1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30 
31 enum {
32 	FORCE_CPU_RELOC = 1,
33 	FORCE_GTT_RELOC,
34 	FORCE_GPU_RELOC,
35 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
36 };
37 
38 #define __EXEC_OBJECT_HAS_REF		BIT(31)
39 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
40 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
41 #define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
42 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
43 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
44 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
45 
46 #define __EXEC_HAS_RELOC	BIT(31)
47 #define __EXEC_VALIDATED	BIT(30)
48 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
49 #define UPDATE			PIN_OFFSET_FIXED
50 
51 #define BATCH_OFFSET_BIAS (256*1024)
52 
53 #define __I915_EXEC_ILLEGAL_FLAGS \
54 	(__I915_EXEC_UNKNOWN_FLAGS | \
55 	 I915_EXEC_CONSTANTS_MASK  | \
56 	 I915_EXEC_RESOURCE_STREAMER)
57 
58 /* Catch emission of unexpected errors for CI! */
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
60 #undef EINVAL
61 #define EINVAL ({ \
62 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
63 	22; \
64 })
65 #endif
66 
67 /**
68  * DOC: User command execution
69  *
70  * Userspace submits commands to be executed on the GPU as an instruction
71  * stream within a GEM object we call a batchbuffer. This instructions may
72  * refer to other GEM objects containing auxiliary state such as kernels,
73  * samplers, render targets and even secondary batchbuffers. Userspace does
74  * not know where in the GPU memory these objects reside and so before the
75  * batchbuffer is passed to the GPU for execution, those addresses in the
76  * batchbuffer and auxiliary objects are updated. This is known as relocation,
77  * or patching. To try and avoid having to relocate each object on the next
78  * execution, userspace is told the location of those objects in this pass,
79  * but this remains just a hint as the kernel may choose a new location for
80  * any object in the future.
81  *
82  * At the level of talking to the hardware, submitting a batchbuffer for the
83  * GPU to execute is to add content to a buffer from which the HW
84  * command streamer is reading.
85  *
86  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
87  *    Execlists, this command is not placed on the same buffer as the
88  *    remaining items.
89  *
90  * 2. Add a command to invalidate caches to the buffer.
91  *
92  * 3. Add a batchbuffer start command to the buffer; the start command is
93  *    essentially a token together with the GPU address of the batchbuffer
94  *    to be executed.
95  *
96  * 4. Add a pipeline flush to the buffer.
97  *
98  * 5. Add a memory write command to the buffer to record when the GPU
99  *    is done executing the batchbuffer. The memory write writes the
100  *    global sequence number of the request, ``i915_request::global_seqno``;
101  *    the i915 driver uses the current value in the register to determine
102  *    if the GPU has completed the batchbuffer.
103  *
104  * 6. Add a user interrupt command to the buffer. This command instructs
105  *    the GPU to issue an interrupt when the command, pipeline flush and
106  *    memory write are completed.
107  *
108  * 7. Inform the hardware of the additional commands added to the buffer
109  *    (by updating the tail pointer).
110  *
111  * Processing an execbuf ioctl is conceptually split up into a few phases.
112  *
113  * 1. Validation - Ensure all the pointers, handles and flags are valid.
114  * 2. Reservation - Assign GPU address space for every object
115  * 3. Relocation - Update any addresses to point to the final locations
116  * 4. Serialisation - Order the request with respect to its dependencies
117  * 5. Construction - Construct a request to execute the batchbuffer
118  * 6. Submission (at some point in the future execution)
119  *
120  * Reserving resources for the execbuf is the most complicated phase. We
121  * neither want to have to migrate the object in the address space, nor do
122  * we want to have to update any relocations pointing to this object. Ideally,
123  * we want to leave the object where it is and for all the existing relocations
124  * to match. If the object is given a new address, or if userspace thinks the
125  * object is elsewhere, we have to parse all the relocation entries and update
126  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
127  * all the target addresses in all of its objects match the value in the
128  * relocation entries and that they all match the presumed offsets given by the
129  * list of execbuffer objects. Using this knowledge, we know that if we haven't
130  * moved any buffers, all the relocation entries are valid and we can skip
131  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
132  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
133  *
134  *      The addresses written in the objects must match the corresponding
135  *      reloc.presumed_offset which in turn must match the corresponding
136  *      execobject.offset.
137  *
138  *      Any render targets written to in the batch must be flagged with
139  *      EXEC_OBJECT_WRITE.
140  *
141  *      To avoid stalling, execobject.offset should match the current
142  *      address of that object within the active context.
143  *
144  * The reservation is done is multiple phases. First we try and keep any
145  * object already bound in its current location - so as long as meets the
146  * constraints imposed by the new execbuffer. Any object left unbound after the
147  * first pass is then fitted into any available idle space. If an object does
148  * not fit, all objects are removed from the reservation and the process rerun
149  * after sorting the objects into a priority order (more difficult to fit
150  * objects are tried first). Failing that, the entire VM is cleared and we try
151  * to fit the execbuf once last time before concluding that it simply will not
152  * fit.
153  *
154  * A small complication to all of this is that we allow userspace not only to
155  * specify an alignment and a size for the object in the address space, but
156  * we also allow userspace to specify the exact offset. This objects are
157  * simpler to place (the location is known a priori) all we have to do is make
158  * sure the space is available.
159  *
160  * Once all the objects are in place, patching up the buried pointers to point
161  * to the final locations is a fairly simple job of walking over the relocation
162  * entry arrays, looking up the right address and rewriting the value into
163  * the object. Simple! ... The relocation entries are stored in user memory
164  * and so to access them we have to copy them into a local buffer. That copy
165  * has to avoid taking any pagefaults as they may lead back to a GEM object
166  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
167  * the relocation into multiple passes. First we try to do everything within an
168  * atomic context (avoid the pagefaults) which requires that we never wait. If
169  * we detect that we may wait, or if we need to fault, then we have to fallback
170  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
171  * bells yet?) Dropping the mutex means that we lose all the state we have
172  * built up so far for the execbuf and we must reset any global data. However,
173  * we do leave the objects pinned in their final locations - which is a
174  * potential issue for concurrent execbufs. Once we have left the mutex, we can
175  * allocate and copy all the relocation entries into a large array at our
176  * leisure, reacquire the mutex, reclaim all the objects and other state and
177  * then proceed to update any incorrect addresses with the objects.
178  *
179  * As we process the relocation entries, we maintain a record of whether the
180  * object is being written to. Using NORELOC, we expect userspace to provide
181  * this information instead. We also check whether we can skip the relocation
182  * by comparing the expected value inside the relocation entry with the target's
183  * final address. If they differ, we have to map the current object and rewrite
184  * the 4 or 8 byte pointer within.
185  *
186  * Serialising an execbuf is quite simple according to the rules of the GEM
187  * ABI. Execution within each context is ordered by the order of submission.
188  * Writes to any GEM object are in order of submission and are exclusive. Reads
189  * from a GEM object are unordered with respect to other reads, but ordered by
190  * writes. A write submitted after a read cannot occur before the read, and
191  * similarly any read submitted after a write cannot occur before the write.
192  * Writes are ordered between engines such that only one write occurs at any
193  * time (completing any reads beforehand) - using semaphores where available
194  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
195  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
196  * reads before starting, and any read (either using set-domain or pread) must
197  * flush all GPU writes before starting. (Note we only employ a barrier before,
198  * we currently rely on userspace not concurrently starting a new execution
199  * whilst reading or writing to an object. This may be an advantage or not
200  * depending on how much you trust userspace not to shoot themselves in the
201  * foot.) Serialisation may just result in the request being inserted into
202  * a DAG awaiting its turn, but most simple is to wait on the CPU until
203  * all dependencies are resolved.
204  *
205  * After all of that, is just a matter of closing the request and handing it to
206  * the hardware (well, leaving it in a queue to be executed). However, we also
207  * offer the ability for batchbuffers to be run with elevated privileges so
208  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
209  * Before any batch is given extra privileges we first must check that it
210  * contains no nefarious instructions, we check that each instruction is from
211  * our whitelist and all registers are also from an allowed list. We first
212  * copy the user's batchbuffer to a shadow (so that the user doesn't have
213  * access to it, either by the CPU or GPU as we scan it) and then parse each
214  * instruction. If everything is ok, we set a flag telling the hardware to run
215  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
216  */
217 
218 struct i915_execbuffer {
219 	struct drm_i915_private *i915; /** i915 backpointer */
220 	struct drm_file *file; /** per-file lookup tables and limits */
221 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
222 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
223 	struct i915_vma **vma;
224 	unsigned int *flags;
225 
226 	struct intel_engine_cs *engine; /** engine to queue the request to */
227 	struct intel_context *context; /* logical state for the request */
228 	struct i915_gem_context *gem_context; /** caller's context */
229 
230 	struct i915_request *request; /** our request to build */
231 	struct i915_vma *batch; /** identity of the batch obj/vma */
232 	struct i915_vma *trampoline; /** trampoline used for chaining */
233 
234 	/** actual size of execobj[] as we may extend it for the cmdparser */
235 	unsigned int buffer_count;
236 
237 	/** list of vma not yet bound during reservation phase */
238 	struct list_head unbound;
239 
240 	/** list of vma that have execobj.relocation_count */
241 	struct list_head relocs;
242 
243 	/**
244 	 * Track the most recently used object for relocations, as we
245 	 * frequently have to perform multiple relocations within the same
246 	 * obj/page
247 	 */
248 	struct reloc_cache {
249 		struct drm_mm_node node; /** temporary GTT binding */
250 		unsigned long vaddr; /** Current kmap address */
251 		unsigned long page; /** Currently mapped page index */
252 		unsigned int gen; /** Cached value of INTEL_GEN */
253 		bool use_64bit_reloc : 1;
254 		bool has_llc : 1;
255 		bool has_fence : 1;
256 		bool needs_unfenced : 1;
257 
258 		struct i915_request *rq;
259 		u32 *rq_cmd;
260 		unsigned int rq_size;
261 	} reloc_cache;
262 
263 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
264 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
265 
266 	u32 batch_start_offset; /** Location within object of batch */
267 	u32 batch_len; /** Length of batch within object */
268 	u32 batch_flags; /** Flags composed for emit_bb_start() */
269 
270 	/**
271 	 * Indicate either the size of the hastable used to resolve
272 	 * relocation handles, or if negative that we are using a direct
273 	 * index into the execobj[].
274 	 */
275 	int lut_size;
276 	struct hlist_head *buckets; /** ht for relocation handles */
277 };
278 
279 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
280 
281 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
282 {
283 	return intel_engine_requires_cmd_parser(eb->engine) ||
284 		(intel_engine_using_cmd_parser(eb->engine) &&
285 		 eb->args->batch_len);
286 }
287 
288 static int eb_create(struct i915_execbuffer *eb)
289 {
290 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
291 		unsigned int size = 1 + ilog2(eb->buffer_count);
292 
293 		/*
294 		 * Without a 1:1 association between relocation handles and
295 		 * the execobject[] index, we instead create a hashtable.
296 		 * We size it dynamically based on available memory, starting
297 		 * first with 1:1 assocative hash and scaling back until
298 		 * the allocation succeeds.
299 		 *
300 		 * Later on we use a positive lut_size to indicate we are
301 		 * using this hashtable, and a negative value to indicate a
302 		 * direct lookup.
303 		 */
304 		do {
305 			gfp_t flags;
306 
307 			/* While we can still reduce the allocation size, don't
308 			 * raise a warning and allow the allocation to fail.
309 			 * On the last pass though, we want to try as hard
310 			 * as possible to perform the allocation and warn
311 			 * if it fails.
312 			 */
313 			flags = GFP_KERNEL;
314 			if (size > 1)
315 				flags |= __GFP_NORETRY | __GFP_NOWARN;
316 
317 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
318 					      flags);
319 			if (eb->buckets)
320 				break;
321 		} while (--size);
322 
323 		if (unlikely(!size))
324 			return -ENOMEM;
325 
326 		eb->lut_size = size;
327 	} else {
328 		eb->lut_size = -eb->buffer_count;
329 	}
330 
331 	return 0;
332 }
333 
334 static bool
335 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
336 		 const struct i915_vma *vma,
337 		 unsigned int flags)
338 {
339 	if (vma->node.size < entry->pad_to_size)
340 		return true;
341 
342 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
343 		return true;
344 
345 	if (flags & EXEC_OBJECT_PINNED &&
346 	    vma->node.start != entry->offset)
347 		return true;
348 
349 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
350 	    vma->node.start < BATCH_OFFSET_BIAS)
351 		return true;
352 
353 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
354 	    (vma->node.start + vma->node.size - 1) >> 32)
355 		return true;
356 
357 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
358 	    !i915_vma_is_map_and_fenceable(vma))
359 		return true;
360 
361 	return false;
362 }
363 
364 static inline bool
365 eb_pin_vma(struct i915_execbuffer *eb,
366 	   const struct drm_i915_gem_exec_object2 *entry,
367 	   struct i915_vma *vma)
368 {
369 	unsigned int exec_flags = *vma->exec_flags;
370 	u64 pin_flags;
371 
372 	if (vma->node.size)
373 		pin_flags = vma->node.start;
374 	else
375 		pin_flags = entry->offset & PIN_OFFSET_MASK;
376 
377 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
378 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
379 		pin_flags |= PIN_GLOBAL;
380 
381 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
382 		return false;
383 
384 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
385 		if (unlikely(i915_vma_pin_fence(vma))) {
386 			i915_vma_unpin(vma);
387 			return false;
388 		}
389 
390 		if (vma->fence)
391 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
392 	}
393 
394 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
395 	return !eb_vma_misplaced(entry, vma, exec_flags);
396 }
397 
398 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
399 {
400 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
401 
402 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
403 		__i915_vma_unpin_fence(vma);
404 
405 	__i915_vma_unpin(vma);
406 }
407 
408 static inline void
409 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
410 {
411 	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
412 		return;
413 
414 	__eb_unreserve_vma(vma, *flags);
415 	*flags &= ~__EXEC_OBJECT_RESERVED;
416 }
417 
418 static int
419 eb_validate_vma(struct i915_execbuffer *eb,
420 		struct drm_i915_gem_exec_object2 *entry,
421 		struct i915_vma *vma)
422 {
423 	if (unlikely(entry->flags & eb->invalid_flags))
424 		return -EINVAL;
425 
426 	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
427 		return -EINVAL;
428 
429 	/*
430 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
431 	 * any non-page-aligned or non-canonical addresses.
432 	 */
433 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
434 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
435 		return -EINVAL;
436 
437 	/* pad_to_size was once a reserved field, so sanitize it */
438 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
439 		if (unlikely(offset_in_page(entry->pad_to_size)))
440 			return -EINVAL;
441 	} else {
442 		entry->pad_to_size = 0;
443 	}
444 
445 	if (unlikely(vma->exec_flags)) {
446 		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
447 			  entry->handle, (int)(entry - eb->exec));
448 		return -EINVAL;
449 	}
450 
451 	/*
452 	 * From drm_mm perspective address space is continuous,
453 	 * so from this point we're always using non-canonical
454 	 * form internally.
455 	 */
456 	entry->offset = gen8_noncanonical_addr(entry->offset);
457 
458 	if (!eb->reloc_cache.has_fence) {
459 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
460 	} else {
461 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
462 		     eb->reloc_cache.needs_unfenced) &&
463 		    i915_gem_object_is_tiled(vma->obj))
464 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
465 	}
466 
467 	if (!(entry->flags & EXEC_OBJECT_PINNED))
468 		entry->flags |= eb->context_flags;
469 
470 	return 0;
471 }
472 
473 static int
474 eb_add_vma(struct i915_execbuffer *eb,
475 	   unsigned int i, unsigned batch_idx,
476 	   struct i915_vma *vma)
477 {
478 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
479 	int err;
480 
481 	GEM_BUG_ON(i915_vma_is_closed(vma));
482 
483 	if (!(eb->args->flags & __EXEC_VALIDATED)) {
484 		err = eb_validate_vma(eb, entry, vma);
485 		if (unlikely(err))
486 			return err;
487 	}
488 
489 	if (eb->lut_size > 0) {
490 		vma->exec_handle = entry->handle;
491 		hlist_add_head(&vma->exec_node,
492 			       &eb->buckets[hash_32(entry->handle,
493 						    eb->lut_size)]);
494 	}
495 
496 	if (entry->relocation_count)
497 		list_add_tail(&vma->reloc_link, &eb->relocs);
498 
499 	/*
500 	 * Stash a pointer from the vma to execobj, so we can query its flags,
501 	 * size, alignment etc as provided by the user. Also we stash a pointer
502 	 * to the vma inside the execobj so that we can use a direct lookup
503 	 * to find the right target VMA when doing relocations.
504 	 */
505 	eb->vma[i] = vma;
506 	eb->flags[i] = entry->flags;
507 	vma->exec_flags = &eb->flags[i];
508 
509 	/*
510 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
511 	 * to negative relocation deltas. Usually that works out ok since the
512 	 * relocate address is still positive, except when the batch is placed
513 	 * very low in the GTT. Ensure this doesn't happen.
514 	 *
515 	 * Note that actual hangs have only been observed on gen7, but for
516 	 * paranoia do it everywhere.
517 	 */
518 	if (i == batch_idx) {
519 		if (entry->relocation_count &&
520 		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
521 			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
522 		if (eb->reloc_cache.has_fence)
523 			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
524 
525 		eb->batch = vma;
526 	}
527 
528 	err = 0;
529 	if (eb_pin_vma(eb, entry, vma)) {
530 		if (entry->offset != vma->node.start) {
531 			entry->offset = vma->node.start | UPDATE;
532 			eb->args->flags |= __EXEC_HAS_RELOC;
533 		}
534 	} else {
535 		eb_unreserve_vma(vma, vma->exec_flags);
536 
537 		list_add_tail(&vma->exec_link, &eb->unbound);
538 		if (drm_mm_node_allocated(&vma->node))
539 			err = i915_vma_unbind(vma);
540 		if (unlikely(err))
541 			vma->exec_flags = NULL;
542 	}
543 	return err;
544 }
545 
546 static inline int use_cpu_reloc(const struct reloc_cache *cache,
547 				const struct drm_i915_gem_object *obj)
548 {
549 	if (!i915_gem_object_has_struct_page(obj))
550 		return false;
551 
552 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
553 		return true;
554 
555 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
556 		return false;
557 
558 	return (cache->has_llc ||
559 		obj->cache_dirty ||
560 		obj->cache_level != I915_CACHE_NONE);
561 }
562 
563 static int eb_reserve_vma(const struct i915_execbuffer *eb,
564 			  struct i915_vma *vma)
565 {
566 	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
567 	unsigned int exec_flags = *vma->exec_flags;
568 	u64 pin_flags;
569 	int err;
570 
571 	pin_flags = PIN_USER | PIN_NONBLOCK;
572 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
573 		pin_flags |= PIN_GLOBAL;
574 
575 	/*
576 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
577 	 * limit address to the first 4GBs for unflagged objects.
578 	 */
579 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
580 		pin_flags |= PIN_ZONE_4G;
581 
582 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
583 		pin_flags |= PIN_MAPPABLE;
584 
585 	if (exec_flags & EXEC_OBJECT_PINNED) {
586 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
587 		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
588 	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
589 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
590 	}
591 
592 	err = i915_vma_pin(vma,
593 			   entry->pad_to_size, entry->alignment,
594 			   pin_flags);
595 	if (err)
596 		return err;
597 
598 	if (entry->offset != vma->node.start) {
599 		entry->offset = vma->node.start | UPDATE;
600 		eb->args->flags |= __EXEC_HAS_RELOC;
601 	}
602 
603 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
604 		err = i915_vma_pin_fence(vma);
605 		if (unlikely(err)) {
606 			i915_vma_unpin(vma);
607 			return err;
608 		}
609 
610 		if (vma->fence)
611 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
612 	}
613 
614 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
615 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
616 
617 	return 0;
618 }
619 
620 static int eb_reserve(struct i915_execbuffer *eb)
621 {
622 	const unsigned int count = eb->buffer_count;
623 	struct list_head last;
624 	struct i915_vma *vma;
625 	unsigned int i, pass;
626 	int err;
627 
628 	/*
629 	 * Attempt to pin all of the buffers into the GTT.
630 	 * This is done in 3 phases:
631 	 *
632 	 * 1a. Unbind all objects that do not match the GTT constraints for
633 	 *     the execbuffer (fenceable, mappable, alignment etc).
634 	 * 1b. Increment pin count for already bound objects.
635 	 * 2.  Bind new objects.
636 	 * 3.  Decrement pin count.
637 	 *
638 	 * This avoid unnecessary unbinding of later objects in order to make
639 	 * room for the earlier objects *unless* we need to defragment.
640 	 */
641 
642 	pass = 0;
643 	err = 0;
644 	do {
645 		list_for_each_entry(vma, &eb->unbound, exec_link) {
646 			err = eb_reserve_vma(eb, vma);
647 			if (err)
648 				break;
649 		}
650 		if (err != -ENOSPC)
651 			return err;
652 
653 		/* Resort *all* the objects into priority order */
654 		INIT_LIST_HEAD(&eb->unbound);
655 		INIT_LIST_HEAD(&last);
656 		for (i = 0; i < count; i++) {
657 			unsigned int flags = eb->flags[i];
658 			struct i915_vma *vma = eb->vma[i];
659 
660 			if (flags & EXEC_OBJECT_PINNED &&
661 			    flags & __EXEC_OBJECT_HAS_PIN)
662 				continue;
663 
664 			eb_unreserve_vma(vma, &eb->flags[i]);
665 
666 			if (flags & EXEC_OBJECT_PINNED)
667 				/* Pinned must have their slot */
668 				list_add(&vma->exec_link, &eb->unbound);
669 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
670 				/* Map require the lowest 256MiB (aperture) */
671 				list_add_tail(&vma->exec_link, &eb->unbound);
672 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
673 				/* Prioritise 4GiB region for restricted bo */
674 				list_add(&vma->exec_link, &last);
675 			else
676 				list_add_tail(&vma->exec_link, &last);
677 		}
678 		list_splice_tail(&last, &eb->unbound);
679 
680 		switch (pass++) {
681 		case 0:
682 			break;
683 
684 		case 1:
685 			/* Too fragmented, unbind everything and retry */
686 			mutex_lock(&eb->context->vm->mutex);
687 			err = i915_gem_evict_vm(eb->context->vm);
688 			mutex_unlock(&eb->context->vm->mutex);
689 			if (err)
690 				return err;
691 			break;
692 
693 		default:
694 			return -ENOSPC;
695 		}
696 	} while (1);
697 }
698 
699 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
700 {
701 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
702 		return 0;
703 	else
704 		return eb->buffer_count - 1;
705 }
706 
707 static int eb_select_context(struct i915_execbuffer *eb)
708 {
709 	struct i915_gem_context *ctx;
710 
711 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
712 	if (unlikely(!ctx))
713 		return -ENOENT;
714 
715 	eb->gem_context = ctx;
716 	if (rcu_access_pointer(ctx->vm))
717 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
718 
719 	eb->context_flags = 0;
720 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
721 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
722 
723 	return 0;
724 }
725 
726 static int eb_lookup_vmas(struct i915_execbuffer *eb)
727 {
728 	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
729 	struct drm_i915_gem_object *obj;
730 	unsigned int i, batch;
731 	int err;
732 
733 	INIT_LIST_HEAD(&eb->relocs);
734 	INIT_LIST_HEAD(&eb->unbound);
735 
736 	batch = eb_batch_index(eb);
737 
738 	mutex_lock(&eb->gem_context->mutex);
739 	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
740 		err = -ENOENT;
741 		goto err_ctx;
742 	}
743 
744 	for (i = 0; i < eb->buffer_count; i++) {
745 		u32 handle = eb->exec[i].handle;
746 		struct i915_lut_handle *lut;
747 		struct i915_vma *vma;
748 
749 		vma = radix_tree_lookup(handles_vma, handle);
750 		if (likely(vma))
751 			goto add_vma;
752 
753 		obj = i915_gem_object_lookup(eb->file, handle);
754 		if (unlikely(!obj)) {
755 			err = -ENOENT;
756 			goto err_vma;
757 		}
758 
759 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
760 		if (IS_ERR(vma)) {
761 			err = PTR_ERR(vma);
762 			goto err_obj;
763 		}
764 
765 		lut = i915_lut_handle_alloc();
766 		if (unlikely(!lut)) {
767 			err = -ENOMEM;
768 			goto err_obj;
769 		}
770 
771 		err = radix_tree_insert(handles_vma, handle, vma);
772 		if (unlikely(err)) {
773 			i915_lut_handle_free(lut);
774 			goto err_obj;
775 		}
776 
777 		/* transfer ref to lut */
778 		if (!atomic_fetch_inc(&vma->open_count))
779 			i915_vma_reopen(vma);
780 		lut->handle = handle;
781 		lut->ctx = eb->gem_context;
782 
783 		i915_gem_object_lock(obj);
784 		list_add(&lut->obj_link, &obj->lut_list);
785 		i915_gem_object_unlock(obj);
786 
787 add_vma:
788 		err = eb_add_vma(eb, i, batch, vma);
789 		if (unlikely(err))
790 			goto err_vma;
791 
792 		GEM_BUG_ON(vma != eb->vma[i]);
793 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
794 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
795 			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
796 	}
797 
798 	mutex_unlock(&eb->gem_context->mutex);
799 
800 	eb->args->flags |= __EXEC_VALIDATED;
801 	return eb_reserve(eb);
802 
803 err_obj:
804 	i915_gem_object_put(obj);
805 err_vma:
806 	eb->vma[i] = NULL;
807 err_ctx:
808 	mutex_unlock(&eb->gem_context->mutex);
809 	return err;
810 }
811 
812 static struct i915_vma *
813 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
814 {
815 	if (eb->lut_size < 0) {
816 		if (handle >= -eb->lut_size)
817 			return NULL;
818 		return eb->vma[handle];
819 	} else {
820 		struct hlist_head *head;
821 		struct i915_vma *vma;
822 
823 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
824 		hlist_for_each_entry(vma, head, exec_node) {
825 			if (vma->exec_handle == handle)
826 				return vma;
827 		}
828 		return NULL;
829 	}
830 }
831 
832 static void eb_release_vmas(const struct i915_execbuffer *eb)
833 {
834 	const unsigned int count = eb->buffer_count;
835 	unsigned int i;
836 
837 	for (i = 0; i < count; i++) {
838 		struct i915_vma *vma = eb->vma[i];
839 		unsigned int flags = eb->flags[i];
840 
841 		if (!vma)
842 			break;
843 
844 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
845 		vma->exec_flags = NULL;
846 		eb->vma[i] = NULL;
847 
848 		if (flags & __EXEC_OBJECT_HAS_PIN)
849 			__eb_unreserve_vma(vma, flags);
850 
851 		if (flags & __EXEC_OBJECT_HAS_REF)
852 			i915_vma_put(vma);
853 	}
854 }
855 
856 static void eb_reset_vmas(const struct i915_execbuffer *eb)
857 {
858 	eb_release_vmas(eb);
859 	if (eb->lut_size > 0)
860 		memset(eb->buckets, 0,
861 		       sizeof(struct hlist_head) << eb->lut_size);
862 }
863 
864 static void eb_destroy(const struct i915_execbuffer *eb)
865 {
866 	GEM_BUG_ON(eb->reloc_cache.rq);
867 
868 	if (eb->lut_size > 0)
869 		kfree(eb->buckets);
870 }
871 
872 static inline u64
873 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
874 		  const struct i915_vma *target)
875 {
876 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
877 }
878 
879 static void reloc_cache_init(struct reloc_cache *cache,
880 			     struct drm_i915_private *i915)
881 {
882 	cache->page = -1;
883 	cache->vaddr = 0;
884 	/* Must be a variable in the struct to allow GCC to unroll. */
885 	cache->gen = INTEL_GEN(i915);
886 	cache->has_llc = HAS_LLC(i915);
887 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
888 	cache->has_fence = cache->gen < 4;
889 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
890 	cache->node.flags = 0;
891 	cache->rq = NULL;
892 	cache->rq_size = 0;
893 }
894 
895 static inline void *unmask_page(unsigned long p)
896 {
897 	return (void *)(uintptr_t)(p & PAGE_MASK);
898 }
899 
900 static inline unsigned int unmask_flags(unsigned long p)
901 {
902 	return p & ~PAGE_MASK;
903 }
904 
905 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
906 
907 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
908 {
909 	struct drm_i915_private *i915 =
910 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
911 	return &i915->ggtt;
912 }
913 
914 static void reloc_gpu_flush(struct reloc_cache *cache)
915 {
916 	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
917 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
918 
919 	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
920 	i915_gem_object_unpin_map(cache->rq->batch->obj);
921 
922 	intel_gt_chipset_flush(cache->rq->engine->gt);
923 
924 	i915_request_add(cache->rq);
925 	cache->rq = NULL;
926 }
927 
928 static void reloc_cache_reset(struct reloc_cache *cache)
929 {
930 	void *vaddr;
931 
932 	if (cache->rq)
933 		reloc_gpu_flush(cache);
934 
935 	if (!cache->vaddr)
936 		return;
937 
938 	vaddr = unmask_page(cache->vaddr);
939 	if (cache->vaddr & KMAP) {
940 		if (cache->vaddr & CLFLUSH_AFTER)
941 			mb();
942 
943 		kunmap_atomic(vaddr);
944 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
945 	} else {
946 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
947 
948 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
949 		io_mapping_unmap_atomic((void __iomem *)vaddr);
950 
951 		if (drm_mm_node_allocated(&cache->node)) {
952 			ggtt->vm.clear_range(&ggtt->vm,
953 					     cache->node.start,
954 					     cache->node.size);
955 			mutex_lock(&ggtt->vm.mutex);
956 			drm_mm_remove_node(&cache->node);
957 			mutex_unlock(&ggtt->vm.mutex);
958 		} else {
959 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
960 		}
961 	}
962 
963 	cache->vaddr = 0;
964 	cache->page = -1;
965 }
966 
967 static void *reloc_kmap(struct drm_i915_gem_object *obj,
968 			struct reloc_cache *cache,
969 			unsigned long page)
970 {
971 	void *vaddr;
972 
973 	if (cache->vaddr) {
974 		kunmap_atomic(unmask_page(cache->vaddr));
975 	} else {
976 		unsigned int flushes;
977 		int err;
978 
979 		err = i915_gem_object_prepare_write(obj, &flushes);
980 		if (err)
981 			return ERR_PTR(err);
982 
983 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
984 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
985 
986 		cache->vaddr = flushes | KMAP;
987 		cache->node.mm = (void *)obj;
988 		if (flushes)
989 			mb();
990 	}
991 
992 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
993 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
994 	cache->page = page;
995 
996 	return vaddr;
997 }
998 
999 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1000 			 struct reloc_cache *cache,
1001 			 unsigned long page)
1002 {
1003 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1004 	unsigned long offset;
1005 	void *vaddr;
1006 
1007 	if (cache->vaddr) {
1008 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1009 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1010 	} else {
1011 		struct i915_vma *vma;
1012 		int err;
1013 
1014 		if (i915_gem_object_is_tiled(obj))
1015 			return ERR_PTR(-EINVAL);
1016 
1017 		if (use_cpu_reloc(cache, obj))
1018 			return NULL;
1019 
1020 		i915_gem_object_lock(obj);
1021 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1022 		i915_gem_object_unlock(obj);
1023 		if (err)
1024 			return ERR_PTR(err);
1025 
1026 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1027 					       PIN_MAPPABLE |
1028 					       PIN_NONBLOCK /* NOWARN */ |
1029 					       PIN_NOEVICT);
1030 		if (IS_ERR(vma)) {
1031 			memset(&cache->node, 0, sizeof(cache->node));
1032 			mutex_lock(&ggtt->vm.mutex);
1033 			err = drm_mm_insert_node_in_range
1034 				(&ggtt->vm.mm, &cache->node,
1035 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036 				 0, ggtt->mappable_end,
1037 				 DRM_MM_INSERT_LOW);
1038 			mutex_unlock(&ggtt->vm.mutex);
1039 			if (err) /* no inactive aperture space, use cpu reloc */
1040 				return NULL;
1041 		} else {
1042 			cache->node.start = vma->node.start;
1043 			cache->node.mm = (void *)vma;
1044 		}
1045 	}
1046 
1047 	offset = cache->node.start;
1048 	if (drm_mm_node_allocated(&cache->node)) {
1049 		ggtt->vm.insert_page(&ggtt->vm,
1050 				     i915_gem_object_get_dma_address(obj, page),
1051 				     offset, I915_CACHE_NONE, 0);
1052 	} else {
1053 		offset += page << PAGE_SHIFT;
1054 	}
1055 
1056 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1057 							 offset);
1058 	cache->page = page;
1059 	cache->vaddr = (unsigned long)vaddr;
1060 
1061 	return vaddr;
1062 }
1063 
1064 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1065 			 struct reloc_cache *cache,
1066 			 unsigned long page)
1067 {
1068 	void *vaddr;
1069 
1070 	if (cache->page == page) {
1071 		vaddr = unmask_page(cache->vaddr);
1072 	} else {
1073 		vaddr = NULL;
1074 		if ((cache->vaddr & KMAP) == 0)
1075 			vaddr = reloc_iomap(obj, cache, page);
1076 		if (!vaddr)
1077 			vaddr = reloc_kmap(obj, cache, page);
1078 	}
1079 
1080 	return vaddr;
1081 }
1082 
1083 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1084 {
1085 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1086 		if (flushes & CLFLUSH_BEFORE) {
1087 			clflushopt(addr);
1088 			mb();
1089 		}
1090 
1091 		*addr = value;
1092 
1093 		/*
1094 		 * Writes to the same cacheline are serialised by the CPU
1095 		 * (including clflush). On the write path, we only require
1096 		 * that it hits memory in an orderly fashion and place
1097 		 * mb barriers at the start and end of the relocation phase
1098 		 * to ensure ordering of clflush wrt to the system.
1099 		 */
1100 		if (flushes & CLFLUSH_AFTER)
1101 			clflushopt(addr);
1102 	} else
1103 		*addr = value;
1104 }
1105 
1106 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1107 {
1108 	struct drm_i915_gem_object *obj = vma->obj;
1109 	int err;
1110 
1111 	i915_vma_lock(vma);
1112 
1113 	if (obj->cache_dirty & ~obj->cache_coherent)
1114 		i915_gem_clflush_object(obj, 0);
1115 	obj->write_domain = 0;
1116 
1117 	err = i915_request_await_object(rq, vma->obj, true);
1118 	if (err == 0)
1119 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1120 
1121 	i915_vma_unlock(vma);
1122 
1123 	return err;
1124 }
1125 
1126 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1127 			     struct i915_vma *vma,
1128 			     unsigned int len)
1129 {
1130 	struct reloc_cache *cache = &eb->reloc_cache;
1131 	struct intel_engine_pool_node *pool;
1132 	struct i915_request *rq;
1133 	struct i915_vma *batch;
1134 	u32 *cmd;
1135 	int err;
1136 
1137 	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1138 	if (IS_ERR(pool))
1139 		return PTR_ERR(pool);
1140 
1141 	cmd = i915_gem_object_pin_map(pool->obj,
1142 				      cache->has_llc ?
1143 				      I915_MAP_FORCE_WB :
1144 				      I915_MAP_FORCE_WC);
1145 	if (IS_ERR(cmd)) {
1146 		err = PTR_ERR(cmd);
1147 		goto out_pool;
1148 	}
1149 
1150 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1151 	if (IS_ERR(batch)) {
1152 		err = PTR_ERR(batch);
1153 		goto err_unmap;
1154 	}
1155 
1156 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1157 	if (err)
1158 		goto err_unmap;
1159 
1160 	rq = i915_request_create(eb->context);
1161 	if (IS_ERR(rq)) {
1162 		err = PTR_ERR(rq);
1163 		goto err_unpin;
1164 	}
1165 
1166 	err = intel_engine_pool_mark_active(pool, rq);
1167 	if (err)
1168 		goto err_request;
1169 
1170 	err = reloc_move_to_gpu(rq, vma);
1171 	if (err)
1172 		goto err_request;
1173 
1174 	err = eb->engine->emit_bb_start(rq,
1175 					batch->node.start, PAGE_SIZE,
1176 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1177 	if (err)
1178 		goto skip_request;
1179 
1180 	i915_vma_lock(batch);
1181 	err = i915_request_await_object(rq, batch->obj, false);
1182 	if (err == 0)
1183 		err = i915_vma_move_to_active(batch, rq, 0);
1184 	i915_vma_unlock(batch);
1185 	if (err)
1186 		goto skip_request;
1187 
1188 	rq->batch = batch;
1189 	i915_vma_unpin(batch);
1190 
1191 	cache->rq = rq;
1192 	cache->rq_cmd = cmd;
1193 	cache->rq_size = 0;
1194 
1195 	/* Return with batch mapping (cmd) still pinned */
1196 	goto out_pool;
1197 
1198 skip_request:
1199 	i915_request_skip(rq, err);
1200 err_request:
1201 	i915_request_add(rq);
1202 err_unpin:
1203 	i915_vma_unpin(batch);
1204 err_unmap:
1205 	i915_gem_object_unpin_map(pool->obj);
1206 out_pool:
1207 	intel_engine_pool_put(pool);
1208 	return err;
1209 }
1210 
1211 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1212 		      struct i915_vma *vma,
1213 		      unsigned int len)
1214 {
1215 	struct reloc_cache *cache = &eb->reloc_cache;
1216 	u32 *cmd;
1217 
1218 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1219 		reloc_gpu_flush(cache);
1220 
1221 	if (unlikely(!cache->rq)) {
1222 		int err;
1223 
1224 		if (!intel_engine_can_store_dword(eb->engine))
1225 			return ERR_PTR(-ENODEV);
1226 
1227 		err = __reloc_gpu_alloc(eb, vma, len);
1228 		if (unlikely(err))
1229 			return ERR_PTR(err);
1230 	}
1231 
1232 	cmd = cache->rq_cmd + cache->rq_size;
1233 	cache->rq_size += len;
1234 
1235 	return cmd;
1236 }
1237 
1238 static u64
1239 relocate_entry(struct i915_vma *vma,
1240 	       const struct drm_i915_gem_relocation_entry *reloc,
1241 	       struct i915_execbuffer *eb,
1242 	       const struct i915_vma *target)
1243 {
1244 	u64 offset = reloc->offset;
1245 	u64 target_offset = relocation_target(reloc, target);
1246 	bool wide = eb->reloc_cache.use_64bit_reloc;
1247 	void *vaddr;
1248 
1249 	if (!eb->reloc_cache.vaddr &&
1250 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1251 	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1252 		const unsigned int gen = eb->reloc_cache.gen;
1253 		unsigned int len;
1254 		u32 *batch;
1255 		u64 addr;
1256 
1257 		if (wide)
1258 			len = offset & 7 ? 8 : 5;
1259 		else if (gen >= 4)
1260 			len = 4;
1261 		else
1262 			len = 3;
1263 
1264 		batch = reloc_gpu(eb, vma, len);
1265 		if (IS_ERR(batch))
1266 			goto repeat;
1267 
1268 		addr = gen8_canonical_addr(vma->node.start + offset);
1269 		if (wide) {
1270 			if (offset & 7) {
1271 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1272 				*batch++ = lower_32_bits(addr);
1273 				*batch++ = upper_32_bits(addr);
1274 				*batch++ = lower_32_bits(target_offset);
1275 
1276 				addr = gen8_canonical_addr(addr + 4);
1277 
1278 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1279 				*batch++ = lower_32_bits(addr);
1280 				*batch++ = upper_32_bits(addr);
1281 				*batch++ = upper_32_bits(target_offset);
1282 			} else {
1283 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1284 				*batch++ = lower_32_bits(addr);
1285 				*batch++ = upper_32_bits(addr);
1286 				*batch++ = lower_32_bits(target_offset);
1287 				*batch++ = upper_32_bits(target_offset);
1288 			}
1289 		} else if (gen >= 6) {
1290 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1291 			*batch++ = 0;
1292 			*batch++ = addr;
1293 			*batch++ = target_offset;
1294 		} else if (gen >= 4) {
1295 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1296 			*batch++ = 0;
1297 			*batch++ = addr;
1298 			*batch++ = target_offset;
1299 		} else {
1300 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1301 			*batch++ = addr;
1302 			*batch++ = target_offset;
1303 		}
1304 
1305 		goto out;
1306 	}
1307 
1308 repeat:
1309 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1310 	if (IS_ERR(vaddr))
1311 		return PTR_ERR(vaddr);
1312 
1313 	clflush_write32(vaddr + offset_in_page(offset),
1314 			lower_32_bits(target_offset),
1315 			eb->reloc_cache.vaddr);
1316 
1317 	if (wide) {
1318 		offset += sizeof(u32);
1319 		target_offset >>= 32;
1320 		wide = false;
1321 		goto repeat;
1322 	}
1323 
1324 out:
1325 	return target->node.start | UPDATE;
1326 }
1327 
1328 static u64
1329 eb_relocate_entry(struct i915_execbuffer *eb,
1330 		  struct i915_vma *vma,
1331 		  const struct drm_i915_gem_relocation_entry *reloc)
1332 {
1333 	struct i915_vma *target;
1334 	int err;
1335 
1336 	/* we've already hold a reference to all valid objects */
1337 	target = eb_get_vma(eb, reloc->target_handle);
1338 	if (unlikely(!target))
1339 		return -ENOENT;
1340 
1341 	/* Validate that the target is in a valid r/w GPU domain */
1342 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1343 		DRM_DEBUG("reloc with multiple write domains: "
1344 			  "target %d offset %d "
1345 			  "read %08x write %08x",
1346 			  reloc->target_handle,
1347 			  (int) reloc->offset,
1348 			  reloc->read_domains,
1349 			  reloc->write_domain);
1350 		return -EINVAL;
1351 	}
1352 	if (unlikely((reloc->write_domain | reloc->read_domains)
1353 		     & ~I915_GEM_GPU_DOMAINS)) {
1354 		DRM_DEBUG("reloc with read/write non-GPU domains: "
1355 			  "target %d offset %d "
1356 			  "read %08x write %08x",
1357 			  reloc->target_handle,
1358 			  (int) reloc->offset,
1359 			  reloc->read_domains,
1360 			  reloc->write_domain);
1361 		return -EINVAL;
1362 	}
1363 
1364 	if (reloc->write_domain) {
1365 		*target->exec_flags |= EXEC_OBJECT_WRITE;
1366 
1367 		/*
1368 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1369 		 * for MI and pipe_control writes because the gpu doesn't
1370 		 * properly redirect them through the ppgtt for non_secure
1371 		 * batchbuffers.
1372 		 */
1373 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1374 		    IS_GEN(eb->i915, 6)) {
1375 			err = i915_vma_bind(target, target->obj->cache_level,
1376 					    PIN_GLOBAL, NULL);
1377 			if (WARN_ONCE(err,
1378 				      "Unexpected failure to bind target VMA!"))
1379 				return err;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * If the relocation already has the right value in it, no
1385 	 * more work needs to be done.
1386 	 */
1387 	if (!DBG_FORCE_RELOC &&
1388 	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1389 		return 0;
1390 
1391 	/* Check that the relocation address is valid... */
1392 	if (unlikely(reloc->offset >
1393 		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1394 		DRM_DEBUG("Relocation beyond object bounds: "
1395 			  "target %d offset %d size %d.\n",
1396 			  reloc->target_handle,
1397 			  (int)reloc->offset,
1398 			  (int)vma->size);
1399 		return -EINVAL;
1400 	}
1401 	if (unlikely(reloc->offset & 3)) {
1402 		DRM_DEBUG("Relocation not 4-byte aligned: "
1403 			  "target %d offset %d.\n",
1404 			  reloc->target_handle,
1405 			  (int)reloc->offset);
1406 		return -EINVAL;
1407 	}
1408 
1409 	/*
1410 	 * If we write into the object, we need to force the synchronisation
1411 	 * barrier, either with an asynchronous clflush or if we executed the
1412 	 * patching using the GPU (though that should be serialised by the
1413 	 * timeline). To be completely sure, and since we are required to
1414 	 * do relocations we are already stalling, disable the user's opt
1415 	 * out of our synchronisation.
1416 	 */
1417 	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1418 
1419 	/* and update the user's relocation entry */
1420 	return relocate_entry(vma, reloc, eb, target);
1421 }
1422 
1423 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1424 {
1425 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1426 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1427 	struct drm_i915_gem_relocation_entry __user *urelocs;
1428 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1429 	unsigned int remain;
1430 
1431 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1432 	remain = entry->relocation_count;
1433 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1434 		return -EINVAL;
1435 
1436 	/*
1437 	 * We must check that the entire relocation array is safe
1438 	 * to read. However, if the array is not writable the user loses
1439 	 * the updated relocation values.
1440 	 */
1441 	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1442 		return -EFAULT;
1443 
1444 	do {
1445 		struct drm_i915_gem_relocation_entry *r = stack;
1446 		unsigned int count =
1447 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1448 		unsigned int copied;
1449 
1450 		/*
1451 		 * This is the fast path and we cannot handle a pagefault
1452 		 * whilst holding the struct mutex lest the user pass in the
1453 		 * relocations contained within a mmaped bo. For in such a case
1454 		 * we, the page fault handler would call i915_gem_fault() and
1455 		 * we would try to acquire the struct mutex again. Obviously
1456 		 * this is bad and so lockdep complains vehemently.
1457 		 */
1458 		pagefault_disable();
1459 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1460 		pagefault_enable();
1461 		if (unlikely(copied)) {
1462 			remain = -EFAULT;
1463 			goto out;
1464 		}
1465 
1466 		remain -= count;
1467 		do {
1468 			u64 offset = eb_relocate_entry(eb, vma, r);
1469 
1470 			if (likely(offset == 0)) {
1471 			} else if ((s64)offset < 0) {
1472 				remain = (int)offset;
1473 				goto out;
1474 			} else {
1475 				/*
1476 				 * Note that reporting an error now
1477 				 * leaves everything in an inconsistent
1478 				 * state as we have *already* changed
1479 				 * the relocation value inside the
1480 				 * object. As we have not changed the
1481 				 * reloc.presumed_offset or will not
1482 				 * change the execobject.offset, on the
1483 				 * call we may not rewrite the value
1484 				 * inside the object, leaving it
1485 				 * dangling and causing a GPU hang. Unless
1486 				 * userspace dynamically rebuilds the
1487 				 * relocations on each execbuf rather than
1488 				 * presume a static tree.
1489 				 *
1490 				 * We did previously check if the relocations
1491 				 * were writable (access_ok), an error now
1492 				 * would be a strange race with mprotect,
1493 				 * having already demonstrated that we
1494 				 * can read from this userspace address.
1495 				 */
1496 				offset = gen8_canonical_addr(offset & ~UPDATE);
1497 				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1498 					remain = -EFAULT;
1499 					goto out;
1500 				}
1501 			}
1502 		} while (r++, --count);
1503 		urelocs += ARRAY_SIZE(stack);
1504 	} while (remain);
1505 out:
1506 	reloc_cache_reset(&eb->reloc_cache);
1507 	return remain;
1508 }
1509 
1510 static int
1511 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1512 {
1513 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1514 	struct drm_i915_gem_relocation_entry *relocs =
1515 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1516 	unsigned int i;
1517 	int err;
1518 
1519 	for (i = 0; i < entry->relocation_count; i++) {
1520 		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1521 
1522 		if ((s64)offset < 0) {
1523 			err = (int)offset;
1524 			goto err;
1525 		}
1526 	}
1527 	err = 0;
1528 err:
1529 	reloc_cache_reset(&eb->reloc_cache);
1530 	return err;
1531 }
1532 
1533 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1534 {
1535 	const char __user *addr, *end;
1536 	unsigned long size;
1537 	char __maybe_unused c;
1538 
1539 	size = entry->relocation_count;
1540 	if (size == 0)
1541 		return 0;
1542 
1543 	if (size > N_RELOC(ULONG_MAX))
1544 		return -EINVAL;
1545 
1546 	addr = u64_to_user_ptr(entry->relocs_ptr);
1547 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1548 	if (!access_ok(addr, size))
1549 		return -EFAULT;
1550 
1551 	end = addr + size;
1552 	for (; addr < end; addr += PAGE_SIZE) {
1553 		int err = __get_user(c, addr);
1554 		if (err)
1555 			return err;
1556 	}
1557 	return __get_user(c, end - 1);
1558 }
1559 
1560 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1561 {
1562 	struct drm_i915_gem_relocation_entry *relocs;
1563 	const unsigned int count = eb->buffer_count;
1564 	unsigned int i;
1565 	int err;
1566 
1567 	for (i = 0; i < count; i++) {
1568 		const unsigned int nreloc = eb->exec[i].relocation_count;
1569 		struct drm_i915_gem_relocation_entry __user *urelocs;
1570 		unsigned long size;
1571 		unsigned long copied;
1572 
1573 		if (nreloc == 0)
1574 			continue;
1575 
1576 		err = check_relocations(&eb->exec[i]);
1577 		if (err)
1578 			goto err;
1579 
1580 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1581 		size = nreloc * sizeof(*relocs);
1582 
1583 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1584 		if (!relocs) {
1585 			err = -ENOMEM;
1586 			goto err;
1587 		}
1588 
1589 		/* copy_from_user is limited to < 4GiB */
1590 		copied = 0;
1591 		do {
1592 			unsigned int len =
1593 				min_t(u64, BIT_ULL(31), size - copied);
1594 
1595 			if (__copy_from_user((char *)relocs + copied,
1596 					     (char __user *)urelocs + copied,
1597 					     len))
1598 				goto end;
1599 
1600 			copied += len;
1601 		} while (copied < size);
1602 
1603 		/*
1604 		 * As we do not update the known relocation offsets after
1605 		 * relocating (due to the complexities in lock handling),
1606 		 * we need to mark them as invalid now so that we force the
1607 		 * relocation processing next time. Just in case the target
1608 		 * object is evicted and then rebound into its old
1609 		 * presumed_offset before the next execbuffer - if that
1610 		 * happened we would make the mistake of assuming that the
1611 		 * relocations were valid.
1612 		 */
1613 		if (!user_access_begin(urelocs, size))
1614 			goto end;
1615 
1616 		for (copied = 0; copied < nreloc; copied++)
1617 			unsafe_put_user(-1,
1618 					&urelocs[copied].presumed_offset,
1619 					end_user);
1620 		user_access_end();
1621 
1622 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1623 	}
1624 
1625 	return 0;
1626 
1627 end_user:
1628 	user_access_end();
1629 end:
1630 	kvfree(relocs);
1631 	err = -EFAULT;
1632 err:
1633 	while (i--) {
1634 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1635 		if (eb->exec[i].relocation_count)
1636 			kvfree(relocs);
1637 	}
1638 	return err;
1639 }
1640 
1641 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1642 {
1643 	const unsigned int count = eb->buffer_count;
1644 	unsigned int i;
1645 
1646 	if (unlikely(i915_modparams.prefault_disable))
1647 		return 0;
1648 
1649 	for (i = 0; i < count; i++) {
1650 		int err;
1651 
1652 		err = check_relocations(&eb->exec[i]);
1653 		if (err)
1654 			return err;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1661 {
1662 	struct drm_device *dev = &eb->i915->drm;
1663 	bool have_copy = false;
1664 	struct i915_vma *vma;
1665 	int err = 0;
1666 
1667 repeat:
1668 	if (signal_pending(current)) {
1669 		err = -ERESTARTSYS;
1670 		goto out;
1671 	}
1672 
1673 	/* We may process another execbuffer during the unlock... */
1674 	eb_reset_vmas(eb);
1675 	mutex_unlock(&dev->struct_mutex);
1676 
1677 	/*
1678 	 * We take 3 passes through the slowpatch.
1679 	 *
1680 	 * 1 - we try to just prefault all the user relocation entries and
1681 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1682 	 *
1683 	 * 2 - we copy the user entries to a local buffer here outside of the
1684 	 * local and allow ourselves to wait upon any rendering before
1685 	 * relocations
1686 	 *
1687 	 * 3 - we already have a local copy of the relocation entries, but
1688 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1689 	 */
1690 	if (!err) {
1691 		err = eb_prefault_relocations(eb);
1692 	} else if (!have_copy) {
1693 		err = eb_copy_relocations(eb);
1694 		have_copy = err == 0;
1695 	} else {
1696 		cond_resched();
1697 		err = 0;
1698 	}
1699 	if (err) {
1700 		mutex_lock(&dev->struct_mutex);
1701 		goto out;
1702 	}
1703 
1704 	/* A frequent cause for EAGAIN are currently unavailable client pages */
1705 	flush_workqueue(eb->i915->mm.userptr_wq);
1706 
1707 	err = i915_mutex_lock_interruptible(dev);
1708 	if (err) {
1709 		mutex_lock(&dev->struct_mutex);
1710 		goto out;
1711 	}
1712 
1713 	/* reacquire the objects */
1714 	err = eb_lookup_vmas(eb);
1715 	if (err)
1716 		goto err;
1717 
1718 	GEM_BUG_ON(!eb->batch);
1719 
1720 	list_for_each_entry(vma, &eb->relocs, reloc_link) {
1721 		if (!have_copy) {
1722 			pagefault_disable();
1723 			err = eb_relocate_vma(eb, vma);
1724 			pagefault_enable();
1725 			if (err)
1726 				goto repeat;
1727 		} else {
1728 			err = eb_relocate_vma_slow(eb, vma);
1729 			if (err)
1730 				goto err;
1731 		}
1732 	}
1733 
1734 	/*
1735 	 * Leave the user relocations as are, this is the painfully slow path,
1736 	 * and we want to avoid the complication of dropping the lock whilst
1737 	 * having buffers reserved in the aperture and so causing spurious
1738 	 * ENOSPC for random operations.
1739 	 */
1740 
1741 err:
1742 	if (err == -EAGAIN)
1743 		goto repeat;
1744 
1745 out:
1746 	if (have_copy) {
1747 		const unsigned int count = eb->buffer_count;
1748 		unsigned int i;
1749 
1750 		for (i = 0; i < count; i++) {
1751 			const struct drm_i915_gem_exec_object2 *entry =
1752 				&eb->exec[i];
1753 			struct drm_i915_gem_relocation_entry *relocs;
1754 
1755 			if (!entry->relocation_count)
1756 				continue;
1757 
1758 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1759 			kvfree(relocs);
1760 		}
1761 	}
1762 
1763 	return err;
1764 }
1765 
1766 static int eb_relocate(struct i915_execbuffer *eb)
1767 {
1768 	if (eb_lookup_vmas(eb))
1769 		goto slow;
1770 
1771 	/* The objects are in their final locations, apply the relocations. */
1772 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1773 		struct i915_vma *vma;
1774 
1775 		list_for_each_entry(vma, &eb->relocs, reloc_link) {
1776 			if (eb_relocate_vma(eb, vma))
1777 				goto slow;
1778 		}
1779 	}
1780 
1781 	return 0;
1782 
1783 slow:
1784 	return eb_relocate_slow(eb);
1785 }
1786 
1787 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1788 {
1789 	const unsigned int count = eb->buffer_count;
1790 	struct ww_acquire_ctx acquire;
1791 	unsigned int i;
1792 	int err = 0;
1793 
1794 	ww_acquire_init(&acquire, &reservation_ww_class);
1795 
1796 	for (i = 0; i < count; i++) {
1797 		struct i915_vma *vma = eb->vma[i];
1798 
1799 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1800 		if (!err)
1801 			continue;
1802 
1803 		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1804 
1805 		if (err == -EDEADLK) {
1806 			GEM_BUG_ON(i == 0);
1807 			do {
1808 				int j = i - 1;
1809 
1810 				ww_mutex_unlock(&eb->vma[j]->resv->lock);
1811 
1812 				swap(eb->flags[i], eb->flags[j]);
1813 				swap(eb->vma[i],  eb->vma[j]);
1814 				eb->vma[i]->exec_flags = &eb->flags[i];
1815 			} while (--i);
1816 			GEM_BUG_ON(vma != eb->vma[0]);
1817 			vma->exec_flags = &eb->flags[0];
1818 
1819 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1820 							       &acquire);
1821 		}
1822 		if (err)
1823 			break;
1824 	}
1825 	ww_acquire_done(&acquire);
1826 
1827 	while (i--) {
1828 		unsigned int flags = eb->flags[i];
1829 		struct i915_vma *vma = eb->vma[i];
1830 		struct drm_i915_gem_object *obj = vma->obj;
1831 
1832 		assert_vma_held(vma);
1833 
1834 		if (flags & EXEC_OBJECT_CAPTURE) {
1835 			struct i915_capture_list *capture;
1836 
1837 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1838 			if (capture) {
1839 				capture->next = eb->request->capture_list;
1840 				capture->vma = vma;
1841 				eb->request->capture_list = capture;
1842 			}
1843 		}
1844 
1845 		/*
1846 		 * If the GPU is not _reading_ through the CPU cache, we need
1847 		 * to make sure that any writes (both previous GPU writes from
1848 		 * before a change in snooping levels and normal CPU writes)
1849 		 * caught in that cache are flushed to main memory.
1850 		 *
1851 		 * We want to say
1852 		 *   obj->cache_dirty &&
1853 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1854 		 * but gcc's optimiser doesn't handle that as well and emits
1855 		 * two jumps instead of one. Maybe one day...
1856 		 */
1857 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1858 			if (i915_gem_clflush_object(obj, 0))
1859 				flags &= ~EXEC_OBJECT_ASYNC;
1860 		}
1861 
1862 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1863 			err = i915_request_await_object
1864 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1865 		}
1866 
1867 		if (err == 0)
1868 			err = i915_vma_move_to_active(vma, eb->request, flags);
1869 
1870 		i915_vma_unlock(vma);
1871 
1872 		__eb_unreserve_vma(vma, flags);
1873 		vma->exec_flags = NULL;
1874 
1875 		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1876 			i915_vma_put(vma);
1877 	}
1878 	ww_acquire_fini(&acquire);
1879 
1880 	if (unlikely(err))
1881 		goto err_skip;
1882 
1883 	eb->exec = NULL;
1884 
1885 	/* Unconditionally flush any chipset caches (for streaming writes). */
1886 	intel_gt_chipset_flush(eb->engine->gt);
1887 	return 0;
1888 
1889 err_skip:
1890 	i915_request_skip(eb->request, err);
1891 	return err;
1892 }
1893 
1894 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1895 {
1896 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1897 		return -EINVAL;
1898 
1899 	/* Kernel clipping was a DRI1 misfeature */
1900 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1901 		if (exec->num_cliprects || exec->cliprects_ptr)
1902 			return -EINVAL;
1903 	}
1904 
1905 	if (exec->DR4 == 0xffffffff) {
1906 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1907 		exec->DR4 = 0;
1908 	}
1909 	if (exec->DR1 || exec->DR4)
1910 		return -EINVAL;
1911 
1912 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1913 		return -EINVAL;
1914 
1915 	return 0;
1916 }
1917 
1918 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1919 {
1920 	u32 *cs;
1921 	int i;
1922 
1923 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1924 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1925 		return -EINVAL;
1926 	}
1927 
1928 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1929 	if (IS_ERR(cs))
1930 		return PTR_ERR(cs);
1931 
1932 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1933 	for (i = 0; i < 4; i++) {
1934 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1935 		*cs++ = 0;
1936 	}
1937 	*cs++ = MI_NOOP;
1938 	intel_ring_advance(rq, cs);
1939 
1940 	return 0;
1941 }
1942 
1943 static struct i915_vma *
1944 shadow_batch_pin(struct drm_i915_gem_object *obj,
1945 		 struct i915_address_space *vm,
1946 		 unsigned int flags)
1947 {
1948 	struct i915_vma *vma;
1949 	int err;
1950 
1951 	vma = i915_vma_instance(obj, vm, NULL);
1952 	if (IS_ERR(vma))
1953 		return vma;
1954 
1955 	err = i915_vma_pin(vma, 0, 0, flags);
1956 	if (err)
1957 		return ERR_PTR(err);
1958 
1959 	return vma;
1960 }
1961 
1962 struct eb_parse_work {
1963 	struct dma_fence_work base;
1964 	struct intel_engine_cs *engine;
1965 	struct i915_vma *batch;
1966 	struct i915_vma *shadow;
1967 	struct i915_vma *trampoline;
1968 	unsigned int batch_offset;
1969 	unsigned int batch_length;
1970 };
1971 
1972 static int __eb_parse(struct dma_fence_work *work)
1973 {
1974 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1975 
1976 	return intel_engine_cmd_parser(pw->engine,
1977 				       pw->batch,
1978 				       pw->batch_offset,
1979 				       pw->batch_length,
1980 				       pw->shadow,
1981 				       pw->trampoline);
1982 }
1983 
1984 static const struct dma_fence_work_ops eb_parse_ops = {
1985 	.name = "eb_parse",
1986 	.work = __eb_parse,
1987 };
1988 
1989 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1990 			     struct i915_vma *shadow,
1991 			     struct i915_vma *trampoline)
1992 {
1993 	struct eb_parse_work *pw;
1994 	int err;
1995 
1996 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1997 	if (!pw)
1998 		return -ENOMEM;
1999 
2000 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2001 
2002 	pw->engine = eb->engine;
2003 	pw->batch = eb->batch;
2004 	pw->batch_offset = eb->batch_start_offset;
2005 	pw->batch_length = eb->batch_len;
2006 	pw->shadow = shadow;
2007 	pw->trampoline = trampoline;
2008 
2009 	dma_resv_lock(pw->batch->resv, NULL);
2010 
2011 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2012 	if (err)
2013 		goto err_batch_unlock;
2014 
2015 	/* Wait for all writes (and relocs) into the batch to complete */
2016 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2017 					      pw->batch->resv, NULL, false,
2018 					      0, I915_FENCE_GFP);
2019 	if (err < 0)
2020 		goto err_batch_unlock;
2021 
2022 	/* Keep the batch alive and unwritten as we parse */
2023 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2024 
2025 	dma_resv_unlock(pw->batch->resv);
2026 
2027 	/* Force execution to wait for completion of the parser */
2028 	dma_resv_lock(shadow->resv, NULL);
2029 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2030 	dma_resv_unlock(shadow->resv);
2031 
2032 	dma_fence_work_commit(&pw->base);
2033 	return 0;
2034 
2035 err_batch_unlock:
2036 	dma_resv_unlock(pw->batch->resv);
2037 	kfree(pw);
2038 	return err;
2039 }
2040 
2041 static int eb_parse(struct i915_execbuffer *eb)
2042 {
2043 	struct intel_engine_pool_node *pool;
2044 	struct i915_vma *shadow, *trampoline;
2045 	unsigned int len;
2046 	int err;
2047 
2048 	if (!eb_use_cmdparser(eb))
2049 		return 0;
2050 
2051 	len = eb->batch_len;
2052 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2053 		/*
2054 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2055 		 * post-scan tampering
2056 		 */
2057 		if (!eb->context->vm->has_read_only) {
2058 			DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
2059 			return -EINVAL;
2060 		}
2061 	} else {
2062 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2063 	}
2064 
2065 	pool = intel_engine_get_pool(eb->engine, len);
2066 	if (IS_ERR(pool))
2067 		return PTR_ERR(pool);
2068 
2069 	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2070 	if (IS_ERR(shadow)) {
2071 		err = PTR_ERR(shadow);
2072 		goto err;
2073 	}
2074 	i915_gem_object_set_readonly(shadow->obj);
2075 
2076 	trampoline = NULL;
2077 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2078 		trampoline = shadow;
2079 
2080 		shadow = shadow_batch_pin(pool->obj,
2081 					  &eb->engine->gt->ggtt->vm,
2082 					  PIN_GLOBAL);
2083 		if (IS_ERR(shadow)) {
2084 			err = PTR_ERR(shadow);
2085 			shadow = trampoline;
2086 			goto err_shadow;
2087 		}
2088 
2089 		eb->batch_flags |= I915_DISPATCH_SECURE;
2090 	}
2091 
2092 	err = eb_parse_pipeline(eb, shadow, trampoline);
2093 	if (err)
2094 		goto err_trampoline;
2095 
2096 	eb->vma[eb->buffer_count] = i915_vma_get(shadow);
2097 	eb->flags[eb->buffer_count] =
2098 		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2099 	shadow->exec_flags = &eb->flags[eb->buffer_count];
2100 	eb->buffer_count++;
2101 
2102 	eb->trampoline = trampoline;
2103 	eb->batch_start_offset = 0;
2104 	eb->batch = shadow;
2105 
2106 	shadow->private = pool;
2107 	return 0;
2108 
2109 err_trampoline:
2110 	if (trampoline)
2111 		i915_vma_unpin(trampoline);
2112 err_shadow:
2113 	i915_vma_unpin(shadow);
2114 err:
2115 	intel_engine_pool_put(pool);
2116 	return err;
2117 }
2118 
2119 static void
2120 add_to_client(struct i915_request *rq, struct drm_file *file)
2121 {
2122 	struct drm_i915_file_private *file_priv = file->driver_priv;
2123 
2124 	rq->file_priv = file_priv;
2125 
2126 	spin_lock(&file_priv->mm.lock);
2127 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2128 	spin_unlock(&file_priv->mm.lock);
2129 }
2130 
2131 static int eb_submit(struct i915_execbuffer *eb)
2132 {
2133 	int err;
2134 
2135 	err = eb_move_to_gpu(eb);
2136 	if (err)
2137 		return err;
2138 
2139 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2140 		err = i915_reset_gen7_sol_offsets(eb->request);
2141 		if (err)
2142 			return err;
2143 	}
2144 
2145 	/*
2146 	 * After we completed waiting for other engines (using HW semaphores)
2147 	 * then we can signal that this request/batch is ready to run. This
2148 	 * allows us to determine if the batch is still waiting on the GPU
2149 	 * or actually running by checking the breadcrumb.
2150 	 */
2151 	if (eb->engine->emit_init_breadcrumb) {
2152 		err = eb->engine->emit_init_breadcrumb(eb->request);
2153 		if (err)
2154 			return err;
2155 	}
2156 
2157 	err = eb->engine->emit_bb_start(eb->request,
2158 					eb->batch->node.start +
2159 					eb->batch_start_offset,
2160 					eb->batch_len,
2161 					eb->batch_flags);
2162 	if (err)
2163 		return err;
2164 
2165 	if (eb->trampoline) {
2166 		GEM_BUG_ON(eb->batch_start_offset);
2167 		err = eb->engine->emit_bb_start(eb->request,
2168 						eb->trampoline->node.start +
2169 						eb->batch_len,
2170 						0, 0);
2171 		if (err)
2172 			return err;
2173 	}
2174 
2175 	if (intel_context_nopreempt(eb->context))
2176 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2177 
2178 	return 0;
2179 }
2180 
2181 static int num_vcs_engines(const struct drm_i915_private *i915)
2182 {
2183 	return hweight64(INTEL_INFO(i915)->engine_mask &
2184 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2185 }
2186 
2187 /*
2188  * Find one BSD ring to dispatch the corresponding BSD command.
2189  * The engine index is returned.
2190  */
2191 static unsigned int
2192 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2193 			 struct drm_file *file)
2194 {
2195 	struct drm_i915_file_private *file_priv = file->driver_priv;
2196 
2197 	/* Check whether the file_priv has already selected one ring. */
2198 	if ((int)file_priv->bsd_engine < 0)
2199 		file_priv->bsd_engine =
2200 			get_random_int() % num_vcs_engines(dev_priv);
2201 
2202 	return file_priv->bsd_engine;
2203 }
2204 
2205 static const enum intel_engine_id user_ring_map[] = {
2206 	[I915_EXEC_DEFAULT]	= RCS0,
2207 	[I915_EXEC_RENDER]	= RCS0,
2208 	[I915_EXEC_BLT]		= BCS0,
2209 	[I915_EXEC_BSD]		= VCS0,
2210 	[I915_EXEC_VEBOX]	= VECS0
2211 };
2212 
2213 static struct i915_request *eb_throttle(struct intel_context *ce)
2214 {
2215 	struct intel_ring *ring = ce->ring;
2216 	struct intel_timeline *tl = ce->timeline;
2217 	struct i915_request *rq;
2218 
2219 	/*
2220 	 * Completely unscientific finger-in-the-air estimates for suitable
2221 	 * maximum user request size (to avoid blocking) and then backoff.
2222 	 */
2223 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2224 		return NULL;
2225 
2226 	/*
2227 	 * Find a request that after waiting upon, there will be at least half
2228 	 * the ring available. The hysteresis allows us to compete for the
2229 	 * shared ring and should mean that we sleep less often prior to
2230 	 * claiming our resources, but not so long that the ring completely
2231 	 * drains before we can submit our next request.
2232 	 */
2233 	list_for_each_entry(rq, &tl->requests, link) {
2234 		if (rq->ring != ring)
2235 			continue;
2236 
2237 		if (__intel_ring_space(rq->postfix,
2238 				       ring->emit, ring->size) > ring->size / 2)
2239 			break;
2240 	}
2241 	if (&rq->link == &tl->requests)
2242 		return NULL; /* weird, we will check again later for real */
2243 
2244 	return i915_request_get(rq);
2245 }
2246 
2247 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2248 {
2249 	struct intel_timeline *tl;
2250 	struct i915_request *rq;
2251 	int err;
2252 
2253 	/*
2254 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2255 	 * EIO if the GPU is already wedged.
2256 	 */
2257 	err = intel_gt_terminally_wedged(ce->engine->gt);
2258 	if (err)
2259 		return err;
2260 
2261 	if (unlikely(intel_context_is_banned(ce)))
2262 		return -EIO;
2263 
2264 	/*
2265 	 * Pinning the contexts may generate requests in order to acquire
2266 	 * GGTT space, so do this first before we reserve a seqno for
2267 	 * ourselves.
2268 	 */
2269 	err = intel_context_pin(ce);
2270 	if (err)
2271 		return err;
2272 
2273 	/*
2274 	 * Take a local wakeref for preparing to dispatch the execbuf as
2275 	 * we expect to access the hardware fairly frequently in the
2276 	 * process, and require the engine to be kept awake between accesses.
2277 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2278 	 * until the timeline is idle, which in turn releases the wakeref
2279 	 * taken on the engine, and the parent device.
2280 	 */
2281 	tl = intel_context_timeline_lock(ce);
2282 	if (IS_ERR(tl)) {
2283 		err = PTR_ERR(tl);
2284 		goto err_unpin;
2285 	}
2286 
2287 	intel_context_enter(ce);
2288 	rq = eb_throttle(ce);
2289 
2290 	intel_context_timeline_unlock(tl);
2291 
2292 	if (rq) {
2293 		if (i915_request_wait(rq,
2294 				      I915_WAIT_INTERRUPTIBLE,
2295 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2296 			i915_request_put(rq);
2297 			err = -EINTR;
2298 			goto err_exit;
2299 		}
2300 
2301 		i915_request_put(rq);
2302 	}
2303 
2304 	eb->engine = ce->engine;
2305 	eb->context = ce;
2306 	return 0;
2307 
2308 err_exit:
2309 	mutex_lock(&tl->mutex);
2310 	intel_context_exit(ce);
2311 	intel_context_timeline_unlock(tl);
2312 err_unpin:
2313 	intel_context_unpin(ce);
2314 	return err;
2315 }
2316 
2317 static void eb_unpin_engine(struct i915_execbuffer *eb)
2318 {
2319 	struct intel_context *ce = eb->context;
2320 	struct intel_timeline *tl = ce->timeline;
2321 
2322 	mutex_lock(&tl->mutex);
2323 	intel_context_exit(ce);
2324 	mutex_unlock(&tl->mutex);
2325 
2326 	intel_context_unpin(ce);
2327 }
2328 
2329 static unsigned int
2330 eb_select_legacy_ring(struct i915_execbuffer *eb,
2331 		      struct drm_file *file,
2332 		      struct drm_i915_gem_execbuffer2 *args)
2333 {
2334 	struct drm_i915_private *i915 = eb->i915;
2335 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2336 
2337 	if (user_ring_id != I915_EXEC_BSD &&
2338 	    (args->flags & I915_EXEC_BSD_MASK)) {
2339 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
2340 			  "bsd dispatch flags: %d\n", (int)(args->flags));
2341 		return -1;
2342 	}
2343 
2344 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2345 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2346 
2347 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2348 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2349 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2350 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2351 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2352 			bsd_idx--;
2353 		} else {
2354 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2355 				  bsd_idx);
2356 			return -1;
2357 		}
2358 
2359 		return _VCS(bsd_idx);
2360 	}
2361 
2362 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2363 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2364 		return -1;
2365 	}
2366 
2367 	return user_ring_map[user_ring_id];
2368 }
2369 
2370 static int
2371 eb_pin_engine(struct i915_execbuffer *eb,
2372 	      struct drm_file *file,
2373 	      struct drm_i915_gem_execbuffer2 *args)
2374 {
2375 	struct intel_context *ce;
2376 	unsigned int idx;
2377 	int err;
2378 
2379 	if (i915_gem_context_user_engines(eb->gem_context))
2380 		idx = args->flags & I915_EXEC_RING_MASK;
2381 	else
2382 		idx = eb_select_legacy_ring(eb, file, args);
2383 
2384 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2385 	if (IS_ERR(ce))
2386 		return PTR_ERR(ce);
2387 
2388 	err = __eb_pin_engine(eb, ce);
2389 	intel_context_put(ce);
2390 
2391 	return err;
2392 }
2393 
2394 static void
2395 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2396 {
2397 	while (n--)
2398 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2399 	kvfree(fences);
2400 }
2401 
2402 static struct drm_syncobj **
2403 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2404 		struct drm_file *file)
2405 {
2406 	const unsigned long nfences = args->num_cliprects;
2407 	struct drm_i915_gem_exec_fence __user *user;
2408 	struct drm_syncobj **fences;
2409 	unsigned long n;
2410 	int err;
2411 
2412 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2413 		return NULL;
2414 
2415 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2416 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2417 	if (nfences > min_t(unsigned long,
2418 			    ULONG_MAX / sizeof(*user),
2419 			    SIZE_MAX / sizeof(*fences)))
2420 		return ERR_PTR(-EINVAL);
2421 
2422 	user = u64_to_user_ptr(args->cliprects_ptr);
2423 	if (!access_ok(user, nfences * sizeof(*user)))
2424 		return ERR_PTR(-EFAULT);
2425 
2426 	fences = kvmalloc_array(nfences, sizeof(*fences),
2427 				__GFP_NOWARN | GFP_KERNEL);
2428 	if (!fences)
2429 		return ERR_PTR(-ENOMEM);
2430 
2431 	for (n = 0; n < nfences; n++) {
2432 		struct drm_i915_gem_exec_fence fence;
2433 		struct drm_syncobj *syncobj;
2434 
2435 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2436 			err = -EFAULT;
2437 			goto err;
2438 		}
2439 
2440 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2441 			err = -EINVAL;
2442 			goto err;
2443 		}
2444 
2445 		syncobj = drm_syncobj_find(file, fence.handle);
2446 		if (!syncobj) {
2447 			DRM_DEBUG("Invalid syncobj handle provided\n");
2448 			err = -ENOENT;
2449 			goto err;
2450 		}
2451 
2452 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2453 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2454 
2455 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2456 	}
2457 
2458 	return fences;
2459 
2460 err:
2461 	__free_fence_array(fences, n);
2462 	return ERR_PTR(err);
2463 }
2464 
2465 static void
2466 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2467 		struct drm_syncobj **fences)
2468 {
2469 	if (fences)
2470 		__free_fence_array(fences, args->num_cliprects);
2471 }
2472 
2473 static int
2474 await_fence_array(struct i915_execbuffer *eb,
2475 		  struct drm_syncobj **fences)
2476 {
2477 	const unsigned int nfences = eb->args->num_cliprects;
2478 	unsigned int n;
2479 	int err;
2480 
2481 	for (n = 0; n < nfences; n++) {
2482 		struct drm_syncobj *syncobj;
2483 		struct dma_fence *fence;
2484 		unsigned int flags;
2485 
2486 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2487 		if (!(flags & I915_EXEC_FENCE_WAIT))
2488 			continue;
2489 
2490 		fence = drm_syncobj_fence_get(syncobj);
2491 		if (!fence)
2492 			return -EINVAL;
2493 
2494 		err = i915_request_await_dma_fence(eb->request, fence);
2495 		dma_fence_put(fence);
2496 		if (err < 0)
2497 			return err;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 static void
2504 signal_fence_array(struct i915_execbuffer *eb,
2505 		   struct drm_syncobj **fences)
2506 {
2507 	const unsigned int nfences = eb->args->num_cliprects;
2508 	struct dma_fence * const fence = &eb->request->fence;
2509 	unsigned int n;
2510 
2511 	for (n = 0; n < nfences; n++) {
2512 		struct drm_syncobj *syncobj;
2513 		unsigned int flags;
2514 
2515 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2516 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2517 			continue;
2518 
2519 		drm_syncobj_replace_fence(syncobj, fence);
2520 	}
2521 }
2522 
2523 static int
2524 i915_gem_do_execbuffer(struct drm_device *dev,
2525 		       struct drm_file *file,
2526 		       struct drm_i915_gem_execbuffer2 *args,
2527 		       struct drm_i915_gem_exec_object2 *exec,
2528 		       struct drm_syncobj **fences)
2529 {
2530 	struct drm_i915_private *i915 = to_i915(dev);
2531 	struct i915_execbuffer eb;
2532 	struct dma_fence *in_fence = NULL;
2533 	struct dma_fence *exec_fence = NULL;
2534 	struct sync_file *out_fence = NULL;
2535 	int out_fence_fd = -1;
2536 	int err;
2537 
2538 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2539 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2540 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2541 
2542 	eb.i915 = i915;
2543 	eb.file = file;
2544 	eb.args = args;
2545 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2546 		args->flags |= __EXEC_HAS_RELOC;
2547 
2548 	eb.exec = exec;
2549 	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2550 	eb.vma[0] = NULL;
2551 	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2552 
2553 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2554 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2555 
2556 	eb.buffer_count = args->buffer_count;
2557 	eb.batch_start_offset = args->batch_start_offset;
2558 	eb.batch_len = args->batch_len;
2559 	eb.trampoline = NULL;
2560 
2561 	eb.batch_flags = 0;
2562 	if (args->flags & I915_EXEC_SECURE) {
2563 		if (INTEL_GEN(i915) >= 11)
2564 			return -ENODEV;
2565 
2566 		/* Return -EPERM to trigger fallback code on old binaries. */
2567 		if (!HAS_SECURE_BATCHES(i915))
2568 			return -EPERM;
2569 
2570 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2571 			return -EPERM;
2572 
2573 		eb.batch_flags |= I915_DISPATCH_SECURE;
2574 	}
2575 	if (args->flags & I915_EXEC_IS_PINNED)
2576 		eb.batch_flags |= I915_DISPATCH_PINNED;
2577 
2578 	if (args->flags & I915_EXEC_FENCE_IN) {
2579 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2580 		if (!in_fence)
2581 			return -EINVAL;
2582 	}
2583 
2584 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2585 		if (in_fence) {
2586 			err = -EINVAL;
2587 			goto err_in_fence;
2588 		}
2589 
2590 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2591 		if (!exec_fence) {
2592 			err = -EINVAL;
2593 			goto err_in_fence;
2594 		}
2595 	}
2596 
2597 	if (args->flags & I915_EXEC_FENCE_OUT) {
2598 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2599 		if (out_fence_fd < 0) {
2600 			err = out_fence_fd;
2601 			goto err_exec_fence;
2602 		}
2603 	}
2604 
2605 	err = eb_create(&eb);
2606 	if (err)
2607 		goto err_out_fence;
2608 
2609 	GEM_BUG_ON(!eb.lut_size);
2610 
2611 	err = eb_select_context(&eb);
2612 	if (unlikely(err))
2613 		goto err_destroy;
2614 
2615 	err = eb_pin_engine(&eb, file, args);
2616 	if (unlikely(err))
2617 		goto err_context;
2618 
2619 	err = i915_mutex_lock_interruptible(dev);
2620 	if (err)
2621 		goto err_engine;
2622 
2623 	err = eb_relocate(&eb);
2624 	if (err) {
2625 		/*
2626 		 * If the user expects the execobject.offset and
2627 		 * reloc.presumed_offset to be an exact match,
2628 		 * as for using NO_RELOC, then we cannot update
2629 		 * the execobject.offset until we have completed
2630 		 * relocation.
2631 		 */
2632 		args->flags &= ~__EXEC_HAS_RELOC;
2633 		goto err_vma;
2634 	}
2635 
2636 	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2637 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2638 		err = -EINVAL;
2639 		goto err_vma;
2640 	}
2641 	if (eb.batch_start_offset > eb.batch->size ||
2642 	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2643 		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2644 		err = -EINVAL;
2645 		goto err_vma;
2646 	}
2647 
2648 	if (eb.batch_len == 0)
2649 		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2650 
2651 	err = eb_parse(&eb);
2652 	if (err)
2653 		goto err_vma;
2654 
2655 	/*
2656 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2657 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2658 	 * hsw should have this fixed, but bdw mucks it up again. */
2659 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2660 		struct i915_vma *vma;
2661 
2662 		/*
2663 		 * So on first glance it looks freaky that we pin the batch here
2664 		 * outside of the reservation loop. But:
2665 		 * - The batch is already pinned into the relevant ppgtt, so we
2666 		 *   already have the backing storage fully allocated.
2667 		 * - No other BO uses the global gtt (well contexts, but meh),
2668 		 *   so we don't really have issues with multiple objects not
2669 		 *   fitting due to fragmentation.
2670 		 * So this is actually safe.
2671 		 */
2672 		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2673 		if (IS_ERR(vma)) {
2674 			err = PTR_ERR(vma);
2675 			goto err_vma;
2676 		}
2677 
2678 		eb.batch = vma;
2679 	}
2680 
2681 	/* All GPU relocation batches must be submitted prior to the user rq */
2682 	GEM_BUG_ON(eb.reloc_cache.rq);
2683 
2684 	/* Allocate a request for this batch buffer nice and early. */
2685 	eb.request = i915_request_create(eb.context);
2686 	if (IS_ERR(eb.request)) {
2687 		err = PTR_ERR(eb.request);
2688 		goto err_batch_unpin;
2689 	}
2690 
2691 	if (in_fence) {
2692 		err = i915_request_await_dma_fence(eb.request, in_fence);
2693 		if (err < 0)
2694 			goto err_request;
2695 	}
2696 
2697 	if (exec_fence) {
2698 		err = i915_request_await_execution(eb.request, exec_fence,
2699 						   eb.engine->bond_execute);
2700 		if (err < 0)
2701 			goto err_request;
2702 	}
2703 
2704 	if (fences) {
2705 		err = await_fence_array(&eb, fences);
2706 		if (err)
2707 			goto err_request;
2708 	}
2709 
2710 	if (out_fence_fd != -1) {
2711 		out_fence = sync_file_create(&eb.request->fence);
2712 		if (!out_fence) {
2713 			err = -ENOMEM;
2714 			goto err_request;
2715 		}
2716 	}
2717 
2718 	/*
2719 	 * Whilst this request exists, batch_obj will be on the
2720 	 * active_list, and so will hold the active reference. Only when this
2721 	 * request is retired will the the batch_obj be moved onto the
2722 	 * inactive_list and lose its active reference. Hence we do not need
2723 	 * to explicitly hold another reference here.
2724 	 */
2725 	eb.request->batch = eb.batch;
2726 	if (eb.batch->private)
2727 		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2728 
2729 	trace_i915_request_queue(eb.request, eb.batch_flags);
2730 	err = eb_submit(&eb);
2731 err_request:
2732 	add_to_client(eb.request, file);
2733 	i915_request_get(eb.request);
2734 	i915_request_add(eb.request);
2735 
2736 	if (fences)
2737 		signal_fence_array(&eb, fences);
2738 
2739 	if (out_fence) {
2740 		if (err == 0) {
2741 			fd_install(out_fence_fd, out_fence->file);
2742 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2743 			args->rsvd2 |= (u64)out_fence_fd << 32;
2744 			out_fence_fd = -1;
2745 		} else {
2746 			fput(out_fence->file);
2747 		}
2748 	}
2749 	i915_request_put(eb.request);
2750 
2751 err_batch_unpin:
2752 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2753 		i915_vma_unpin(eb.batch);
2754 	if (eb.batch->private)
2755 		intel_engine_pool_put(eb.batch->private);
2756 err_vma:
2757 	if (eb.exec)
2758 		eb_release_vmas(&eb);
2759 	if (eb.trampoline)
2760 		i915_vma_unpin(eb.trampoline);
2761 	mutex_unlock(&dev->struct_mutex);
2762 err_engine:
2763 	eb_unpin_engine(&eb);
2764 err_context:
2765 	i915_gem_context_put(eb.gem_context);
2766 err_destroy:
2767 	eb_destroy(&eb);
2768 err_out_fence:
2769 	if (out_fence_fd != -1)
2770 		put_unused_fd(out_fence_fd);
2771 err_exec_fence:
2772 	dma_fence_put(exec_fence);
2773 err_in_fence:
2774 	dma_fence_put(in_fence);
2775 	return err;
2776 }
2777 
2778 static size_t eb_element_size(void)
2779 {
2780 	return (sizeof(struct drm_i915_gem_exec_object2) +
2781 		sizeof(struct i915_vma *) +
2782 		sizeof(unsigned int));
2783 }
2784 
2785 static bool check_buffer_count(size_t count)
2786 {
2787 	const size_t sz = eb_element_size();
2788 
2789 	/*
2790 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2791 	 * array size (see eb_create()). Otherwise, we can accept an array as
2792 	 * large as can be addressed (though use large arrays at your peril)!
2793 	 */
2794 
2795 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2796 }
2797 
2798 /*
2799  * Legacy execbuffer just creates an exec2 list from the original exec object
2800  * list array and passes it to the real function.
2801  */
2802 int
2803 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2804 			  struct drm_file *file)
2805 {
2806 	struct drm_i915_gem_execbuffer *args = data;
2807 	struct drm_i915_gem_execbuffer2 exec2;
2808 	struct drm_i915_gem_exec_object *exec_list = NULL;
2809 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2810 	const size_t count = args->buffer_count;
2811 	unsigned int i;
2812 	int err;
2813 
2814 	if (!check_buffer_count(count)) {
2815 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2816 		return -EINVAL;
2817 	}
2818 
2819 	exec2.buffers_ptr = args->buffers_ptr;
2820 	exec2.buffer_count = args->buffer_count;
2821 	exec2.batch_start_offset = args->batch_start_offset;
2822 	exec2.batch_len = args->batch_len;
2823 	exec2.DR1 = args->DR1;
2824 	exec2.DR4 = args->DR4;
2825 	exec2.num_cliprects = args->num_cliprects;
2826 	exec2.cliprects_ptr = args->cliprects_ptr;
2827 	exec2.flags = I915_EXEC_RENDER;
2828 	i915_execbuffer2_set_context_id(exec2, 0);
2829 
2830 	err = i915_gem_check_execbuffer(&exec2);
2831 	if (err)
2832 		return err;
2833 
2834 	/* Copy in the exec list from userland */
2835 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2836 				   __GFP_NOWARN | GFP_KERNEL);
2837 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2838 				    __GFP_NOWARN | GFP_KERNEL);
2839 	if (exec_list == NULL || exec2_list == NULL) {
2840 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2841 			  args->buffer_count);
2842 		kvfree(exec_list);
2843 		kvfree(exec2_list);
2844 		return -ENOMEM;
2845 	}
2846 	err = copy_from_user(exec_list,
2847 			     u64_to_user_ptr(args->buffers_ptr),
2848 			     sizeof(*exec_list) * count);
2849 	if (err) {
2850 		DRM_DEBUG("copy %d exec entries failed %d\n",
2851 			  args->buffer_count, err);
2852 		kvfree(exec_list);
2853 		kvfree(exec2_list);
2854 		return -EFAULT;
2855 	}
2856 
2857 	for (i = 0; i < args->buffer_count; i++) {
2858 		exec2_list[i].handle = exec_list[i].handle;
2859 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2860 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2861 		exec2_list[i].alignment = exec_list[i].alignment;
2862 		exec2_list[i].offset = exec_list[i].offset;
2863 		if (INTEL_GEN(to_i915(dev)) < 4)
2864 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2865 		else
2866 			exec2_list[i].flags = 0;
2867 	}
2868 
2869 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2870 	if (exec2.flags & __EXEC_HAS_RELOC) {
2871 		struct drm_i915_gem_exec_object __user *user_exec_list =
2872 			u64_to_user_ptr(args->buffers_ptr);
2873 
2874 		/* Copy the new buffer offsets back to the user's exec list. */
2875 		for (i = 0; i < args->buffer_count; i++) {
2876 			if (!(exec2_list[i].offset & UPDATE))
2877 				continue;
2878 
2879 			exec2_list[i].offset =
2880 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2881 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2882 			if (__copy_to_user(&user_exec_list[i].offset,
2883 					   &exec2_list[i].offset,
2884 					   sizeof(user_exec_list[i].offset)))
2885 				break;
2886 		}
2887 	}
2888 
2889 	kvfree(exec_list);
2890 	kvfree(exec2_list);
2891 	return err;
2892 }
2893 
2894 int
2895 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2896 			   struct drm_file *file)
2897 {
2898 	struct drm_i915_gem_execbuffer2 *args = data;
2899 	struct drm_i915_gem_exec_object2 *exec2_list;
2900 	struct drm_syncobj **fences = NULL;
2901 	const size_t count = args->buffer_count;
2902 	int err;
2903 
2904 	if (!check_buffer_count(count)) {
2905 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2906 		return -EINVAL;
2907 	}
2908 
2909 	err = i915_gem_check_execbuffer(args);
2910 	if (err)
2911 		return err;
2912 
2913 	/* Allocate an extra slot for use by the command parser */
2914 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2915 				    __GFP_NOWARN | GFP_KERNEL);
2916 	if (exec2_list == NULL) {
2917 		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2918 			  count);
2919 		return -ENOMEM;
2920 	}
2921 	if (copy_from_user(exec2_list,
2922 			   u64_to_user_ptr(args->buffers_ptr),
2923 			   sizeof(*exec2_list) * count)) {
2924 		DRM_DEBUG("copy %zd exec entries failed\n", count);
2925 		kvfree(exec2_list);
2926 		return -EFAULT;
2927 	}
2928 
2929 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2930 		fences = get_fence_array(args, file);
2931 		if (IS_ERR(fences)) {
2932 			kvfree(exec2_list);
2933 			return PTR_ERR(fences);
2934 		}
2935 	}
2936 
2937 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2938 
2939 	/*
2940 	 * Now that we have begun execution of the batchbuffer, we ignore
2941 	 * any new error after this point. Also given that we have already
2942 	 * updated the associated relocations, we try to write out the current
2943 	 * object locations irrespective of any error.
2944 	 */
2945 	if (args->flags & __EXEC_HAS_RELOC) {
2946 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2947 			u64_to_user_ptr(args->buffers_ptr);
2948 		unsigned int i;
2949 
2950 		/* Copy the new buffer offsets back to the user's exec list. */
2951 		/*
2952 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2953 		 * because we checked 'count' in check_buffer_count().
2954 		 *
2955 		 * And this range already got effectively checked earlier
2956 		 * when we did the "copy_from_user()" above.
2957 		 */
2958 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2959 			goto end;
2960 
2961 		for (i = 0; i < args->buffer_count; i++) {
2962 			if (!(exec2_list[i].offset & UPDATE))
2963 				continue;
2964 
2965 			exec2_list[i].offset =
2966 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2967 			unsafe_put_user(exec2_list[i].offset,
2968 					&user_exec_list[i].offset,
2969 					end_user);
2970 		}
2971 end_user:
2972 		user_access_end();
2973 end:;
2974 	}
2975 
2976 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2977 	put_fence_array(args, fences);
2978 	kvfree(exec2_list);
2979 	return err;
2980 }
2981