->node); 1092 mutex_unlock(&ggtt->vm.mutex); 1093 } else { 1094 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1095 } 1096 } 1097 1098 cache->vaddr = 0; 1099 cache->page = -1; 1100 } 1101 1102 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1103 struct reloc_cache *cache, 1104 unsigned long pageno) 1105 { 1106 void *vaddr; 1107 struct page *page; 1108 1109 if (cache->vaddr) { 1110 kunmap_atomic(unmask_page(cache->vaddr)); 1111 } else { 1112 unsigned int flushes; 1113 int err; 1114 1115 err = i915_gem_object_prepare_write(obj, &flushes); 1116 if (err) 1117 return ERR_PTR(err); 1118 1119 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1120 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1121 1122 cache->vaddr = flushes | KMAP; 1123 cache->node.mm = (void *)obj; 1124 if (flushes) 1125 mb(); 1126 } 1127 1128 page = i915_gem_object_get_page(obj, pageno); 1129 if (!obj->mm.dirty) 1130 set_page_dirty(page); 1131 1132 vaddr = kmap_atomic(page); 1133 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1134 cache->page = pageno; 1135 1136 return vaddr; 1137 } 1138 1139 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1140 struct i915_execbuffer *eb, 1141 unsigned long page) 1142 { 1143 struct reloc_cache *cache = &eb->reloc_cache; 1144 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1145 unsigned long offset; 1146 void *vaddr; 1147 1148 if (cache->vaddr) { 1149 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1150 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1151 } else { 1152 struct i915_vma *vma; 1153 int err; 1154 1155 if (i915_gem_object_is_tiled(obj)) 1156 return ERR_PTR(-EINVAL); 1157 1158 if (use_cpu_reloc(cache, obj)) 1159 return NULL; 1160 1161 err = i915_gem_object_set_to_gtt_domain(obj, true); 1162 if (err) 1163 return ERR_PTR(err); 1164 1165 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1166 PIN_MAPPABLE | 1167 PIN_NONBLOCK /* NOWARN */ | 1168 PIN_NOEVICT); 1169 if (vma == ERR_PTR(-EDEADLK)) 1170 return vma; 1171 1172 if (IS_ERR(vma)) { 1173 memset(&cache->node, 0, sizeof(cache->node)); 1174 mutex_lock(&ggtt->vm.mutex); 1175 err = drm_mm_insert_node_in_range 1176 (&ggtt->vm.mm, &cache->node, 1177 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1178 0, ggtt->mappable_end, 1179 DRM_MM_INSERT_LOW); 1180 mutex_unlock(&ggtt->vm.mutex); 1181 if (err) /* no inactive aperture space, use cpu reloc */ 1182 return NULL; 1183 } else { 1184 cache->node.start = vma->node.start; 1185 cache->node.mm = (void *)vma; 1186 } 1187 } 1188 1189 offset = cache->node.start; 1190 if (drm_mm_node_allocated(&cache->node)) { 1191 ggtt->vm.insert_page(&ggtt->vm, 1192 i915_gem_object_get_dma_address(obj, page), 1193 offset, I915_CACHE_NONE, 0); 1194 } else { 1195 offset += page << PAGE_SHIFT; 1196 } 1197 1198 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1199 offset); 1200 cache->page = page; 1201 cache->vaddr = (unsigned long)vaddr; 1202 1203 return vaddr; 1204 } 1205 1206 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1207 struct i915_execbuffer *eb, 1208 unsigned long page) 1209 { 1210 struct reloc_cache *cache = &eb->reloc_cache; 1211 void *vaddr; 1212 1213 if (cache->page == page) { 1214 vaddr = unmask_page(cache->vaddr); 1215 } else { 1216 vaddr = NULL; 1217 if ((cache->vaddr & KMAP) == 0) 1218 vaddr = reloc_iomap(obj, eb, page); 1219 if (!vaddr) 1220 vaddr = reloc_kmap(obj, cache, page); 1221 } 1222 1223 return vaddr; 1224 } 1225 1226 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1227 { 1228 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1229 if (flushes & CLFLUSH_BEFORE) { 1230 clflushopt(addr); 1231 mb(); 1232 } 1233 1234 *addr = value; 1235 1236 /* 1237 * Writes to the same cacheline are serialised by the CPU 1238 * (including clflush). On the write path, we only require 1239 * that it hits memory in an orderly fashion and place 1240 * mb barriers at the start and end of the relocation phase 1241 * to ensure ordering of clflush wrt to the system. 1242 */ 1243 if (flushes & CLFLUSH_AFTER) 1244 clflushopt(addr); 1245 } else 1246 *addr = value; 1247 } 1248 1249 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1250 { 1251 struct drm_i915_gem_object *obj = vma->obj; 1252 int err; 1253 1254 assert_vma_held(vma); 1255 1256 if (obj->cache_dirty & ~obj->cache_coherent) 1257 i915_gem_clflush_object(obj, 0); 1258 obj->write_domain = 0; 1259 1260 err = i915_request_await_object(rq, vma->obj, true); 1261 if (err == 0) 1262 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1263 1264 return err; 1265 } 1266 1267 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1268 struct intel_engine_cs *engine, 1269 struct i915_vma *vma, 1270 unsigned int len) 1271 { 1272 struct reloc_cache *cache = &eb->reloc_cache; 1273 struct intel_gt_buffer_pool_node *pool = eb->reloc_pool; 1274 struct i915_request *rq; 1275 struct i915_vma *batch; 1276 u32 *cmd; 1277 int err; 1278 1279 if (!pool) { 1280 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE); 1281 if (IS_ERR(pool)) 1282 return PTR_ERR(pool); 1283 } 1284 eb->reloc_pool = NULL; 1285 1286 err = i915_gem_object_lock(pool->obj, &eb->ww); 1287 if (err) 1288 goto err_pool; 1289 1290 cmd = i915_gem_object_pin_map(pool->obj, 1291 cache->has_llc ? 1292 I915_MAP_FORCE_WB : 1293 I915_MAP_FORCE_WC); 1294 if (IS_ERR(cmd)) { 1295 err = PTR_ERR(cmd); 1296 goto err_pool; 1297 } 1298 1299 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1300 if (IS_ERR(batch)) { 1301 err = PTR_ERR(batch); 1302 goto err_unmap; 1303 } 1304 1305 err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK); 1306 if (err) 1307 goto err_unmap; 1308 1309 if (engine == eb->context->engine) { 1310 rq = i915_request_create(eb->context); 1311 } else { 1312 struct intel_context *ce = eb->reloc_context; 1313 1314 if (!ce) { 1315 ce = intel_context_create(engine); 1316 if (IS_ERR(ce)) { 1317 err = PTR_ERR(ce); 1318 goto err_unpin; 1319 } 1320 1321 i915_vm_put(ce->vm); 1322 ce->vm = i915_vm_get(eb->context->vm); 1323 eb->reloc_context = ce; 1324 } 1325 1326 err = intel_context_pin_ww(ce, &eb->ww); 1327 if (err) 1328 goto err_unpin; 1329 1330 rq = i915_request_create(ce); 1331 intel_context_unpin(ce); 1332 } 1333 if (IS_ERR(rq)) { 1334 err = PTR_ERR(rq); 1335 goto err_unpin; 1336 } 1337 1338 err = intel_gt_buffer_pool_mark_active(pool, rq); 1339 if (err) 1340 goto err_request; 1341 1342 err = reloc_move_to_gpu(rq, vma); 1343 if (err) 1344 goto err_request; 1345 1346 err = eb->engine->emit_bb_start(rq, 1347 batch->node.start, PAGE_SIZE, 1348 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1349 if (err) 1350 goto skip_request; 1351 1352 assert_vma_held(batch); 1353 err = i915_request_await_object(rq, batch->obj, false); 1354 if (err == 0) 1355 err = i915_vma_move_to_active(batch, rq, 0); 1356 if (err) 1357 goto skip_request; 1358 1359 rq->batch = batch; 1360 i915_vma_unpin(batch); 1361 1362 cache->rq = rq; 1363 cache->rq_cmd = cmd; 1364 cache->rq_size = 0; 1365 cache->pool = pool; 1366 1367 /* Return with batch mapping (cmd) still pinned */ 1368 return 0; 1369 1370 skip_request: 1371 i915_request_set_error_once(rq, err); 1372 err_request: 1373 i915_request_add(rq); 1374 err_unpin: 1375 i915_vma_unpin(batch); 1376 err_unmap: 1377 i915_gem_object_unpin_map(pool->obj); 1378 err_pool: 1379 eb->reloc_pool = pool; 1380 return err; 1381 } 1382 1383 static bool reloc_can_use_engine(const struct intel_engine_cs *engine) 1384 { 1385 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6); 1386 } 1387 1388 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1389 struct i915_vma *vma, 1390 unsigned int len) 1391 { 1392 struct reloc_cache *cache = &eb->reloc_cache; 1393 u32 *cmd; 1394 1395 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1396 reloc_gpu_flush(eb, cache); 1397 1398 if (unlikely(!cache->rq)) { 1399 int err; 1400 struct intel_engine_cs *engine = eb->engine; 1401 1402 if (!reloc_can_use_engine(engine)) { 1403 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0]; 1404 if (!engine) 1405 return ERR_PTR(-ENODEV); 1406 } 1407 1408 err = __reloc_gpu_alloc(eb, engine, vma, len); 1409 if (unlikely(err)) 1410 return ERR_PTR(err); 1411 } 1412 1413 cmd = cache->rq_cmd + cache->rq_size; 1414 cache->rq_size += len; 1415 1416 return cmd; 1417 } 1418 1419 static inline bool use_reloc_gpu(struct i915_vma *vma) 1420 { 1421 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) 1422 return true; 1423 1424 if (DBG_FORCE_RELOC) 1425 return false; 1426 1427 return !dma_resv_test_signaled_rcu(vma->resv, true); 1428 } 1429 1430 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset) 1431 { 1432 struct page *page; 1433 unsigned long addr; 1434 1435 GEM_BUG_ON(vma->pages != vma->obj->mm.pages); 1436 1437 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT); 1438 addr = PFN_PHYS(page_to_pfn(page)); 1439 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */ 1440 1441 return addr + offset_in_page(offset); 1442 } 1443 1444 static int __reloc_entry_gpu(struct i915_execbuffer *eb, 1445 struct i915_vma *vma, 1446 u64 offset, 1447 u64 target_addr) 1448 { 1449 const unsigned int gen = eb->reloc_cache.gen; 1450 unsigned int len; 1451 u32 *batch; 1452 u64 addr; 1453 1454 if (gen >= 8) 1455 len = offset & 7 ? 8 : 5; 1456 else if (gen >= 4) 1457 len = 4; 1458 else 1459 len = 3; 1460 1461 batch = reloc_gpu(eb, vma, len); 1462 if (batch == ERR_PTR(-EDEADLK)) 1463 return -EDEADLK; 1464 else if (IS_ERR(batch)) 1465 return false; 1466 1467 addr = gen8_canonical_addr(vma->node.start + offset); 1468 if (gen >= 8) { 1469 if (offset & 7) { 1470 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1471 *batch++ = lower_32_bits(addr); 1472 *batch++ = upper_32_bits(addr); 1473 *batch++ = lower_32_bits(target_addr); 1474 1475 addr = gen8_canonical_addr(addr + 4); 1476 1477 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1478 *batch++ = lower_32_bits(addr); 1479 *batch++ = upper_32_bits(addr); 1480 *batch++ = upper_32_bits(target_addr); 1481 } else { 1482 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1483 *batch++ = lower_32_bits(addr); 1484 *batch++ = upper_32_bits(addr); 1485 *batch++ = lower_32_bits(target_addr); 1486 *batch++ = upper_32_bits(target_addr); 1487 } 1488 } else if (gen >= 6) { 1489 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1490 *batch++ = 0; 1491 *batch++ = addr; 1492 *batch++ = target_addr; 1493 } else if (IS_I965G(eb->i915)) { 1494 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1495 *batch++ = 0; 1496 *batch++ = vma_phys_addr(vma, offset); 1497 *batch++ = target_addr; 1498 } else if (gen >= 4) { 1499 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1500 *batch++ = 0; 1501 *batch++ = addr; 1502 *batch++ = target_addr; 1503 } else if (gen >= 3 && 1504 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) { 1505 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1506 *batch++ = addr; 1507 *batch++ = target_addr; 1508 } else { 1509 *batch++ = MI_STORE_DWORD_IMM; 1510 *batch++ = vma_phys_addr(vma, offset); 1511 *batch++ = target_addr; 1512 } 1513 1514 return true; 1515 } 1516 1517 static int reloc_entry_gpu(struct i915_execbuffer *eb, 1518 struct i915_vma *vma, 1519 u64 offset, 1520 u64 target_addr) 1521 { 1522 if (eb->reloc_cache.vaddr) 1523 return false; 1524 1525 if (!use_reloc_gpu(vma)) 1526 return false; 1527 1528 return __reloc_entry_gpu(eb, vma, offset, target_addr); 1529 } 1530 1531 static u64 1532 relocate_entry(struct i915_vma *vma, 1533 const struct drm_i915_gem_relocation_entry *reloc, 1534 struct i915_execbuffer *eb, 1535 const struct i915_vma *target) 1536 { 1537 u64 target_addr = relocation_target(reloc, target); 1538 u64 offset = reloc->offset; 1539 int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr); 1540 1541 if (reloc_gpu < 0) 1542 return reloc_gpu; 1543 1544 if (!reloc_gpu) { 1545 bool wide = eb->reloc_cache.use_64bit_reloc; 1546 void *vaddr; 1547 1548 repeat: 1549 vaddr = reloc_vaddr(vma->obj, eb, 1550 offset >> PAGE_SHIFT); 1551 if (IS_ERR(vaddr)) 1552 return PTR_ERR(vaddr); 1553 1554 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1555 clflush_write32(vaddr + offset_in_page(offset), 1556 lower_32_bits(target_addr), 1557 eb->reloc_cache.vaddr); 1558 1559 if (wide) { 1560 offset += sizeof(u32); 1561 target_addr >>= 32; 1562 wide = false; 1563 goto repeat; 1564 } 1565 } 1566 1567 return target->node.start | UPDATE; 1568 } 1569 1570 static u64 1571 eb_relocate_entry(struct i915_execbuffer *eb, 1572 struct eb_vma *ev, 1573 const struct drm_i915_gem_relocation_entry *reloc) 1574 { 1575 struct drm_i915_private *i915 = eb->i915; 1576 struct eb_vma *target; 1577 int err; 1578 1579 /* we've already hold a reference to all valid objects */ 1580 target = eb_get_vma(eb, reloc->target_handle); 1581 if (unlikely(!target)) 1582 return -ENOENT; 1583 1584 /* Validate that the target is in a valid r/w GPU domain */ 1585 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1586 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1587 "target %d offset %d " 1588 "read %08x write %08x", 1589 reloc->target_handle, 1590 (int) reloc->offset, 1591 reloc->read_domains, 1592 reloc->write_domain); 1593 return -EINVAL; 1594 } 1595 if (unlikely((reloc->write_domain | reloc->read_domains) 1596 & ~I915_GEM_GPU_DOMAINS)) { 1597 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1598 "target %d offset %d " 1599 "read %08x write %08x", 1600 reloc->target_handle, 1601 (int) reloc->offset, 1602 reloc->read_domains, 1603 reloc->write_domain); 1604 return -EINVAL; 1605 } 1606 1607 if (reloc->write_domain) { 1608 target->flags |= EXEC_OBJECT_WRITE; 1609 1610 /* 1611 * Sandybridge PPGTT errata: We need a global gtt mapping 1612 * for MI and pipe_control writes because the gpu doesn't 1613 * properly redirect them through the ppgtt for non_secure 1614 * batchbuffers. 1615 */ 1616 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1617 IS_GEN(eb->i915, 6)) { 1618 err = i915_vma_bind(target->vma, 1619 target->vma->obj->cache_level, 1620 PIN_GLOBAL, NULL); 1621 if (err) 1622 return err; 1623 } 1624 } 1625 1626 /* 1627 * If the relocation already has the right value in it, no 1628 * more work needs to be done. 1629 */ 1630 if (!DBG_FORCE_RELOC && 1631 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1632 return 0; 1633 1634 /* Check that the relocation address is valid... */ 1635 if (unlikely(reloc->offset > 1636 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1637 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1638 "target %d offset %d size %d.\n", 1639 reloc->target_handle, 1640 (int)reloc->offset, 1641 (int)ev->vma->size); 1642 return -EINVAL; 1643 } 1644 if (unlikely(reloc->offset & 3)) { 1645 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1646 "target %d offset %d.\n", 1647 reloc->target_handle, 1648 (int)reloc->offset); 1649 return -EINVAL; 1650 } 1651 1652 /* 1653 * If we write into the object, we need to force the synchronisation 1654 * barrier, either with an asynchronous clflush or if we executed the 1655 * patching using the GPU (though that should be serialised by the 1656 * timeline). To be completely sure, and since we are required to 1657 * do relocations we are already stalling, disable the user's opt 1658 * out of our synchronisation. 1659 */ 1660 ev->flags &= ~EXEC_OBJECT_ASYNC; 1661 1662 /* and update the user's relocation entry */ 1663 return relocate_entry(ev->vma, reloc, eb, target->vma); 1664 } 1665 1666 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1667 { 1668 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1669 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1670 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1671 struct drm_i915_gem_relocation_entry __user *urelocs = 1672 u64_to_user_ptr(entry->relocs_ptr); 1673 unsigned long remain = entry->relocation_count; 1674 1675 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1676 return -EINVAL; 1677 1678 /* 1679 * We must check that the entire relocation array is safe 1680 * to read. However, if the array is not writable the user loses 1681 * the updated relocation values. 1682 */ 1683 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1684 return -EFAULT; 1685 1686 do { 1687 struct drm_i915_gem_relocation_entry *r = stack; 1688 unsigned int count = 1689 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1690 unsigned int copied; 1691 1692 /* 1693 * This is the fast path and we cannot handle a pagefault 1694 * whilst holding the struct mutex lest the user pass in the 1695 * relocations contained within a mmaped bo. For in such a case 1696 * we, the page fault handler would call i915_gem_fault() and 1697 * we would try to acquire the struct mutex again. Obviously 1698 * this is bad and so lockdep complains vehemently. 1699 */ 1700 pagefault_disable(); 1701 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1702 pagefault_enable(); 1703 if (unlikely(copied)) { 1704 remain = -EFAULT; 1705 goto out; 1706 } 1707 1708 remain -= count; 1709 do { 1710 u64 offset = eb_relocate_entry(eb, ev, r); 1711 1712 if (likely(offset == 0)) { 1713 } else if ((s64)offset < 0) { 1714 remain = (int)offset; 1715 goto out; 1716 } else { 1717 /* 1718 * Note that reporting an error now 1719 * leaves everything in an inconsistent 1720 * state as we have *already* changed 1721 * the relocation value inside the 1722 * object. As we have not changed the 1723 * reloc.presumed_offset or will not 1724 * change the execobject.offset, on the 1725 * call we may not rewrite the value 1726 * inside the object, leaving it 1727 * dangling and causing a GPU hang. Unless 1728 * userspace dynamically rebuilds the 1729 * relocations on each execbuf rather than 1730 * presume a static tree. 1731 * 1732 * We did previously check if the relocations 1733 * were writable (access_ok), an error now 1734 * would be a strange race with mprotect, 1735 * having already demonstrated that we 1736 * can read from this userspace address. 1737 */ 1738 offset = gen8_canonical_addr(offset & ~UPDATE); 1739 __put_user(offset, 1740 &urelocs[r - stack].presumed_offset); 1741 } 1742 } while (r++, --count); 1743 urelocs += ARRAY_SIZE(stack); 1744 } while (remain); 1745 out: 1746 reloc_cache_reset(&eb->reloc_cache, eb); 1747 return remain; 1748 } 1749 1750 static int 1751 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1752 { 1753 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1754 struct drm_i915_gem_relocation_entry *relocs = 1755 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1756 unsigned int i; 1757 int err; 1758 1759 for (i = 0; i < entry->relocation_count; i++) { 1760 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1761 1762 if ((s64)offset < 0) { 1763 err = (int)offset; 1764 goto err; 1765 } 1766 } 1767 err = 0; 1768 err: 1769 reloc_cache_reset(&eb->reloc_cache, eb); 1770 return err; 1771 } 1772 1773 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1774 { 1775 const char __user *addr, *end; 1776 unsigned long size; 1777 char __maybe_unused c; 1778 1779 size = entry->relocation_count; 1780 if (size == 0) 1781 return 0; 1782 1783 if (size > N_RELOC(ULONG_MAX)) 1784 return -EINVAL; 1785 1786 addr = u64_to_user_ptr(entry->relocs_ptr); 1787 size *= sizeof(struct drm_i915_gem_relocation_entry); 1788 if (!access_ok(addr, size)) 1789 return -EFAULT; 1790 1791 end = addr + size; 1792 for (; addr < end; addr += PAGE_SIZE) { 1793 int err = __get_user(c, addr); 1794 if (err) 1795 return err; 1796 } 1797 return __get_user(c, end - 1); 1798 } 1799 1800 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1801 { 1802 struct drm_i915_gem_relocation_entry *relocs; 1803 const unsigned int count = eb->buffer_count; 1804 unsigned int i; 1805 int err; 1806 1807 for (i = 0; i < count; i++) { 1808 const unsigned int nreloc = eb->exec[i].relocation_count; 1809 struct drm_i915_gem_relocation_entry __user *urelocs; 1810 unsigned long size; 1811 unsigned long copied; 1812 1813 if (nreloc == 0) 1814 continue; 1815 1816 err = check_relocations(&eb->exec[i]); 1817 if (err) 1818 goto err; 1819 1820 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1821 size = nreloc * sizeof(*relocs); 1822 1823 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1824 if (!relocs) { 1825 err = -ENOMEM; 1826 goto err; 1827 } 1828 1829 /* copy_from_user is limited to < 4GiB */ 1830 copied = 0; 1831 do { 1832 unsigned int len = 1833 min_t(u64, BIT_ULL(31), size - copied); 1834 1835 if (__copy_from_user((char *)relocs + copied, 1836 (char __user *)urelocs + copied, 1837 len)) 1838 goto end; 1839 1840 copied += len; 1841 } while (copied < size); 1842 1843 /* 1844 * As we do not update the known relocation offsets after 1845 * relocating (due to the complexities in lock handling), 1846 * we need to mark them as invalid now so that we force the 1847 * relocation processing next time. Just in case the target 1848 * object is evicted and then rebound into its old 1849 * presumed_offset before the next execbuffer - if that 1850 * happened we would make the mistake of assuming that the 1851 * relocations were valid. 1852 */ 1853 if (!user_access_begin(urelocs, size)) 1854 goto end; 1855 1856 for (copied = 0; copied < nreloc; copied++) 1857 unsafe_put_user(-1, 1858 &urelocs[copied].presumed_offset, 1859 end_user); 1860 user_access_end(); 1861 1862 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1863 } 1864 1865 return 0; 1866 1867 end_user: 1868 user_access_end(); 1869 end: 1870 kvfree(relocs); 1871 err = -EFAULT; 1872 err: 1873 while (i--) { 1874 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1875 if (eb->exec[i].relocation_count) 1876 kvfree(relocs); 1877 } 1878 return err; 1879 } 1880 1881 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1882 { 1883 const unsigned int count = eb->buffer_count; 1884 unsigned int i; 1885 1886 for (i = 0; i < count; i++) { 1887 int err; 1888 1889 err = check_relocations(&eb->exec[i]); 1890 if (err) 1891 return err; 1892 } 1893 1894 return 0; 1895 } 1896 1897 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb, 1898 struct i915_request *rq) 1899 { 1900 bool have_copy = false; 1901 struct eb_vma *ev; 1902 int err = 0; 1903 1904 repeat: 1905 if (signal_pending(current)) { 1906 err = -ERESTARTSYS; 1907 goto out; 1908 } 1909 1910 /* We may process another execbuffer during the unlock... */ 1911 eb_release_vmas(eb, false); 1912 i915_gem_ww_ctx_fini(&eb->ww); 1913 1914 if (rq) { 1915 /* nonblocking is always false */ 1916 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 1917 MAX_SCHEDULE_TIMEOUT) < 0) { 1918 i915_request_put(rq); 1919 rq = NULL; 1920 1921 err = -EINTR; 1922 goto err_relock; 1923 } 1924 1925 i915_request_put(rq); 1926 rq = NULL; 1927 } 1928 1929 /* 1930 * We take 3 passes through the slowpatch. 1931 * 1932 * 1 - we try to just prefault all the user relocation entries and 1933 * then attempt to reuse the atomic pagefault disabled fast path again. 1934 * 1935 * 2 - we copy the user entries to a local buffer here outside of the 1936 * local and allow ourselves to wait upon any rendering before 1937 * relocations 1938 * 1939 * 3 - we already have a local copy of the relocation entries, but 1940 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1941 */ 1942 if (!err) { 1943 err = eb_prefault_relocations(eb); 1944 } else if (!have_copy) { 1945 err = eb_copy_relocations(eb); 1946 have_copy = err == 0; 1947 } else { 1948 cond_resched(); 1949 err = 0; 1950 } 1951 1952 if (!err) 1953 flush_workqueue(eb->i915->mm.userptr_wq); 1954 1955 err_relock: 1956 i915_gem_ww_ctx_init(&eb->ww, true); 1957 if (err) 1958 goto out; 1959 1960 /* reacquire the objects */ 1961 repeat_validate: 1962 rq = eb_pin_engine(eb, false); 1963 if (IS_ERR(rq)) { 1964 err = PTR_ERR(rq); 1965 rq = NULL; 1966 goto err; 1967 } 1968 1969 /* We didn't throttle, should be NULL */ 1970 GEM_WARN_ON(rq); 1971 1972 err = eb_validate_vmas(eb); 1973 if (err) 1974 goto err; 1975 1976 GEM_BUG_ON(!eb->batch); 1977 1978 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1979 if (!have_copy) { 1980 pagefault_disable(); 1981 err = eb_relocate_vma(eb, ev); 1982 pagefault_enable(); 1983 if (err) 1984 break; 1985 } else { 1986 err = eb_relocate_vma_slow(eb, ev); 1987 if (err) 1988 break; 1989 } 1990 } 1991 1992 if (err == -EDEADLK) 1993 goto err; 1994 1995 if (err && !have_copy) 1996 goto repeat; 1997 1998 if (err) 1999 goto err; 2000 2001 /* as last step, parse the command buffer */ 2002 err = eb_parse(eb); 2003 if (err) 2004 goto err; 2005 2006 /* 2007 * Leave the user relocations as are, this is the painfully slow path, 2008 * and we want to avoid the complication of dropping the lock whilst 2009 * having buffers reserved in the aperture and so causing spurious 2010 * ENOSPC for random operations. 2011 */ 2012 2013 err: 2014 if (err == -EDEADLK) { 2015 eb_release_vmas(eb, false); 2016 err = i915_gem_ww_ctx_backoff(&eb->ww); 2017 if (!err) 2018 goto repeat_validate; 2019 } 2020 2021 if (err == -EAGAIN) 2022 goto repeat; 2023 2024 out: 2025 if (have_copy) { 2026 const unsigned int count = eb->buffer_count; 2027 unsigned int i; 2028 2029 for (i = 0; i < count; i++) { 2030 const struct drm_i915_gem_exec_object2 *entry = 2031 &eb->exec[i]; 2032 struct drm_i915_gem_relocation_entry *relocs; 2033 2034 if (!entry->relocation_count) 2035 continue; 2036 2037 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 2038 kvfree(relocs); 2039 } 2040 } 2041 2042 if (rq) 2043 i915_request_put(rq); 2044 2045 return err; 2046 } 2047 2048 static int eb_relocate_parse(struct i915_execbuffer *eb) 2049 { 2050 int err; 2051 struct i915_request *rq = NULL; 2052 bool throttle = true; 2053 2054 retry: 2055 rq = eb_pin_engine(eb, throttle); 2056 if (IS_ERR(rq)) { 2057 err = PTR_ERR(rq); 2058 rq = NULL; 2059 if (err != -EDEADLK) 2060 return err; 2061 2062 goto err; 2063 } 2064 2065 if (rq) { 2066 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2067 2068 /* Need to drop all locks now for throttling, take slowpath */ 2069 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0); 2070 if (err == -ETIME) { 2071 if (nonblock) { 2072 err = -EWOULDBLOCK; 2073 i915_request_put(rq); 2074 goto err; 2075 } 2076 goto slow; 2077 } 2078 i915_request_put(rq); 2079 rq = NULL; 2080 } 2081 2082 /* only throttle once, even if we didn't need to throttle */ 2083 throttle = false; 2084 2085 err = eb_validate_vmas(eb); 2086 if (err == -EAGAIN) 2087 goto slow; 2088 else if (err) 2089 goto err; 2090 2091 /* The objects are in their final locations, apply the relocations. */ 2092 if (eb->args->flags & __EXEC_HAS_RELOC) { 2093 struct eb_vma *ev; 2094 2095 list_for_each_entry(ev, &eb->relocs, reloc_link) { 2096 err = eb_relocate_vma(eb, ev); 2097 if (err) 2098 break; 2099 } 2100 2101 if (err == -EDEADLK) 2102 goto err; 2103 else if (err) 2104 goto slow; 2105 } 2106 2107 if (!err) 2108 err = eb_parse(eb); 2109 2110 err: 2111 if (err == -EDEADLK) { 2112 eb_release_vmas(eb, false); 2113 err = i915_gem_ww_ctx_backoff(&eb->ww); 2114 if (!err) 2115 goto retry; 2116 } 2117 2118 return err; 2119 2120 slow: 2121 err = eb_relocate_parse_slow(eb, rq); 2122 if (err) 2123 /* 2124 * If the user expects the execobject.offset and 2125 * reloc.presumed_offset to be an exact match, 2126 * as for using NO_RELOC, then we cannot update 2127 * the execobject.offset until we have completed 2128 * relocation. 2129 */ 2130 eb->args->flags &= ~__EXEC_HAS_RELOC; 2131 2132 return err; 2133 } 2134 2135 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2136 { 2137 const unsigned int count = eb->buffer_count; 2138 unsigned int i = count; 2139 int err = 0; 2140 2141 while (i--) { 2142 struct eb_vma *ev = &eb->vma[i]; 2143 struct i915_vma *vma = ev->vma; 2144 unsigned int flags = ev->flags; 2145 struct drm_i915_gem_object *obj = vma->obj; 2146 2147 assert_vma_held(vma); 2148 2149 if (flags & EXEC_OBJECT_CAPTURE) { 2150 struct i915_capture_list *capture; 2151 2152 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2153 if (capture) { 2154 capture->next = eb->request->capture_list; 2155 capture->vma = vma; 2156 eb->request->capture_list = capture; 2157 } 2158 } 2159 2160 /* 2161 * If the GPU is not _reading_ through the CPU cache, we need 2162 * to make sure that any writes (both previous GPU writes from 2163 * before a change in snooping levels and normal CPU writes) 2164 * caught in that cache are flushed to main memory. 2165 * 2166 * We want to say 2167 * obj->cache_dirty && 2168 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2169 * but gcc's optimiser doesn't handle that as well and emits 2170 * two jumps instead of one. Maybe one day... 2171 */ 2172 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2173 if (i915_gem_clflush_object(obj, 0)) 2174 flags &= ~EXEC_OBJECT_ASYNC; 2175 } 2176 2177 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2178 err = i915_request_await_object 2179 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 2180 } 2181 2182 if (err == 0) 2183 err = i915_vma_move_to_active(vma, eb->request, flags); 2184 } 2185 2186 if (unlikely(err)) 2187 goto err_skip; 2188 2189 /* Unconditionally flush any chipset caches (for streaming writes). */ 2190 intel_gt_chipset_flush(eb->engine->gt); 2191 return 0; 2192 2193 err_skip: 2194 i915_request_set_error_once(eb->request, err); 2195 return err; 2196 } 2197 2198 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2199 { 2200 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2201 return -EINVAL; 2202 2203 /* Kernel clipping was a DRI1 misfeature */ 2204 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2205 I915_EXEC_USE_EXTENSIONS))) { 2206 if (exec->num_cliprects || exec->cliprects_ptr) 2207 return -EINVAL; 2208 } 2209 2210 if (exec->DR4 == 0xffffffff) { 2211 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2212 exec->DR4 = 0; 2213 } 2214 if (exec->DR1 || exec->DR4) 2215 return -EINVAL; 2216 2217 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2218 return -EINVAL; 2219 2220 return 0; 2221 } 2222 2223 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2224 { 2225 u32 *cs; 2226 int i; 2227 2228 if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) { 2229 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2230 return -EINVAL; 2231 } 2232 2233 cs = intel_ring_begin(rq, 4 * 2 + 2); 2234 if (IS_ERR(cs)) 2235 return PTR_ERR(cs); 2236 2237 *cs++ = MI_LOAD_REGISTER_IMM(4); 2238 for (i = 0; i < 4; i++) { 2239 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2240 *cs++ = 0; 2241 } 2242 *cs++ = MI_NOOP; 2243 intel_ring_advance(rq, cs); 2244 2245 return 0; 2246 } 2247 2248 static struct i915_vma * 2249 shadow_batch_pin(struct i915_execbuffer *eb, 2250 struct drm_i915_gem_object *obj, 2251 struct i915_address_space *vm, 2252 unsigned int flags) 2253 { 2254 struct i915_vma *vma; 2255 int err; 2256 2257 vma = i915_vma_instance(obj, vm, NULL); 2258 if (IS_ERR(vma)) 2259 return vma; 2260 2261 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2262 if (err) 2263 return ERR_PTR(err); 2264 2265 return vma; 2266 } 2267 2268 struct eb_parse_work { 2269 struct dma_fence_work base; 2270 struct intel_engine_cs *engine; 2271 struct i915_vma *batch; 2272 struct i915_vma *shadow; 2273 struct i915_vma *trampoline; 2274 unsigned long batch_offset; 2275 unsigned long batch_length; 2276 }; 2277 2278 static int __eb_parse(struct dma_fence_work *work) 2279 { 2280 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 2281 2282 return intel_engine_cmd_parser(pw->engine, 2283 pw->batch, 2284 pw->batch_offset, 2285 pw->batch_length, 2286 pw->shadow, 2287 pw->trampoline); 2288 } 2289 2290 static void __eb_parse_release(struct dma_fence_work *work) 2291 { 2292 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 2293 2294 if (pw->trampoline) 2295 i915_active_release(&pw->trampoline->active); 2296 i915_active_release(&pw->shadow->active); 2297 i915_active_release(&pw->batch->active); 2298 } 2299 2300 static const struct dma_fence_work_ops eb_parse_ops = { 2301 .name = "eb_parse", 2302 .work = __eb_parse, 2303 .release = __eb_parse_release, 2304 }; 2305 2306 static inline int 2307 __parser_mark_active(struct i915_vma *vma, 2308 struct intel_timeline *tl, 2309 struct dma_fence *fence) 2310 { 2311 struct intel_gt_buffer_pool_node *node = vma->private; 2312 2313 return i915_active_ref(&node->active, tl->fence_context, fence); 2314 } 2315 2316 static int 2317 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl) 2318 { 2319 int err; 2320 2321 mutex_lock(&tl->mutex); 2322 2323 err = __parser_mark_active(pw->shadow, tl, &pw->base.dma); 2324 if (err) 2325 goto unlock; 2326 2327 if (pw->trampoline) { 2328 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma); 2329 if (err) 2330 goto unlock; 2331 } 2332 2333 unlock: 2334 mutex_unlock(&tl->mutex); 2335 return err; 2336 } 2337 2338 static int eb_parse_pipeline(struct i915_execbuffer *eb, 2339 struct i915_vma *shadow, 2340 struct i915_vma *trampoline) 2341 { 2342 struct eb_parse_work *pw; 2343 int err; 2344 2345 GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset)); 2346 GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length)); 2347 2348 pw = kzalloc(sizeof(*pw), GFP_KERNEL); 2349 if (!pw) 2350 return -ENOMEM; 2351 2352 err = i915_active_acquire(&eb->batch->vma->active); 2353 if (err) 2354 goto err_free; 2355 2356 err = i915_active_acquire(&shadow->active); 2357 if (err) 2358 goto err_batch; 2359 2360 if (trampoline) { 2361 err = i915_active_acquire(&trampoline->active); 2362 if (err) 2363 goto err_shadow; 2364 } 2365 2366 dma_fence_work_init(&pw->base, &eb_parse_ops); 2367 2368 pw->engine = eb->engine; 2369 pw->batch = eb->batch->vma; 2370 pw->batch_offset = eb->batch_start_offset; 2371 pw->batch_length = eb->batch_len; 2372 pw->shadow = shadow; 2373 pw->trampoline = trampoline; 2374 2375 /* Mark active refs early for this worker, in case we get interrupted */ 2376 err = parser_mark_active(pw, eb->context->timeline); 2377 if (err) 2378 goto err_commit; 2379 2380 err = dma_resv_reserve_shared(pw->batch->resv, 1); 2381 if (err) 2382 goto err_commit; 2383 2384 /* Wait for all writes (and relocs) into the batch to complete */ 2385 err = i915_sw_fence_await_reservation(&pw->base.chain, 2386 pw->batch->resv, NULL, false, 2387 0, I915_FENCE_GFP); 2388 if (err < 0) 2389 goto err_commit; 2390 2391 /* Keep the batch alive and unwritten as we parse */ 2392 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma); 2393 2394 /* Force execution to wait for completion of the parser */ 2395 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma); 2396 2397 dma_fence_work_commit_imm(&pw->base); 2398 return 0; 2399 2400 err_commit: 2401 i915_sw_fence_set_error_once(&pw->base.chain, err); 2402 dma_fence_work_commit_imm(&pw->base); 2403 return err; 2404 2405 err_shadow: 2406 i915_active_release(&shadow->active); 2407 err_batch: 2408 i915_active_release(&eb->batch->vma->active); 2409 err_free: 2410 kfree(pw); 2411 return err; 2412 } 2413 2414 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2415 { 2416 /* 2417 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2418 * batch" bit. Hence we need to pin secure batches into the global gtt. 2419 * hsw should have this fixed, but bdw mucks it up again. */ 2420 if (eb->batch_flags & I915_DISPATCH_SECURE) 2421 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2422 2423 return NULL; 2424 } 2425 2426 static int eb_parse(struct i915_execbuffer *eb) 2427 { 2428 struct drm_i915_private *i915 = eb->i915; 2429 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2430 struct i915_vma *shadow, *trampoline, *batch; 2431 unsigned long len; 2432 int err; 2433 2434 if (!eb_use_cmdparser(eb)) { 2435 batch = eb_dispatch_secure(eb, eb->batch->vma); 2436 if (IS_ERR(batch)) 2437 return PTR_ERR(batch); 2438 2439 goto secure_batch; 2440 } 2441 2442 len = eb->batch_len; 2443 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2444 /* 2445 * ppGTT backed shadow buffers must be mapped RO, to prevent 2446 * post-scan tampering 2447 */ 2448 if (!eb->context->vm->has_read_only) { 2449 drm_dbg(&i915->drm, 2450 "Cannot prevent post-scan tampering without RO capable vm\n"); 2451 return -EINVAL; 2452 } 2453 } else { 2454 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2455 } 2456 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */ 2457 return -EINVAL; 2458 2459 if (!pool) { 2460 pool = intel_gt_get_buffer_pool(eb->engine->gt, len); 2461 if (IS_ERR(pool)) 2462 return PTR_ERR(pool); 2463 eb->batch_pool = pool; 2464 } 2465 2466 err = i915_gem_object_lock(pool->obj, &eb->ww); 2467 if (err) 2468 goto err; 2469 2470 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2471 if (IS_ERR(shadow)) { 2472 err = PTR_ERR(shadow); 2473 goto err; 2474 } 2475 i915_gem_object_set_readonly(shadow->obj); 2476 shadow->private = pool; 2477 2478 trampoline = NULL; 2479 if (CMDPARSER_USES_GGTT(eb->i915)) { 2480 trampoline = shadow; 2481 2482 shadow = shadow_batch_pin(eb, pool->obj, 2483 &eb->engine->gt->ggtt->vm, 2484 PIN_GLOBAL); 2485 if (IS_ERR(shadow)) { 2486 err = PTR_ERR(shadow); 2487 shadow = trampoline; 2488 goto err_shadow; 2489 } 2490 shadow->private = pool; 2491 2492 eb->batch_flags |= I915_DISPATCH_SECURE; 2493 } 2494 2495 batch = eb_dispatch_secure(eb, shadow); 2496 if (IS_ERR(batch)) { 2497 err = PTR_ERR(batch); 2498 goto err_trampoline; 2499 } 2500 2501 err = eb_parse_pipeline(eb, shadow, trampoline); 2502 if (err) 2503 goto err_unpin_batch; 2504 2505 eb->batch = &eb->vma[eb->buffer_count++]; 2506 eb->batch->vma = i915_vma_get(shadow); 2507 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2508 2509 eb->trampoline = trampoline; 2510 eb->batch_start_offset = 0; 2511 2512 secure_batch: 2513 if (batch) { 2514 eb->batch = &eb->vma[eb->buffer_count++]; 2515 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2516 eb->batch->vma = i915_vma_get(batch); 2517 } 2518 return 0; 2519 2520 err_unpin_batch: 2521 if (batch) 2522 i915_vma_unpin(batch); 2523 err_trampoline: 2524 if (trampoline) 2525 i915_vma_unpin(trampoline); 2526 err_shadow: 2527 i915_vma_unpin(shadow); 2528 err: 2529 return err; 2530 } 2531 2532 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 2533 { 2534 int err; 2535 2536 err = eb_move_to_gpu(eb); 2537 if (err) 2538 return err; 2539 2540 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2541 err = i915_reset_gen7_sol_offsets(eb->request); 2542 if (err) 2543 return err; 2544 } 2545 2546 /* 2547 * After we completed waiting for other engines (using HW semaphores) 2548 * then we can signal that this request/batch is ready to run. This 2549 * allows us to determine if the batch is still waiting on the GPU 2550 * or actually running by checking the breadcrumb. 2551 */ 2552 if (eb->engine->emit_init_breadcrumb) { 2553 err = eb->engine->emit_init_breadcrumb(eb->request); 2554 if (err) 2555 return err; 2556 } 2557 2558 err = eb->engine->emit_bb_start(eb->request, 2559 batch->node.start + 2560 eb->batch_start_offset, 2561 eb->batch_len, 2562 eb->batch_flags); 2563 if (err) 2564 return err; 2565 2566 if (eb->trampoline) { 2567 GEM_BUG_ON(eb->batch_start_offset); 2568 err = eb->engine->emit_bb_start(eb->request, 2569 eb->trampoline->node.start + 2570 eb->batch_len, 2571 0, 0); 2572 if (err) 2573 return err; 2574 } 2575 2576 if (intel_context_nopreempt(eb->context)) 2577 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 2578 2579 return 0; 2580 } 2581 2582 static int num_vcs_engines(const struct drm_i915_private *i915) 2583 { 2584 return hweight64(VDBOX_MASK(&i915->gt)); 2585 } 2586 2587 /* 2588 * Find one BSD ring to dispatch the corresponding BSD command. 2589 * The engine index is returned. 2590 */ 2591 static unsigned int 2592 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2593 struct drm_file *file) 2594 { 2595 struct drm_i915_file_private *file_priv = file->driver_priv; 2596 2597 /* Check whether the file_priv has already selected one ring. */ 2598 if ((int)file_priv->bsd_engine < 0) 2599 file_priv->bsd_engine = 2600 get_random_int() % num_vcs_engines(dev_priv); 2601 2602 return file_priv->bsd_engine; 2603 } 2604 2605 static const enum intel_engine_id user_ring_map[] = { 2606 [I915_EXEC_DEFAULT] = RCS0, 2607 [I915_EXEC_RENDER] = RCS0, 2608 [I915_EXEC_BLT] = BCS0, 2609 [I915_EXEC_BSD] = VCS0, 2610 [I915_EXEC_VEBOX] = VECS0 2611 }; 2612 2613 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2614 { 2615 struct intel_ring *ring = ce->ring; 2616 struct intel_timeline *tl = ce->timeline; 2617 struct i915_request *rq; 2618 2619 /* 2620 * Completely unscientific finger-in-the-air estimates for suitable 2621 * maximum user request size (to avoid blocking) and then backoff. 2622 */ 2623 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2624 return NULL; 2625 2626 /* 2627 * Find a request that after waiting upon, there will be at least half 2628 * the ring available. The hysteresis allows us to compete for the 2629 * shared ring and should mean that we sleep less often prior to 2630 * claiming our resources, but not so long that the ring completely 2631 * drains before we can submit our next request. 2632 */ 2633 list_for_each_entry(rq, &tl->requests, link) { 2634 if (rq->ring != ring) 2635 continue; 2636 2637 if (__intel_ring_space(rq->postfix, 2638 ring->emit, ring->size) > ring->size / 2) 2639 break; 2640 } 2641 if (&rq->link == &tl->requests) 2642 return NULL; /* weird, we will check again later for real */ 2643 2644 return i915_request_get(rq); 2645 } 2646 2647 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2648 { 2649 struct intel_context *ce = eb->context; 2650 struct intel_timeline *tl; 2651 struct i915_request *rq = NULL; 2652 int err; 2653 2654 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2655 2656 if (unlikely(intel_context_is_banned(ce))) 2657 return ERR_PTR(-EIO); 2658 2659 /* 2660 * Pinning the contexts may generate requests in order to acquire 2661 * GGTT space, so do this first before we reserve a seqno for 2662 * ourselves. 2663 */ 2664 err = intel_context_pin_ww(ce, &eb->ww); 2665 if (err) 2666 return ERR_PTR(err); 2667 2668 /* 2669 * Take a local wakeref for preparing to dispatch the execbuf as 2670 * we expect to access the hardware fairly frequently in the 2671 * process, and require the engine to be kept awake between accesses. 2672 * Upon dispatch, we acquire another prolonged wakeref that we hold 2673 * until the timeline is idle, which in turn releases the wakeref 2674 * taken on the engine, and the parent device. 2675 */ 2676 tl = intel_context_timeline_lock(ce); 2677 if (IS_ERR(tl)) { 2678 intel_context_unpin(ce); 2679 return ERR_CAST(tl); 2680 } 2681 2682 intel_context_enter(ce); 2683 if (throttle) 2684 rq = eb_throttle(eb, ce); 2685 intel_context_timeline_unlock(tl); 2686 2687 eb->args->flags |= __EXEC_ENGINE_PINNED; 2688 return rq; 2689 } 2690 2691 static void eb_unpin_engine(struct i915_execbuffer *eb) 2692 { 2693 struct intel_context *ce = eb->context; 2694 struct intel_timeline *tl = ce->timeline; 2695 2696 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2697 return; 2698 2699 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2700 2701 mutex_lock(&tl->mutex); 2702 intel_context_exit(ce); 2703 mutex_unlock(&tl->mutex); 2704 2705 intel_context_unpin(ce); 2706 } 2707 2708 static unsigned int 2709 eb_select_legacy_ring(struct i915_execbuffer *eb) 2710 { 2711 struct drm_i915_private *i915 = eb->i915; 2712 struct drm_i915_gem_execbuffer2 *args = eb->args; 2713 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2714 2715 if (user_ring_id != I915_EXEC_BSD && 2716 (args->flags & I915_EXEC_BSD_MASK)) { 2717 drm_dbg(&i915->drm, 2718 "execbuf with non bsd ring but with invalid " 2719 "bsd dispatch flags: %d\n", (int)(args->flags)); 2720 return -1; 2721 } 2722 2723 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2724 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2725 2726 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2727 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2728 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2729 bsd_idx <= I915_EXEC_BSD_RING2) { 2730 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2731 bsd_idx--; 2732 } else { 2733 drm_dbg(&i915->drm, 2734 "execbuf with unknown bsd ring: %u\n", 2735 bsd_idx); 2736 return -1; 2737 } 2738 2739 return _VCS(bsd_idx); 2740 } 2741 2742 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2743 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2744 user_ring_id); 2745 return -1; 2746 } 2747 2748 return user_ring_map[user_ring_id]; 2749 } 2750 2751 static int 2752 eb_select_engine(struct i915_execbuffer *eb) 2753 { 2754 struct intel_context *ce; 2755 unsigned int idx; 2756 int err; 2757 2758 if (i915_gem_context_user_engines(eb->gem_context)) 2759 idx = eb->args->flags & I915_EXEC_RING_MASK; 2760 else 2761 idx = eb_select_legacy_ring(eb); 2762 2763 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2764 if (IS_ERR(ce)) 2765 return PTR_ERR(ce); 2766 2767 intel_gt_pm_get(ce->engine->gt); 2768 2769 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2770 err = intel_context_alloc_state(ce); 2771 if (err) 2772 goto err; 2773 } 2774 2775 /* 2776 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2777 * EIO if the GPU is already wedged. 2778 */ 2779 err = intel_gt_terminally_wedged(ce->engine->gt); 2780 if (err) 2781 goto err; 2782 2783 eb->context = ce; 2784 eb->engine = ce->engine; 2785 2786 /* 2787 * Make sure engine pool stays alive even if we call intel_context_put 2788 * during ww handling. The pool is destroyed when last pm reference 2789 * is dropped, which breaks our -EDEADLK handling. 2790 */ 2791 return err; 2792 2793 err: 2794 intel_gt_pm_put(ce->engine->gt); 2795 intel_context_put(ce); 2796 return err; 2797 } 2798 2799 static void 2800 eb_put_engine(struct i915_execbuffer *eb) 2801 { 2802 intel_gt_pm_put(eb->engine->gt); 2803 intel_context_put(eb->context); 2804 } 2805 2806 static void 2807 __free_fence_array(struct eb_fence *fences, unsigned int n) 2808 { 2809 while (n--) { 2810 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2811 dma_fence_put(fences[n].dma_fence); 2812 kfree(fences[n].chain_fence); 2813 } 2814 kvfree(fences); 2815 } 2816 2817 static int 2818 add_timeline_fence_array(struct i915_execbuffer *eb, 2819 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2820 { 2821 struct drm_i915_gem_exec_fence __user *user_fences; 2822 u64 __user *user_values; 2823 struct eb_fence *f; 2824 u64 nfences; 2825 int err = 0; 2826 2827 nfences = timeline_fences->fence_count; 2828 if (!nfences) 2829 return 0; 2830 2831 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2832 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2833 if (nfences > min_t(unsigned long, 2834 ULONG_MAX / sizeof(*user_fences), 2835 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2836 return -EINVAL; 2837 2838 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2839 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2840 return -EFAULT; 2841 2842 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2843 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2844 return -EFAULT; 2845 2846 f = krealloc(eb->fences, 2847 (eb->num_fences + nfences) * sizeof(*f), 2848 __GFP_NOWARN | GFP_KERNEL); 2849 if (!f) 2850 return -ENOMEM; 2851 2852 eb->fences = f; 2853 f += eb->num_fences; 2854 2855 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2856 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2857 2858 while (nfences--) { 2859 struct drm_i915_gem_exec_fence user_fence; 2860 struct drm_syncobj *syncobj; 2861 struct dma_fence *fence = NULL; 2862 u64 point; 2863 2864 if (__copy_from_user(&user_fence, 2865 user_fences++, 2866 sizeof(user_fence))) 2867 return -EFAULT; 2868 2869 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2870 return -EINVAL; 2871 2872 if (__get_user(point, user_values++)) 2873 return -EFAULT; 2874 2875 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2876 if (!syncobj) { 2877 DRM_DEBUG("Invalid syncobj handle provided\n"); 2878 return -ENOENT; 2879 } 2880 2881 fence = drm_syncobj_fence_get(syncobj); 2882 2883 if (!fence && user_fence.flags && 2884 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2885 DRM_DEBUG("Syncobj handle has no fence\n"); 2886 drm_syncobj_put(syncobj); 2887 return -EINVAL; 2888 } 2889 2890 if (fence) 2891 err = dma_fence_chain_find_seqno(&fence, point); 2892 2893 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2894 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2895 dma_fence_put(fence); 2896 drm_syncobj_put(syncobj); 2897 return err; 2898 } 2899 2900 /* 2901 * A point might have been signaled already and 2902 * garbage collected from the timeline. In this case 2903 * just ignore the point and carry on. 2904 */ 2905 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2906 drm_syncobj_put(syncobj); 2907 continue; 2908 } 2909 2910 /* 2911 * For timeline syncobjs we need to preallocate chains for 2912 * later signaling. 2913 */ 2914 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2915 /* 2916 * Waiting and signaling the same point (when point != 2917 * 0) would break the timeline. 2918 */ 2919 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2920 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2921 dma_fence_put(fence); 2922 drm_syncobj_put(syncobj); 2923 return -EINVAL; 2924 } 2925 2926 f->chain_fence = 2927 kmalloc(sizeof(*f->chain_fence), 2928 GFP_KERNEL); 2929 if (!f->chain_fence) { 2930 drm_syncobj_put(syncobj); 2931 dma_fence_put(fence); 2932 return -ENOMEM; 2933 } 2934 } else { 2935 f->chain_fence = NULL; 2936 } 2937 2938 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2939 f->dma_fence = fence; 2940 f->value = point; 2941 f++; 2942 eb->num_fences++; 2943 } 2944 2945 return 0; 2946 } 2947 2948 static int add_fence_array(struct i915_execbuffer *eb) 2949 { 2950 struct drm_i915_gem_execbuffer2 *args = eb->args; 2951 struct drm_i915_gem_exec_fence __user *user; 2952 unsigned long num_fences = args->num_cliprects; 2953 struct eb_fence *f; 2954 2955 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2956 return 0; 2957 2958 if (!num_fences) 2959 return 0; 2960 2961 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2962 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2963 if (num_fences > min_t(unsigned long, 2964 ULONG_MAX / sizeof(*user), 2965 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2966 return -EINVAL; 2967 2968 user = u64_to_user_ptr(args->cliprects_ptr); 2969 if (!access_ok(user, num_fences * sizeof(*user))) 2970 return -EFAULT; 2971 2972 f = krealloc(eb->fences, 2973 (eb->num_fences + num_fences) * sizeof(*f), 2974 __GFP_NOWARN | GFP_KERNEL); 2975 if (!f) 2976 return -ENOMEM; 2977 2978 eb->fences = f; 2979 f += eb->num_fences; 2980 while (num_fences--) { 2981 struct drm_i915_gem_exec_fence user_fence; 2982 struct drm_syncobj *syncobj; 2983 struct dma_fence *fence = NULL; 2984 2985 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2986 return -EFAULT; 2987 2988 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2989 return -EINVAL; 2990 2991 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2992 if (!syncobj) { 2993 DRM_DEBUG("Invalid syncobj handle provided\n"); 2994 return -ENOENT; 2995 } 2996 2997 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2998 fence = drm_syncobj_fence_get(syncobj); 2999 if (!fence) { 3000 DRM_DEBUG("Syncobj handle has no fence\n"); 3001 drm_syncobj_put(syncobj); 3002 return -EINVAL; 3003 } 3004 } 3005 3006 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 3007 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 3008 3009 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 3010 f->dma_fence = fence; 3011 f->value = 0; 3012 f->chain_fence = NULL; 3013 f++; 3014 eb->num_fences++; 3015 } 3016 3017 return 0; 3018 } 3019 3020 static void put_fence_array(struct eb_fence *fences, int num_fences) 3021 { 3022 if (fences) 3023 __free_fence_array(fences, num_fences); 3024 } 3025 3026 static int 3027 await_fence_array(struct i915_execbuffer *eb) 3028 { 3029 unsigned int n; 3030 int err; 3031 3032 for (n = 0; n < eb->num_fences; n++) { 3033 struct drm_syncobj *syncobj; 3034 unsigned int flags; 3035 3036 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3037 3038 if (!eb->fences[n].dma_fence) 3039 continue; 3040 3041 err = i915_request_await_dma_fence(eb->request, 3042 eb->fences[n].dma_fence); 3043 if (err < 0) 3044 return err; 3045 } 3046 3047 return 0; 3048 } 3049 3050 static void signal_fence_array(const struct i915_execbuffer *eb) 3051 { 3052 struct dma_fence * const fence = &eb->request->fence; 3053 unsigned int n; 3054 3055 for (n = 0; n < eb->num_fences; n++) { 3056 struct drm_syncobj *syncobj; 3057 unsigned int flags; 3058 3059 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3060 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3061 continue; 3062 3063 if (eb->fences[n].chain_fence) { 3064 drm_syncobj_add_point(syncobj, 3065 eb->fences[n].chain_fence, 3066 fence, 3067 eb->fences[n].value); 3068 /* 3069 * The chain's ownership is transferred to the 3070 * timeline. 3071 */ 3072 eb->fences[n].chain_fence = NULL; 3073 } else { 3074 drm_syncobj_replace_fence(syncobj, fence); 3075 } 3076 } 3077 } 3078 3079 static int 3080 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3081 { 3082 struct i915_execbuffer *eb = data; 3083 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3084 3085 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3086 return -EFAULT; 3087 3088 return add_timeline_fence_array(eb, &timeline_fences); 3089 } 3090 3091 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3092 { 3093 struct i915_request *rq, *rn; 3094 3095 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3096 if (rq == end || !i915_request_retire(rq)) 3097 break; 3098 } 3099 3100 static int eb_request_add(struct i915_execbuffer *eb, int err) 3101 { 3102 struct i915_request *rq = eb->request; 3103 struct intel_timeline * const tl = i915_request_timeline(rq); 3104 struct i915_sched_attr attr = {}; 3105 struct i915_request *prev; 3106 3107 lockdep_assert_held(&tl->mutex); 3108 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3109 3110 trace_i915_request_add(rq); 3111 3112 prev = __i915_request_commit(rq); 3113 3114 /* Check that the context wasn't destroyed before submission */ 3115 if (likely(!intel_context_is_closed(eb->context))) { 3116 attr = eb->gem_context->sched; 3117 } else { 3118 /* Serialise with context_close via the add_to_timeline */ 3119 i915_request_set_error_once(rq, -ENOENT); 3120 __i915_request_skip(rq); 3121 err = -ENOENT; /* override any transient errors */ 3122 } 3123 3124 __i915_request_queue(rq, &attr); 3125 3126 /* Try to clean up the client's timeline after submitting the request */ 3127 if (prev) 3128 retire_requests(tl, prev); 3129 3130 mutex_unlock(&tl->mutex); 3131 3132 return err; 3133 } 3134 3135 static const i915_user_extension_fn execbuf_extensions[] = { 3136 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3137 }; 3138 3139 static int 3140 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3141 struct i915_execbuffer *eb) 3142 { 3143 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3144 return 0; 3145 3146 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3147 * have another flag also using it at the same time. 3148 */ 3149 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3150 return -EINVAL; 3151 3152 if (args->num_cliprects != 0) 3153 return -EINVAL; 3154 3155 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3156 execbuf_extensions, 3157 ARRAY_SIZE(execbuf_extensions), 3158 eb); 3159 } 3160 3161 static int 3162 i915_gem_do_execbuffer(struct drm_device *dev, 3163 struct drm_file *file, 3164 struct drm_i915_gem_execbuffer2 *args, 3165 struct drm_i915_gem_exec_object2 *exec) 3166 { 3167 struct drm_i915_private *i915 = to_i915(dev); 3168 struct i915_execbuffer eb; 3169 struct dma_fence *in_fence = NULL; 3170 struct sync_file *out_fence = NULL; 3171 struct i915_vma *batch; 3172 int out_fence_fd = -1; 3173 int err; 3174 3175 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3176 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3177 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3178 3179 eb.i915 = i915; 3180 eb.file = file; 3181 eb.args = args; 3182 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3183 args->flags |= __EXEC_HAS_RELOC; 3184 3185 eb.exec = exec; 3186 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3187 eb.vma[0].vma = NULL; 3188 eb.reloc_pool = eb.batch_pool = NULL; 3189 eb.reloc_context = NULL; 3190 3191 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3192 reloc_cache_init(&eb.reloc_cache, eb.i915); 3193 3194 eb.buffer_count = args->buffer_count; 3195 eb.batch_start_offset = args->batch_start_offset; 3196 eb.batch_len = args->batch_len; 3197 eb.trampoline = NULL; 3198 3199 eb.fences = NULL; 3200 eb.num_fences = 0; 3201 3202 eb.batch_flags = 0; 3203 if (args->flags & I915_EXEC_SECURE) { 3204 if (INTEL_GEN(i915) >= 11) 3205 return -ENODEV; 3206 3207 /* Return -EPERM to trigger fallback code on old binaries. */ 3208 if (!HAS_SECURE_BATCHES(i915)) 3209 return -EPERM; 3210 3211 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3212 return -EPERM; 3213 3214 eb.batch_flags |= I915_DISPATCH_SECURE; 3215 } 3216 if (args->flags & I915_EXEC_IS_PINNED) 3217 eb.batch_flags |= I915_DISPATCH_PINNED; 3218 3219 err = parse_execbuf2_extensions(args, &eb); 3220 if (err) 3221 goto err_ext; 3222 3223 err = add_fence_array(&eb); 3224 if (err) 3225 goto err_ext; 3226 3227 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3228 if (args->flags & IN_FENCES) { 3229 if ((args->flags & IN_FENCES) == IN_FENCES) 3230 return -EINVAL; 3231 3232 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3233 if (!in_fence) { 3234 err = -EINVAL; 3235 goto err_ext; 3236 } 3237 } 3238 #undef IN_FENCES 3239 3240 if (args->flags & I915_EXEC_FENCE_OUT) { 3241 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3242 if (out_fence_fd < 0) { 3243 err = out_fence_fd; 3244 goto err_in_fence; 3245 } 3246 } 3247 3248 err = eb_create(&eb); 3249 if (err) 3250 goto err_out_fence; 3251 3252 GEM_BUG_ON(!eb.lut_size); 3253 3254 err = eb_select_context(&eb); 3255 if (unlikely(err)) 3256 goto err_destroy; 3257 3258 err = eb_select_engine(&eb); 3259 if (unlikely(err)) 3260 goto err_context; 3261 3262 err = eb_lookup_vmas(&eb); 3263 if (err) { 3264 eb_release_vmas(&eb, true); 3265 goto err_engine; 3266 } 3267 3268 i915_gem_ww_ctx_init(&eb.ww, true); 3269 3270 err = eb_relocate_parse(&eb); 3271 if (err) { 3272 /* 3273 * If the user expects the execobject.offset and 3274 * reloc.presumed_offset to be an exact match, 3275 * as for using NO_RELOC, then we cannot update 3276 * the execobject.offset until we have completed 3277 * relocation. 3278 */ 3279 args->flags &= ~__EXEC_HAS_RELOC; 3280 goto err_vma; 3281 } 3282 3283 ww_acquire_done(&eb.ww.ctx); 3284 3285 batch = eb.batch->vma; 3286 3287 /* All GPU relocation batches must be submitted prior to the user rq */ 3288 GEM_BUG_ON(eb.reloc_cache.rq); 3289 3290 /* Allocate a request for this batch buffer nice and early. */ 3291 eb.request = i915_request_create(eb.context); 3292 if (IS_ERR(eb.request)) { 3293 err = PTR_ERR(eb.request); 3294 goto err_vma; 3295 } 3296 3297 if (in_fence) { 3298 if (args->flags & I915_EXEC_FENCE_SUBMIT) 3299 err = i915_request_await_execution(eb.request, 3300 in_fence, 3301 eb.engine->bond_execute); 3302 else 3303 err = i915_request_await_dma_fence(eb.request, 3304 in_fence); 3305 if (err < 0) 3306 goto err_request; 3307 } 3308 3309 if (eb.fences) { 3310 err = await_fence_array(&eb); 3311 if (err) 3312 goto err_request; 3313 } 3314 3315 if (out_fence_fd != -1) { 3316 out_fence = sync_file_create(&eb.request->fence); 3317 if (!out_fence) { 3318 err = -ENOMEM; 3319 goto err_request; 3320 } 3321 } 3322 3323 /* 3324 * Whilst this request exists, batch_obj will be on the 3325 * active_list, and so will hold the active reference. Only when this 3326 * request is retired will the the batch_obj be moved onto the 3327 * inactive_list and lose its active reference. Hence we do not need 3328 * to explicitly hold another reference here. 3329 */ 3330 eb.request->batch = batch; 3331 if (eb.batch_pool) 3332 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request); 3333 3334 trace_i915_request_queue(eb.request, eb.batch_flags); 3335 err = eb_submit(&eb, batch); 3336 err_request: 3337 i915_request_get(eb.request); 3338 err = eb_request_add(&eb, err); 3339 3340 if (eb.fences) 3341 signal_fence_array(&eb); 3342 3343 if (out_fence) { 3344 if (err == 0) { 3345 fd_install(out_fence_fd, out_fence->file); 3346 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3347 args->rsvd2 |= (u64)out_fence_fd << 32; 3348 out_fence_fd = -1; 3349 } else { 3350 fput(out_fence->file); 3351 } 3352 } 3353 i915_request_put(eb.request); 3354 3355 err_vma: 3356 eb_release_vmas(&eb, true); 3357 if (eb.trampoline) 3358 i915_vma_unpin(eb.trampoline); 3359 WARN_ON(err == -EDEADLK); 3360 i915_gem_ww_ctx_fini(&eb.ww); 3361 3362 if (eb.batch_pool) 3363 intel_gt_buffer_pool_put(eb.batch_pool); 3364 if (eb.reloc_pool) 3365 intel_gt_buffer_pool_put(eb.reloc_pool); 3366 if (eb.reloc_context) 3367 intel_context_put(eb.reloc_context); 3368 err_engine: 3369 eb_put_engine(&eb); 3370 err_context: 3371 i915_gem_context_put(eb.gem_context); 3372 err_destroy: 3373 eb_destroy(&eb); 3374 err_out_fence: 3375 if (out_fence_fd != -1) 3376 put_unused_fd(out_fence_fd); 3377 err_in_fence: 3378 dma_fence_put(in_fence); 3379 err_ext: 3380 put_fence_array(eb.fences, eb.num_fences); 3381 return err; 3382 } 3383 3384 static size_t eb_element_size(void) 3385 { 3386 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3387 } 3388 3389 static bool check_buffer_count(size_t count) 3390 { 3391 const size_t sz = eb_element_size(); 3392 3393 /* 3394 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3395 * array size (see eb_create()). Otherwise, we can accept an array as 3396 * large as can be addressed (though use large arrays at your peril)! 3397 */ 3398 3399 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3400 } 3401 3402 /* 3403 * Legacy execbuffer just creates an exec2 list from the original exec object 3404 * list array and passes it to the real function. 3405 */ 3406 int 3407 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 3408 struct drm_file *file) 3409 { 3410 struct drm_i915_private *i915 = to_i915(dev); 3411 struct drm_i915_gem_execbuffer *args = data; 3412 struct drm_i915_gem_execbuffer2 exec2; 3413 struct drm_i915_gem_exec_object *exec_list = NULL; 3414 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 3415 const size_t count = args->buffer_count; 3416 unsigned int i; 3417 int err; 3418 3419 if (!check_buffer_count(count)) { 3420 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3421 return -EINVAL; 3422 } 3423 3424 exec2.buffers_ptr = args->buffers_ptr; 3425 exec2.buffer_count = args->buffer_count; 3426 exec2.batch_start_offset = args->batch_start_offset; 3427 exec2.batch_len = args->batch_len; 3428 exec2.DR1 = args->DR1; 3429 exec2.DR4 = args->DR4; 3430 exec2.num_cliprects = args->num_cliprects; 3431 exec2.cliprects_ptr = args->cliprects_ptr; 3432 exec2.flags = I915_EXEC_RENDER; 3433 i915_execbuffer2_set_context_id(exec2, 0); 3434 3435 err = i915_gem_check_execbuffer(&exec2); 3436 if (err) 3437 return err; 3438 3439 /* Copy in the exec list from userland */ 3440 exec_list = kvmalloc_array(count, sizeof(*exec_list), 3441 __GFP_NOWARN | GFP_KERNEL); 3442 3443 /* Allocate extra slots for use by the command parser */ 3444 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3445 __GFP_NOWARN | GFP_KERNEL); 3446 if (exec_list == NULL || exec2_list == NULL) { 3447 drm_dbg(&i915->drm, 3448 "Failed to allocate exec list for %d buffers\n", 3449 args->buffer_count); 3450 kvfree(exec_list); 3451 kvfree(exec2_list); 3452 return -ENOMEM; 3453 } 3454 err = copy_from_user(exec_list, 3455 u64_to_user_ptr(args->buffers_ptr), 3456 sizeof(*exec_list) * count); 3457 if (err) { 3458 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", 3459 args->buffer_count, err); 3460 kvfree(exec_list); 3461 kvfree(exec2_list); 3462 return -EFAULT; 3463 } 3464 3465 for (i = 0; i < args->buffer_count; i++) { 3466 exec2_list[i].handle = exec_list[i].handle; 3467 exec2_list[i].relocation_count = exec_list[i].relocation_count; 3468 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 3469 exec2_list[i].alignment = exec_list[i].alignment; 3470 exec2_list[i].offset = exec_list[i].offset; 3471 if (INTEL_GEN(to_i915(dev)) < 4) 3472 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 3473 else 3474 exec2_list[i].flags = 0; 3475 } 3476 3477 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list); 3478 if (exec2.flags & __EXEC_HAS_RELOC) { 3479 struct drm_i915_gem_exec_object __user *user_exec_list = 3480 u64_to_user_ptr(args->buffers_ptr); 3481 3482 /* Copy the new buffer offsets back to the user's exec list. */ 3483 for (i = 0; i < args->buffer_count; i++) { 3484 if (!(exec2_list[i].offset & UPDATE)) 3485 continue; 3486 3487 exec2_list[i].offset = 3488 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3489 exec2_list[i].offset &= PIN_OFFSET_MASK; 3490 if (__copy_to_user(&user_exec_list[i].offset, 3491 &exec2_list[i].offset, 3492 sizeof(user_exec_list[i].offset))) 3493 break; 3494 } 3495 } 3496 3497 kvfree(exec_list); 3498 kvfree(exec2_list); 3499 return err; 3500 } 3501 3502 int 3503 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3504 struct drm_file *file) 3505 { 3506 struct drm_i915_private *i915 = to_i915(dev); 3507 struct drm_i915_gem_execbuffer2 *args = data; 3508 struct drm_i915_gem_exec_object2 *exec2_list; 3509 const size_t count = args->buffer_count; 3510 int err; 3511 3512 if (!check_buffer_count(count)) { 3513 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3514 return -EINVAL; 3515 } 3516 3517 err = i915_gem_check_execbuffer(args); 3518 if (err) 3519 return err; 3520 3521 /* Allocate extra slots for use by the command parser */ 3522 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3523 __GFP_NOWARN | GFP_KERNEL); 3524 if (exec2_list == NULL) { 3525 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3526 count); 3527 return -ENOMEM; 3528 } 3529 if (copy_from_user(exec2_list, 3530 u64_to_user_ptr(args->buffers_ptr), 3531 sizeof(*exec2_list) * count)) { 3532 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3533 kvfree(exec2_list); 3534 return -EFAULT; 3535 } 3536 3537 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3538 3539 /* 3540 * Now that we have begun execution of the batchbuffer, we ignore 3541 * any new error after this point. Also given that we have already 3542 * updated the associated relocations, we try to write out the current 3543 * object locations irrespective of any error. 3544 */ 3545 if (args->flags & __EXEC_HAS_RELOC) { 3546 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3547 u64_to_user_ptr(args->buffers_ptr); 3548 unsigned int i; 3549 3550 /* Copy the new buffer offsets back to the user's exec list. */ 3551 /* 3552 * Note: count * sizeof(*user_exec_list) does not overflow, 3553 * because we checked 'count' in check_buffer_count(). 3554 * 3555 * And this range already got effectively checked earlier 3556 * when we did the "copy_from_user()" above. 3557 */ 3558 if (!user_write_access_begin(user_exec_list, 3559 count * sizeof(*user_exec_list))) 3560 goto end; 3561 3562 for (i = 0; i < args->buffer_count; i++) { 3563 if (!(exec2_list[i].offset & UPDATE)) 3564 continue; 3565 3566 exec2_list[i].offset = 3567 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3568 unsafe_put_user(exec2_list[i].offset, 3569 &user_exec_list[i].offset, 3570 end_user); 3571 } 3572 end_user: 3573 user_write_access_end(); 3574 end:; 3575 } 3576 3577 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3578 kvfree(exec2_list); 3579 return err; 3580 } 3581 3582 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3583 #include "selftests/i915_gem_execbuffer.c" 3584 #endif 3585